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Abstract

This paper describes the submission to the
IWSLT 2021 offline speech translation task
by the UPC Machine Translation group. The
task consists of building a system capable of
translating English audio recordings extracted
from TED talks into German text. Submitted
systems can be either cascade or end-to-end
and use a custom or given segmentation. Our
submission is an end-to-end speech transla-
tion system, which combines pre-trained mod-
els (Wav2Vec 2.0 and mBART) with coupling
modules between the encoder and decoder,
and uses an efficient fine-tuning technique,
which trains only 20% of its total parameters.
We show that adding an Adapter to the sys-
tem and pre-training it, can increase the con-
vergence speed and the final result, with which
we achieve a BLEU score of 27.3 on the MuST-
C test set. Our final model is an ensemble
that obtains 28.22 BLEU score on the same
set. Our submission also uses a custom seg-
mentation algorithm that employs pre-trained
Wav2Vec 2.0 for identifying periods of untran-
scribable text and can bring improvements of
2.5 to 3 BLEU score on the IWSLT 2019 test
set, as compared to the result with the given
segmentation.

1 Introduction

Typically, a speech translation (ST) system is com-
posed of an automatic speech recognition (ASR)
and a machine translation (MT) model, which is
known as cascade system. However, in recent
years, end-to-end models have gained popularity
within the research community. These systems
are encoder-decoder architectures capable of di-
rectly translating speech without intermediate sym-
bolic representations. This approach solves classi-
cal shortcomings of cascade ST systems, e.g. the
error propagation or the slow inference time (Weiss
et al., 2017). Nevertheless, while there are plenty

of data available to train ASR and MT systems,
there are not as many datasets for ST, despite some
recent efforts (Di Gangi et al., 2019a; Wang et al.,
2020b). Moreover, this approach is inherently more
difficult because the encoder has to perform both
acoustic modeling and semantic encoding. For
these reasons, end-to-end ST systems still struggle
to achieve the performance of cascade ST mod-
els. Still, last year’s IWSLT was the first time
an end-to-end system had the best performance in
the evaluation campaign (Potapczyk and Przybysz,
2020; Ansari et al., 2020). Hence, given the in-
creasing interest in end-to-end ST systems, and the
potential gains from advancing research on them,
we decided to focus on developing such a system
for this year’s offline task.

When there are not enough data for a task, a com-
mon practice is to use pre-trained components, like
BERT (Devlin et al., 2019) for various NLP tasks.
In the ST field, the idea of pre-training the encoder
for ASR was introduced by Berard et al. (2018)
and has become a standard technique for develop-
ing modern end-to-end systems (Pino et al., 2019;
Di Gangi et al., 2019b). By contrast, pre-training
the decoder for MT does not lead to better per-
formance (Bansal et al., 2019). Recently, Li et al.
(2021) proposed a multilingual ST system that com-
bines a pre-trained Wav2Vec 2.0 (Baevski et al.,
2020) as the encoder and a pre-trained mBART
decoder (Liu et al., 2020a). Furthermore, they
proposed a minimalist fine-tuning strategy that
trains only the 20% of the model parameters, while
achieving similar performance to fine-tuning the
whole model. From our perspective, this approach
might become a turning point in the field, includ-
ing bilingual scenarios like the IWSLT offline task.
Hence, we decided to adopt this architecture1 and
fine-tuning strategy in our system (§2.1). In addi-

1Since the pre-trained modules were trained on external
data, our submission is unconstrained.
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tion, we introduce an Adapter module to extract
better representations from the encoder (§2.2), and
we propose a two-step training strategy (§4.1) that
brings improvements to the translation quality.

During training, we used data augmentation tech-
niques to boost our system’s performance. Specif-
ically, we applied randomized on-the-fly augmen-
tations by adding an echo effect and modifying
tempo and pitch (§3.3). Since our system works
directly on the audio waveform, we could not use
SpecAugment (Park et al., 2019; Bahar et al., 2019).
Instead, we applied masking to the output of the
Wav2Vec 2.0 feature extraction module, thereby
obtaining a similar effect.

The test data are provided with an automatic
segmentation that does not ensure sentence-like
segments. Considering the trend observed in 2019
and 2020 IWSLT offline task, where submission
with own segmentation algorithms are strictly bet-
ter than those with the given segmentation, we also
decided to work with a custom segmentation algo-
rithm. We base it on the approach of Potapczyk
et al. (2019), but we replace the silence detection
tool with an ASR system (§3.4). Our experiments
on the IWSLT 2019 test set, show that our system
works better when the data are segmented with our
own segmentation algorithm (§4.3).

2 System description

We built an end-to-end ST system, mainly com-
posed of pre-trained modules. We couple a
Wav2Vec 2.0 encoder (Baevski et al., 2020) and
an mBART decoder (Liu et al., 2020a), following
the strategy proposed by Li et al. (2021). When
combining these two models, there is a length dis-
crepancy between the target sentence length and the
encoder output. For this reason, it is necessary to
use a module to shorten the encoder output, which
we refer to as the Length Adaptor. Additionally,
we introduce an Adapter module to reduce the gap
between the different modalities of the pre-trained
models (Bapna and Firat, 2019). A method that
Escolano et al. (2020) proved to be beneficial for
ST models.

2.1 Pre-trained modules

Our motivation is to get the most out of pre-
trained components, which were obtained by self-
supervision or supervised tasks. Concretely, we use
a Wav2Vec 2.0 encoder and an mBART decoder,
both trained initially by self-supervision and fine-

Figure 1: System overview. The original architecture
proposed by Li et al. (2021) includes a pre-trained
Wav2Vec 2.0 as the encoder, a pre-trained mBART de-
coder and a Length Adaptor. In this work, we add an
Adapter module after the encoder.

tuned for ASR and multilingual MT, respectively.
Wav2Vec 2.0 is a speech encoder proposed by

Baevski et al. (2020). This model is pre-trained by
self-supervision, i.e. without explicit targets such
as transcriptions. Its main contribution is that it
achieves excellent performance in ASR after fine-
tuning it with just a few minutes of transcribed
speech. Moreover, it can process raw audio wave-
forms directly, unlike other systems which work
with spectrogram-like representations (Di Gangi
et al., 2019d).

This model is composed of two main blocks.
Firstly, a feature extractor made of seven 1-D con-
volutional layers processes the raw audio waveform.
The representation obtained from this step has a
stride of 20ms between samples, and each one has
a receptive field of 25ms. Secondly, a Transformer
(Vaswani et al., 2017) encoder with 24 layers ex-
tracts contextualized representations. For the pur-
pose of our system, we discard the rest of the com-
ponents that are used during the self-supervised
pre-training (e.g. the quantization modules).

The Wav2Vec 2.0 model that we employ is al-
ready fine-tuned on ASR. Specifically, we use the
Large architecture, pre-trained with 53.2k hours of
untranscribed speech from LibriVox (Kahn et al.,
2020), fine-tuned on the 960h of transcribed speech
from Librispeech (Panayotov et al., 2015), and on
pseudo-labels (Xu et al., 2020).

mBART is a sequence-to-sequence denoising
autoencoder, which reconstructs the input text sen-
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Figure 2: Adapter module

tence given a corrupted version of it (Liu et al.,
2020a). It follows the same approach as BART
(Lewis et al., 2020) but, instead of using just En-
glish monolingual data, it is trained with multiple
languages. This strategy does not require any paral-
lel corpora, so it can be used as a pre-training step
and then fine-tuned for MT tasks.

Specifically, we use the 12-layer Transformer
decoder of an mBART model, fine-tuned on mul-
tilingual MT, from English to 49 languages (Tang
et al., 2020).

2.2 Coupling modules
In addition to the two main blocks that constitute
our system, we implement another two other mod-
ules placed after the Wav2Vec 2.0 encoder (Figure
1). The objective of these modules is to overcome
the multimodal gap by adapting the encoder output
to the decoder. With them, we adapt the represen-
tations to the decoder’s modality, and reduce its
length.

The Adapter is a module that was introduced by
Bapna and Firat (2019) to adapt pre-trained models
to multiple tasks. The Adapter projects its input
to a higher-dimensional space before reducing it
to the original size. Moreover, it applies layer nor-
malization at the input (Ba et al., 2016), a ReLU
activation after the first projection and a residual
connection (Figure 2).

In work done by Escolano et al. (2020), they
proposed to use this module to adjust the repre-
sentation from the speech encoder to the language-
specific decoders. Hence, we have used this mod-
ule with a similar purpose, since we also needed
to combine different pre-trained components and
modalities.

The Length Adaptor is a module that reduces
the length discrepancy between the input and out-

put sequences. It achieves an 8x down-sampling of
the encoder representation by applying a stack of 3
convolutional layers with a kernel size of 3 and a
stride of 2.

2.3 LNA Finetuning

We follow the LayerNorm and Attention (LNA)
fine-tuning strategy proposed by Li et al. (2021).
The main idea is that only some of the modules of
Wav2Vec 2.0 and mBART need to be fine-tuned to
build a system capable of ST. More specifically,
these are the layer normalization, encoder self-
attention and encoder-decoder attention, which ac-
count for the 20% of the total parameters. It was
shown that this minimal fine-tuning not only cre-
ates a powerful ST system, but its performance also
approximates what is obtained by fine-tuning all
the parameters. Even more importantly, it allows
fast and memory-efficient training, which enabled
us to work with such a large architecture.

3 Data

Here we introduce the datasets used for our experi-
ments and describe the filtering and data augmenta-
tion methods that were employed during training.

3.1 Datasets

For our experiments, we are using the English-to-
German data from three ST datasets, namely the
MuST-C v2 2 (Di Gangi et al., 2019a), EuroparlST
(Iranzo-Sánchez et al., 2020) and CoVoST 2 (Wang
et al., 2020b) 3. Our training set is a concatenation
of the respective train splits of these datasets, while
we discarded the train-noisy split of EuroparlST
due to low quality. We only consider MuST-C to
be in-domain, since its data come from TED talks,
and thus EuroparlST and CoVoST are considered
out-of-domain due to differences in setting, use of
language and segment duration. Given this, our
development data are comprised only of the de-
velopment split of MuST-C, which allows us to
concatenate the development splits of EuroparlST
and CoVoST to our training data. Furthermore,
we down-sample the CoVoST splits during each
training epoch to shift the importance towards the
MuST-C data. We do not down-sample EuroparlST

2The second version of MuST-C has not been officially
released yet, but the En-De data is available in advance at
https://ict.fbk.eu/must-c/.

3The EuroparlST and CoVoST 2 data are converted to
16khz, which is required for the input of the Wav2Vec 2.0
encoder.

https://ict.fbk.eu/must-c/.
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Split
Available

References
Aligned

Segmentation
MuST-C-dev D D
MuST-C-test D D
IWSLT.tst2019 D
IWSLT.tst2020
IWSLT.tst2021

Table 1: Development and Test splits

due to its already small size compared to MuST-C
(Table 2). We use two different sets for evaluat-
ing the performance of our system, the test split
of MuST-C and the IWSLT 2019 test set (Niehues
et al., 2019). The latter one provides us with an
opportunity to additionally test our segmentation
algorithm, since the given segmentation and the
reference translations are not perfectly aligned nor
sentence-like. Finally we generate our predictions
for the IWSLT test sets of 2020 (Ansari et al., 2020)
and 2021 (Anastasopoulos et al., 2021), for which
the reference translations have not been made avail-
able (Table 1). We do not use the rest of the IWSLT
test sets, since they are already included in the 2nd
version of MuST-C.

3.2 Data filtering
We remove examples where the duration of the
source audio is more than 25 seconds (400,000
samples) to avoid out-of-memory errors during the
training of the ST system. Apart from that, we use
another two filtering stages to ensure that our train-
ing data are of high quality, for which we provide
the details bellow. The size of the training data
after all the filtering stages can be found in Table 2.

Text Filtering. We perform text filtering on the
target German text of MuST-C to remove speaker
names and non-textual events. Speaker names in
MuST-C are used to differentiate between speak-
ers, when multiple of them are interacting in a
talk. They appear in the beginning of a sentence,
as full names or capitalized initials, followed by a
colon. We remove the text in the beginning of each
sentence if it matches the described pattern. Non-
textual events are enclosed in parentheses, with
some common examples being “(Gelächter)” or
“(Applaus)”, which are the German translations of
“laughter” and “applause”. In such cases we keep
the examples but we remove the events. The only
exception are cases where there are actual utter-
ances coming from a secondary speaker. For those

Split Original Filtered S.Ratio
MuST-C-train 450 415 1.0
EuroparlST-train 77 75 1.0
EuroparlST-dev 3 3 1.0
CoVoST-train 430 410 0.3
CoVoST-dev 26 24 0.3
Total 986 927 -

Table 2: Training splits with their original and filtered
sizes measured in hours, and the sampling ratios for
each split in every training epoch.

cases, we strip the parentheses and the speaker
names. For EuroparlST, large numbers use spaces
as the thousands-separator, which we convert to
commas, in order to match the number format of
MuST-C and IWSLT data. No specific text filtering
is done for CoVoST. Finally, we remove the exam-
ples that are empty after applying the text filtering.

ASR Filtering. For the final stage of filtering,
we use an Automatic Speech Recognition (ASR)
model to identify noisy examples. We employ a
pre-trained Wav2Vec 2.0 (Baevski et al., 2020),
from the HuggingFace Transformers library (Wolf
et al., 2020) and perform inference on all our train-
ing examples. The pre-trained Wav2Vec 2.0 is
quite effective in this task and achieves an average
word-error-rate (WER) of 0.135. Consecutively we
remove those examples where the predicted text
has a WER greater than 0.5, as compared to its
English reference text. At this stage of filtering we
remove approximately 4% of our total training data.
For ASR inference, all English target text was nor-
malized, lower-cased, stripped from punctuation
and numbers were converted to spelled-out words.

3.3 Data augmentation

Data augmentation has been shown to provide
increased performance in both ASR (Park et al.,
2019) and ST (Di Gangi et al., 2019c), by enrich-
ing and diversifying the training data. Thus, fol-
lowing Potapczyk et al. (2019), we perform data
augmentation on the English source audio. We
apply the “tempo” and “pitch” effects to force our
system to adapt to speeches of different speeds, and
the “echo” effect to simulate the echoing which is
usually present in large rooms, where TED talks
are taking place. Compared to Potapczyk et al.
(2019), we replace the “speed” effect in favor of
“pitch”, since “speed” also modifies the “tempo”,
which is a separate effect. Data augmentation is
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Parameter Min value Max value
tempo 0.85 1.3
pitch -300 300
echo-delay 20 200
echo-decay 0.05 0.2

Table 3: Data Augmentation parameter ranges. Echo is
controlled by two parameters. Tempo and echo-decay
are coefficients, pitch is measured in semitones and
echo-delay in milliseconds.

applied on-the-fly, during training, using WavAug-
ment (Kharitonov et al., 2020), which is build on
top of the SoX library 4. Each example in the batch
has a probability of paug = 0.8 to be augmented, in
which case we apply all three effects to it. We sam-
ple uniformly the parameters of each effect from
the ranges shown at Table 3.

3.4 Data Segmentation
Similarly to 2019 and 2020 (Niehues et al., 2019;
Ansari et al., 2020), this year’s evaluation data are
segmented using an automatic tool (Meignier and
Merlin, 2010), which does not ensure that segments
are proper sentences nor that they are aligned with
the translated text. This assigns extra importance to
developing methods for proper segmentation of the
audio data, which was confirmed in the previous
year’s evaluation campaign, where all top submis-
sions used their own segmentation algorithm. For
creating our own segmentation of the IWSLT 2020
and 2021 test sets, we modify the technique de-
scribed in Potapczyk et al. (2019), where they use
a silence detection tool 5 to progressively split each
audio file into smaller segments. Their algorithm
terminates when all segments do not exceed a max-
imum segment length (max seg len) threshold,
which they tune to maximize the BLEU score on
IWSLT 2015 test set (Cettolo et al., 2015). In our
approach we replace the silence detection tool with
a pre-trained Wav2Vec 2.0 model (Baevski et al.,
2020) from the Huggingface Transformer library
(Wolf et al., 2020), to identify periods of untran-
scribable English text. Since the IWSLT 2015 test
set is included in MuST-C v2, we tune our algo-
rithm on IWSLT 2019 test set. First, we perform
inference with Wav2Vec 2.0 on the IWSLT 2019
test set, and obtain a token prediction for every
20ms for each audio file. Then we proceed to split
each audio file on the largest untranscribable pe-

4SoX - https://sox.sourceforge.net
5Audacity - https://www.audacityteam.org

Figure 3: BLEU scores for our segmentation al-
gorithm with different values of max seg len on
IWSLT.tst2019. X-axis is in seconds. With red color
is the BLEU score for the given segmentation.

riod, which is identified by the absence of English
characters in it. The algorithm terminates when
the max segment length condition is satisfied or
no further splits are possible due to a minimum
untranscribable period length, which we set to 0.2
seconds. We test max seg len ∈ [5, 25], and for
each value we produce a segmentation, generate
translations using one of our ST systems 6, use
the mwerSegmenter 7 software to align the gen-
erated translations with the reference translations,
and finally obtain a BLEU score using SACRE-
BLEU (Post, 2018). We find that the maximum
BLEU score is obtained using max seg len = 22
seconds (Figure 3), which we use to segment the
IWSLT 2020 and 2021 test sets for our submission.

4 Experiments

Here we describe our experiments, along with their
implementation details and the results on MuST-C
and the IWSLT 2019 test set.

4.1 Experimental Setup
LNA-ED The first experiment is to train our base-
line model, which is an encoder-decoder model
with a length adaptor module (§2.2) in between.
As in Li et al. (2021), we initialize the encoder
with a pre-trained Wav2Vec 2.0, the decoder with
the decoder of a pre-trained mBART50 (§2.1) and
we only train the parameters of the layer normaliza-
tion in both encoder and decoder, the encoder self-
attention in the encoder, the encoder cross-attention
in the decoder, and Length Adaptor (§2.3).

6For the purpose of this experiment we used the best check-
point from the LNA-ED-Adapt experiment (Table 4)

7https://github.com/jniehues-kit/SLT.
KIT

https://sox.sourceforge.net
https://www.audacityteam.org
https://github.com/jniehues-kit/SLT.KIT
https://github.com/jniehues-kit/SLT.KIT
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LNA-ED-Adapt Following we experiment with
adding an Adapter module (§2.2) prior to the
Length Adaptor, while we train the same parame-
ters as in LNA-ED. We expect that this module will
adapt the encoder output to the decoder’s modal-
ity, before down-sampling it with the convolutional
layers of the Length Adaptor.

LNA-ED-Adapt-2step Our next experiment
aims at initializing all the sub-modules from pre-
trained checkpoints. Thus, our first step is to train
only the coupling modules of the LNA-ED-Adapt
system, while everything else is frozen. Then, in
the second step we proceed by training all the active
parameters of LNA-ED-Adapt. We hypothesize
that in the prior experiments the initially random
weights of the coupling modules are slowing down
the learning process and potentially also hurting
the final performance of the system.

In-domain FT We experiment with fine-tuning
our systems for some additional epochs only on the
in-domain data of MuST-C. During this fine-tuning
we also disable data augmentation.

Ckpt AVG We average checkpoints around the
best, indicated by the highest BLEU score in the
development split of MuST-C. This technique has
been shown to provide more generalizable mod-
els, achieving higher scores in the hidden test sets
(Gaido et al., 2020; Lakumarapu et al., 2020).

Ensemble For our final model, we ensemble our
two best single models. To increase the diversity
of the two single models and, consecutively, the
performance of the ensemble, we choose one that
is further fine-tuned on in-domain data and one that
is not. We expect that, although there is a potential
boost in the performance of a system by fine-tuning
to in-domain data, there is the risk of catastrophic
forgetting of the more general data properties of
the combined and augmented corpus. Thus, we
combine a model specialized to the in-domain data
and one which is potentially more general.

4.2 Implementation details

For the encoder and decoder of our models, we are
using the same architecture as the Wav2Vec 2.0
and mBART decoder (§2.1). More specifically the
encoder has a 7-layer convolutional feature extrac-
tor and a 24-layer Transformer encoder, while the
decoder has 12 layers. The feature extractor has
512 channels, while each Transformer layer has a

dimensionality of 1024, feed-forward dimension
of 4096, and 16 heads. For the Adapter, we use
an inner dimensionality of 4096, which was shown
to work better in Escolano et al. (2020) and for
the Length Adaptor we set the kernel size to 3 and
the stride to 2. The decoder uses a vocabulary of
250,000 tokens, and the embedding layer is shared
between source and target.

We train all our models with the LNA method
(§2.3), unless stated otherwise. The training data
for each epoch are coming from the 5 splits show in
Table 2, with their respective sampling ratios. We
limit the length of the source examples to 400,000
samples (i.e. 25 seconds) and to 1024 tokens for the
target. For each example, we apply data augmenta-
tion (§3.3) on the source speech and subsequently,
normalize it to zero mean and unit variance. We
construct mini-batches with a maximum of 440,000
samples, and use data parallelism on 4 GPUs and
gradient accumulation with 16 steps, to increase
the effective batch size by a factor of 64.

For optimization we use Adam (Kingma and Ba,
2017) with parameters β1 = 0.99, β2 = 0.98. We
set the base learning rate to 10−4, which is con-
trolled during training by a tri-stage scheduler with
the ratios for the warm-up, hold and decay phases
being 0.15, 0.15, and 0.7 accordingly, and initial
and final scales of 0.01. We clip gradients to a max-
imum norm of 20, and we apply a dropout of 0.1
before every non-frozen layer or sub-layer in our
models. Following Liu et al. (2020b), the optimizer
is minimizing the standard cross-entropy loss with
a label smoothing of 0.2. All models are trained for
16 epochs (approximately 23,000 updates), apart
from the pre-training step of the LNA-ED-Adapt-
2step and the in-domain fine-tuning, which are car-
ried out for 4 epochs.

We pick the checkpoint with the highest BLEU
score on the development set of MuST-C, for which
then we report the BLEU on the test set of MuST-C
and the IWSLT 2019 test set. We ensemble the 2
best models according to the BLEU score on the
test set of MuST-C. For generation, we are using
a standard beam search with a size of 5. All our
experiments are done in a machine with 4 Nvidia
GeForce RTX 2080 Ti GPUs, using 16 floating-
point precision, and are implemented in fairseq
(Wang et al., 2020a). The training of each model
took approximately 60 hours. The code for our
experiments is available in a public repository8.

8https://github.com/mt-upc/iwslt-2021

https://github.com/mt-upc/iwslt-2021
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4.3 Results

The results of our experiments (§4.1) on the devel-
opment and test sets of MuST-C can be found in
Table 4. We also provide the BLEU score on the
IWSLT 2019 test set, for both the given and our
own segmentation, using a max segment length of
22 (§3.4). The addition of the Adapter module pro-
vides an increase of 0.76 BLEU in MuST-C test set,
as compared to LNA-ED. We observe that train-
ing our system in two steps can bring further im-
provements to the quality of translations. The first
step of training of the LNA-ED-Adapt-2step exper-
iment, with only the coupling modules being active,
achieves a BLEU score of 15.54 after 4 epochs of
training. Subsequently, the 2nd step is initialized
from a much better checkpoint, as compared to the
previous experiments, and can converge faster, as
we can observe in Figure 4, eventually achieving a
BLEU score of 27.25.

Both the LNA-ED-Adapt and LNA-ED-Adapt-
2step bring improvements to the base model,
without a significant computational burden. The
Adapter module has 8.4 million parameters, which
accounts for an increase of only 5% in the to-
tal trainable parameters of the LNA method. In
the first step of LNA-ED-Adapt-2step we are only
training 9.1 million parameters for 4 epochs, a pro-
cess that is completed rather fast compared to the
training of the second step.

We achieve increased performance by fine-
tuning the best checkpoint of LNA-ED-Adapt on
the in-domain data of MuST-C for another 4 epochs.
What stands out from this further fine-tuning is
the large improvements in the IWSLT 2019 test
set, providing us with our best score on the own
segmentation from a single model. Due to time
constraints, we carried out this fine-tuning only on
LNA-ED-Adapt and not on LNA-ED-Adapt-2step.
Finally, we average the checkpoints around the
best for the in-domain fine-tuned LNA-ED-Adapt
and the LNA-ED-Adapt-2step. Using them in an
ensemble, we obtain a BLEU score of 28.22 on
the test set of MuST-C, which is an improvement
of 0.92 points from our best single model, while
smaller improvements are observed in the IWSLT
2019 test set.

Regarding the translation quality on the IWSLT
2019 test set, we can observe that using our own
segmentation algorithm, we can obtain large im-
provements, from 2.5 to 3 in BLEU score.

Figure 4: BLEU scores on MuST-C-dev during training

Model MuST-C IWSLT.tst2019
dev test given own

LNA-ED 26.76 26.23 17.25 20.06
LNA-ED-Adapt 27.28 26.99 17.34 20.32
↪→ In-domain FT 27.36 27.25 18.79 21.29
↪→ ckpt AVG (a) 27.36 27.29 18.97 21.13
LNA-ED-Adapt-2step 27.49 27.25 17.56 20.37
↪→ ckpt AVG (b) 27.5 27.3 17.51 20.38
Ensemble (a) & (b) 28.5 28.22 19.05 21.43

Table 4: BLEU scores on dev and test sets of MuST-C
and on the IWSLT.tst2019 with given and own segmen-
tation. With bold are the best scores by single models
and with underlined bold are the best scores overall.

4.4 Submission results

Model Segmentation
Reference

2020 2021† 2021‡ 2021?
Ensemble Own 24.6 21.8 18.3 30.6
Ensemble Given 20.5 19.5 16.0 26.7

Single Own 23.0 20.7 17.5 29.0
Single Given 19.0 18.4 15.0 25.0

Table 5: Final results of our submission on the IWSLT
2020 and 2021 test sets, measured in BLEU, against the
IWSLT (†) and TED (‡) references separately and both
at once (?). With bold is our primary submission. The
Single is our best single model from Table 4 (LNA-ED-
Adapt-2step with ckpt AVG) and the Ensemble to the
ensemble of our best single model and the LNA-ED-
Adapt with In-domain FT and ckpt AVG.

There are two references available for this year’s
test set (Anastasopoulos et al., 2021), one corre-
sponding to the official TED talks subtitles and
another generated by the IWSLT organizers. Our
primary submission is the ensemble of the two best
models with our segmentation, which scores 18.3
BLEU against the TED references, 21.8 BLEU
with the IWSLT references, and 30.6 BLEU with
both together (Table 5). Meanwhile, when using
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the given segmentation, we get a decrease of 2.3
BLEU in both references, which is consistent to the
results obtained in the IWSLT 2019 test set (Table
4). As a contrastive system, we also submitted the
results obtained with our best single model, corre-
sponding to the LNA-ED-Adapt-2step model with
checkpoint averaging. This system scores approxi-
mately 1 BLEU less with respect to the ensemble,
similarly to the results we get in the IWSLT 2019
test set (Table 4).

We also evaluated our systems on the IWSLT
2020 test set, for tracking year-to-year progress.
Our best model obtains a BLEU score of 24.6 (Ta-
ble 5) and, in general, the results follow the same
trend as on the IWSLT 2021 test set. For compar-
ison, our best model would have been place 3rd
in last year’s leaderboard (Ansari et al., 2020), 0.7
BLEU points behind the best system (Potapczyk
and Przybysz, 2020).

5 Conclusions

We described the UPC Machine Translation group
participation in the IWSLT 2021 offline ST task.
We built our system by combining pre-trained com-
ponents, using Wav2Vec 2.0 as an encoder and
an mBART decoder. In order to fine-tune such a
large model with approximately 770 million pa-
rameters, we followed the strategy proposed by
Li et al. (2021), in which just a 20% of the pa-
rameters are trained. Originally, this method was
proposed for multilingual ST, and it had not been
applied to initialize a bilingual system yet. With
this approach, we got a score of 26.23 BLEU in the
MuST-C test set. Then, we introduced an Adapter
module to reduce the gap between the different
modalities of the pre-trained components, which
brought an improvement of 0.76 BLEU. We also
explored a two-step training where we initialized
the coupling modules before fine-tuning the rest of
the model, which resulted in an increase of 1.02
BLEU with respect to the original model. Further-
more, we applied other techniques like fine-tuning
with in-domain data, checkpoint averaging and en-
sembling our two best models. Our final score in
the MuST-C test set was 28.22 BLEU. Apart from
using Wav2Vec 2.0 as the encoder of our ST sys-
tem, we additionally leveraged it in our ASR-based
data filtering and as part of our segmentation al-
gorithm. Applying this custom segmentation we
gained an increase of 2.5 to 3 BLEU score in the
IWSLT 2019 test set, as compared to the result of

with given segmentation.
As was shown in Li et al. (2021), and confirmed

in this work for a bilingual scenario, large pre-
trained models can be very effective in ST. We
believe that future work should focus on exploring
better methods to adapt these pre-trained models
to new languages and tasks, with Adapter modules
being promising candidates.
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losa, and Carlos Segura. 2020. Enabling zero-
shot multilingual spoken language translation with
language-specific encoders and decoders. arXiv
preprint arXiv:2011.01097.

Marco Gaido, Mattia A. Di Gangi, Matteo Negri, and
Marco Turchi. 2020. End-to-end speech-translation
with knowledge distillation: FBK@IWSLT2020. In
Proceedings of the 17th International Conference on
Spoken Language Translation, pages 80–88, Online.
Association for Computational Linguistics.

Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà,
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Matthijs Douze, and Emmanuel Dupoux. 2020.
Data augmenting contrastive learning of speech
representations in the time domain. arXiv preprint
arXiv:2007.00991.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Nikhil Kumar Lakumarapu, Beomseok Lee,
Sathish Reddy Indurthi, Hou Jeung Han, Mohd Ab-
bas Zaidi, and Sangha Kim. 2020. End-to-end
offline speech translation system for IWSLT 2020
using modality agnostic meta-learning. In Pro-
ceedings of the 17th International Conference on
Spoken Language Translation, pages 73–79, Online.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1006
https://doi.org/10.18653/v1/N19-1006
https://doi.org/10.18653/v1/N19-1006
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.1109/ICASSP.2018.8461690
https://doi.org/10.1109/ICASSP.2018.8461690
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1202
https://doi.org/10.18653/v1/N19-1202
https://doi.org/10.5281/ZENODO.3525492
https://doi.org/10.5281/ZENODO.3525492
https://doi.org/10.5281/zenodo.3525492
https://doi.org/10.5281/zenodo.3525492
https://doi.org/10.21437/Interspeech.2019-3045
https://doi.org/10.21437/Interspeech.2019-3045
https://doi.org/10.18653/v1/2020.iwslt-1.8
https://doi.org/10.18653/v1/2020.iwslt-1.8
http://arxiv.org/abs/1911.03167
http://arxiv.org/abs/1911.03167
https://github.com/facebookresearch/libri-light
https://github.com/facebookresearch/libri-light
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.iwslt-1.7
https://doi.org/10.18653/v1/2020.iwslt-1.7
https://doi.org/10.18653/v1/2020.iwslt-1.7
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


119

Xian Li, Changhan Wang, Yun Tang, Chau Tran,
Yuqing Tang, Juan Pino, Alexei Baevski, Alexis
Conneau, and Michael Auli. 2021. Multilingual
speech translation with efficient finetuning of pre-
trained models.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020a. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020b. Multilingual denoising
pre-training for neural machine translation.

Sylvain Meignier and Teva Merlin. 2010. Lium spkdi-
arization: an open source toolkit for diarization. In
CMU SPUD Workshop.

J. Niehues, R. Cattoni, S. Stüker, M. Negri, M. Turchi,
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