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Abstract

In this paper, we present the first statistical
parser for Lambek categorial grammar (LCG),
a grammatical formalism for which the graphi-
cal proof method known as proof nets is applica-
ble. Our parser incorporates proof net structure
and constraints into a system based on self-
attention networks via novel model elements.
Our experiments on an English LCG corpus
show that incorporating term graph structure is
helpful to the model, improving both parsing
accuracy and coverage. Moreover, we derive
novel loss functions by expressing proof net
constraints as differentiable functions of our
model output, enabling us to train our parser
without ground-truth derivations.

1 Introduction

In the family of categorial grammars, combina-
tory categorial grammar (CCG) has received by
far the most attention in the computational lin-
guistics literature. There exist algorithms for both
mildly context-sensitive (e.g., Kuhlmann and Satta,
2014) and context-free (typically CKY; Cocke and
Schwartz, 1970; Kasami, 1966; Younger, 1967)
CCG parsing, and there has been much research
on statistical CCG parsers (e.g., Clark and Curran,
2007; Lewis et al., 2016; Stanojević and Steedman,
2020). Another member of the categorial family,
Lambek categorial grammar (LCG), has been less
well-explored: LCG work has been primarily theo-
retical or focused on non-statistical parsing.

The recent lack of attention is likely due to two
notable results: (1) LCG is weakly context-free
equivalent (Pentus, 1997); and (2) LCG parsing is
NP-complete (Pentus, 2006; Savateev, 2012). How-
ever, neither of these issues is necessarily practi-
cally relevant. Moreover, LCG presents a number
of advantages and interesting properties. For exam-
ple, LCG provides even greater syntax-semantics
transparency than is the case for most CCG parsers

because it does not invoke non-categorial rules,
maintaining a consistent parsing framework. LCG’s
rules together define a calculus over syntactic cate-
gories that is a subset of linear logic (Girard, 1987).

LCG, like CCG or LTAG, is a highly lexicalized
formalism: lexical categories encode substantial
syntactic information, and as a result are them-
selves complex and structured. Despite this, the in-
ner structure of the categories has not been strongly
considered in parsers beyond evaluating the cate-
gory for compatibility with a grammatical rule.

In this paper, we present the first statistical LCG
parser. Unlike past parsers for CCG or LTAG, our
parser explicitly incorporates structural aspects of
the grammar. We base our system on proof nets,
a graphical method for representing linear logic
proofs that abstracts over irrelevant aspects, such
as the order of application of logical rules (Girard,
1987; Roorda, 1992). This corresponds to the prob-
lem of spurious ambiguity, making proof nets an
attractive choice for representing derivations.

Our work has two primary contributions. First,
we introduce a self-attention–based LCG parsing
model that incorporates proof net structure in mul-
tiple ways. We find that minding proof net structure
enables us to define a model that is differentiable
through this categorial structure down to the atomic
categories of the grammar, improving parsing ac-
curacy and coverage on an English LCG corpus.

Second, proof net constraints allow us to define
novel grammatico-structural loss functions that can
be used as training objectives. This enables us to
train a parser without ground-truth derivations that
has high coverage and even frequently includes
the correct parse among the parses that it finds.
Our analysis shows that all of our components
contribute to the parser’s performance, but that
planarity information is especially important.

mailto:aditya@cs.toronto.edu
mailto:gpenn@cs.toronto.edu


14

𝛥 ⊢ 𝑋/𝑌 𝛤 ⊢ 𝑌 /e
𝛥, 𝛤 ⊢ 𝑋

𝛤 ⊢ 𝑌 𝛥 ⊢ 𝑋\𝑌 \e
𝛤, 𝛥 ⊢ 𝑋

𝛤,𝑌 ⊢ 𝑋 /i
𝛤 ⊢ 𝑋/𝑌

𝑌, 𝛤 ⊢ 𝑋 \i
𝛤 ⊢ 𝑋\𝑌

axiom
𝑋 ⊢ 𝑋

Figure 1: The rules of the associative Lambek calculus
without product and allowing empty premises.

2 Background

2.1 Lambek categorial grammar
Lexical categories in LCG, like those of CCG, com-
prise an infinite set of categories that is formed by
the closure of two binary connectives, the forward
(/) and backward slash (\), on a small set of atomic
(i.e., primitive) categories, such as S and NP for sen-
tences and noun phrases. The connectives both cre-
ate functional categories, and they differ in which
of a word or phrase a specified argument must ap-
pear. For example, (S\NP)/NP/NP represents a
category that combines with two NPs to its right
and one NP to its left to yield a valid S.1 In English,
this category might represent a ditransitive verb.

Figure 1 shows the rules of inference for L*, the
associative Lambek calculus without product and
allowing empty premises. In L*, statements, called
sequents, have (ordered) lists of categories as an-
tecedents on the left of the turnstile and single
categories as consequents on the right. The inter-
pretation of a sequent is that its consequent can be
derived from its antecedents. The rules have their
premises above a bar, conclusions below, and a la-
bel for the rule to the right. Rules /e and \e eliminate
a slashed category, in that it is missing from their
conclusions; rules /i and \i introduce a new slashed
functor in the consequent of their conclusions.

Each rule states that its concluding sequent is
true (derivable) if and only if all of its premises are.
𝑋 and 𝑌 are variables over categories (atomic or
complex) whileΔ and Γ are variables over possibly-
empty2 lists of categories. A typical application of
LCG is to look up a category for each word in a
sentence and then inquire whether the consequent
S is derivable from the antecedent that lists these
categories in the same order as their words.

While some of CCG’s rules are not derivable
in the Lambek calculus (inter alia, crossing com-

1Although LCG’s usual notation employs these connec-
tives slightly differently, we use CCG notation here.

2There are calculus variants that disallow such empty lists.

position and substitution), first-degree harmonic
composition and type-raising are. At the same time,
LCG’s introduction rules cannot be derived by any
CCG with finite rules (Zielonka, 1981).

Although LCG parsing is known to be an NP-
complete problem (Pentus, 2006; Savateev, 2012),
Fowler (2010) presented an algorithm that is expo-
nential only in category order, a quantity that is
bounded to small values in practice (Fowler, 2016).

2.2 Term graphs: enhanced proof nets
Our work in this paper is based on a variety of
proof net known as term graphs. A term graph
is a digraph that represents a sequent proof in the
Lambek calculus. The atoms of the sequent cor-
respond to vertices in the graph, and the internal
structure of the lexical categories is represented
by regular edges and Lambek edges between the
vertices. Together, the vertices, regular edges, and
Lambek edges are referred to as a proof frame,
which is invariant across possible proofs for the se-
quent. A proof is represented by a proof frame plus
by an additional set of regular edges between the
vertices called a linkage. Different linkages corre-
spond to different proofs, which in turn correspond
to different syntactic parses. For a term graph to be
valid, the frame-plus-linkage is subject to certain
conditions, detailed below.3

To construct a proof frame for a sequent
𝐴1, 𝐴2, . . . , 𝐴𝑛 ⊢ 𝐵, the categories in the sequent
are first assigned positive or negative polarities.
Each lexical category 𝐴𝑖 of the antecedent is
marked negative (𝐴−

𝑖
), while the consequent 𝐵 is

marked positive (𝐵+). Each polarized category is
decomposed into its polarized atoms according to
a set of recursively-applied rules. These rules also
specify the regular and Lambek edges between the
atoms, represented as solid and dashed edges, re-
spectively. The lexical decomposition rules are:

(𝑋/𝑌 )− ⇒ 𝑋− → 𝑌+ (𝑋\𝑌 )− ⇒ 𝑌+ ← 𝑋−

(𝑋\𝑌 )+ ⇒ 𝑋+ d 𝑌− (𝑋/𝑌 )+ ⇒ 𝑌− c 𝑋+

The total order of the frame (indicated left-to-right)
is determined by the ordering of the lexical cat-
egories in the sequent together with the ordering
specified in the decomposition rules above.

A linkage for a proof frame consists of directed
edges called links from positive vertices to negative
vertices of the same atomic category. Valid linkages
form perfect matchings: each vertex in the frame

3See (Fowler, 2009, 2016) for full details.
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S− S+ NP− NP+ S− PP+ PP− NP+ NP− N+ N− S+

N S
difference ?

S/(S\NP) (S\NP)/PP PP/NP NP/N
What accounts for the

Figure 2: An example term graph. Dotted vertical lines
delimit polarized atoms within a word; solid vertical
lines mark lexical boundaries. The linkage is shown
above the atoms; the proof frame edges are shown below
them, with solid regular edges and dashed Lambek edges.
The consequent category is aligned with sentence-final
punctuation for convenience. This single term graph
represents multiple spuriously ambiguous derivations.

has exactly one link, and that link is outgoing for
positive vertices and incoming for negative vertices.

A term graph represents a proof in L* (Fowler,
2009), and therefore also an LCG parse, so long as
it meets the following conditions:

T1. The linkage is half-planar; i.e., the links can
be drawn above the linearly-ordered vertices
without crossing.

T2. Treating links as regular edges, the graph
is regular-acyclic; i.e., there are no cycles
containing only regular edges.

T3. For each Lambek edge ⟨𝑖, 𝑗⟩, there exists a
regular path from 𝑖 to 𝑗 .

A term graph that satisfies these conditions is called
L*-integral. Figure 2 shows an example term graph.

3 Neural network LCG parsing

For categorial and other highly-lexicalized gram-
matical formalisms, the standard approach to statis-
tical syntactic parsing separates the problem into
two steps: (1) a supertagger assigns lexical cate-
gories to the words in the input sentence; then (2) a
parser uses the supertagger’s predictions to produce
a predicted parse for the sentence. With proof nets,
the lexical categories uniquely determine the proof
frame, so supertagging can be seen as predicting a
proof frame for the sentence. The second step then
corresponds to predicting the linkage for the proof
frame. Of course, the linkage must, together with
the proof frame, yield an L*-integral term graph.

Our work in this paper focuses on the latter com-
ponent. Our parser is constructed such that we can
separate its aspects that incorporate term graph
structure and constraints from a “baseline” model
which uses almost no such information. To provide
a broad overview, our baseline model runs a Trans-
former encoder stack (Vaswani et al., 2017) over the

proof frame vertices. The top encoder block is trun-
cated, omitting everything after and including the
softmax, which directly yields scores for every pair;
we mask these scores so that only valid links (i.e.,
those from positive vertices to negative vertices of
the same atomic category) are considered.

We next detail our baseline model in Section 3.1
and then our various methods for incorporating
term graph structure in Sections 3.2–3.4. Note that
we use named tensor notation (Chiang et al., 2021)
in the mathematical descriptions.

3.1 Baseline: parsing by predicting links

3.1.1 Parser inputs
Our baseline model takes as input a sentence, an
associated proof frame, and an alignment between
the words in the sentence and the polarized atoms
that are the proof frame’s vertices. We represent
each word as a vector of size |vec| so that a sentence
of length |words| is represented as a matrix 𝑯 ∈
Rwords× vec. For a grammar with atomic categories
T = {𝑡1, 𝑡2, . . . , 𝑡 |𝑇 |}, the set of possible polarized
atoms is PT = {𝑡+1 , 𝑡

−
1 , 𝑡
+
2 , 𝑡
−
2 , · · · , 𝑡

+
|T |, 𝑡

−
|T |}; the

proof frame vertices are thus each represented as
one-hot vectors of width |pt| = |PT | = 2|T |. A
proof frame with |vtx| vertices is represented by
stacking its vertex’s vectors, forming a matrix 𝑵 ∈
{0, 1}vtx× pt with

∑
pt 𝑵 = 1. The vtx axis is ordered

according to the vertices’ total order. Finally, the
word-vertex alignment is represented as a matrix
𝑴 ∈ {0, 1}vtx×words where 𝑴vtx(𝑖) ,words( 𝑗) = 1 if
and only if vertex 𝑖 corresponds to word 𝑗 .

3.1.2 Transformer encoder stack
The Transformer encoder stack as defined by
Vaswani et al. (2017) adds positional encoding vec-
tors to the model inputs. In our case, we have two
input sequences (polarized atoms and word vec-
tors) of differing lengths, along with an alignment
between them. We include the positional encoding
vectors over the word positions as inputs to the en-
coder, and apply relative positional attention (Dai
et al., 2019) during the self-attention step over the
polarized atom positions. We found this combina-
tion most effective during development.

More precisely, we add the usual sinusoidal po-
sitional encoding vectors (Vaswani et al., 2017)
𝑷w ∈ Rwords× vec to the word vectors and map the
result to the vertex indices. We embed the polarized
atoms 𝑵 via trainable matrix 𝑨 ∈ Rpt× vec and add
them to their corresponding word vectors to yield
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inputs 𝑿0 ∈ Rvtx× vec for the encoder stack:

[PE(𝑝)]vec(𝑖) =


sin

(
𝑝 − 1

104(𝑖−1)/ |vec |

)
𝑖 odd

cos
(

𝑝 − 1
104(𝑖−2)/ |vec |

)
𝑖 even

[𝑷w]words(𝑝) = PE(𝑝)
𝑿0 = (𝑯 + 𝑷w) ⊙

words
𝑴 + 𝑵 ⊙

pt
𝑨

The Transformer encoder stack consists of 𝐿

encoder layers. Denoting the input to layer 𝑙 as
𝑿𝑙−1, with 𝑿0 as above, each layer computes 𝑿𝑙 as:

𝑻𝑙 = SelfAttn𝑙 (𝑿𝑙−1) + 𝑿𝑙−1

𝑿𝑙 = FFN𝑙 (𝑻𝑙) + 𝑻𝑙

with FFN defined as in (Vaswani et al., 2017).4
From a given input sequence, standard self-

attention computes query, key, and value tensors.
Although all three tensors derive from the same
input sequence, the key and value tensors function
as “memory” tensors, so their sequence axis is a
“lookup” axis distinct from that of the query tensors.
In our case, the input sequence axis is vtx, so we
preserve this distinction by renaming the vtx axis
to vtx′ for the key and value tensors.

We employ relative positional encoding follow-
ing Dai et al. (2019), allowing our model to directly
learn to attend to polarized atoms at positions rela-
tive to a given atom. The relative positional vectors
are represented as a tensor 𝑷v ∈ Rvtx× vtx′ × vec so
that [𝑷v]vtx(𝑖) ,vtx′ ( 𝑗) = PE(𝑖 − 𝑗) is the encoding
of position 𝑗 (on the key/value axis) relative to
position 𝑖 (on the query axis).

For multi-headed self-attention, each encoder
layer 𝑙 computes |heads| attention heads, each of
width |hdim|. We thus have trainable parameters
𝑾q,𝑙,𝑾k,𝑙,𝑾v,𝑙,𝑾r,𝑙𝑾o,𝑙 ∈ Rheads× hdim× vec and
𝒃k,𝑙, 𝒃r,𝑙 ∈ Rheads× hdim with which we compute the
query, key, value, relative position encoding, and
attention score tensors 𝑸𝑙, 𝑲𝑙,𝑽𝑙, 𝑹𝑙, and 𝑺𝑙 as:

𝑸𝑙 = 𝑾q,𝑙 ⊙
vec

𝑿𝑙−1 (1)

𝑲𝑙 = 𝑾k,𝑙 ⊙
vec
[𝑿𝑙−1]vtx→vtx′ (2)

𝑽𝑙 = 𝑾v,𝑙 ⊙
vec
[𝑿𝑙−1]vtx→vtx′

𝑹𝑙 = 𝑾r,𝑙 ⊙
vec

𝑷v

4We apply layer normalization (Ba et al., 2016) as well, but
omit it here for concision. We use the “pre-norm” application
order (Wang et al., 2019; Nguyen and Salazar, 2019).

𝑺𝑙 =

(𝑸𝑙 + 𝒃k,𝑙) ⊙
hdim

𝑲𝑙 + (𝑸𝑙 + 𝒃r,𝑙) ⊙
hdim

𝑹𝑙√︁
|hdim|

(3)

where vtx → vtx′ denotes renaming axis vtx to
vtx′. Next, with final trainable parameter 𝑾o,𝑙 ∈
Rheads× hdim× vec, we compute the SelfAttn𝑙 output:

SelfAttn𝑙 (𝑿𝑙−1) =𝑾o,𝑙 ⊙
hdim
heads

(
softmax

vtx′
(𝑺𝑙)⊙

vtx′
𝑽𝑙

)
(4)

Each encoder layer includes all of these steps except
for the final layer 𝑙 = 𝐿, where we omit Equation 4.

Finally, we apply a mask 𝑭 ∈ {0,∞}vtx× vtx′ to
ensure that only edges from positive atoms to neg-
ative atoms of the same category are considered:

𝑭vtx(𝑖) ,vtx′ ( 𝑗) =


0 if atom(𝑖) = atom( 𝑗)

and pol(𝑖) > pol( 𝑗),
∞ otherwise

𝑺 = mean
heads
(𝑺𝐿) − 𝑭 (5)

where atom(𝑖) returns the category of vertex 𝑖 and:

pol(𝑖) =
{

1 if vertex 𝑖 is positive,
−1 if vertex 𝑖 is negative.

3.1.3 Linkage loss function
Given the predicted score matrix 𝑺, it still remains
to specify how to predict candidate linkages. We
first note the problem with which we are presented
at this stage is exactly that of finding the max-weight
(or min-cost) perfect bipartite matching. Ideally, 𝑺
will provide scores that, when optimized over, yield
the desired matching, i.e., the ground-truth linkage.

As we aim to train our parser on a corpus
with ground-truth linkages using gradient descent,
our perfect matching algorithm must be differen-
tiable for training so that gradients can be back-
propagated through it from the loss function; we
use Sinkhorn’s algorithm (Sinkhorn and Knopp,
1967) with temperature, also known as SoftAssign
(Kosowsky and Yuille, 1994; Gold and Rangarajan,
1996b). The procedure, which alternates normaliz-
ing the rows and columns of exp(𝑺/𝜏), 𝜏 > 0, con-
verges to a doubly-stochastic matrix. In the limit
of 𝜏 → 0, this converges to the optimal matching
(Mena et al., 2018), thereby providing a means of
computing the optimal linkage. Moreover, with the
addition of standard Gumbel noise, 𝑺 can be seen
to parameterize a distribution over permutation ma-
trices, with the Sinkhorn operator then functioning
as a means of sampling from this distribution.
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Importantly for training with gradient descent,
the operations of Sinkhorn’s algorithm are fully
differentiable. For a given doubly-stochastic output
matrix from Sinkhorn’s algorithm, the negative log
likelihood 𝔍NLL of the ground-truth linkage L ={
⟨𝑖1, 𝑗1⟩, ⟨𝑖2, 𝑗2⟩, . . . , ⟨𝑖 |vtx |/2, 𝑗 |vtx |/2⟩

}
is a natural

choice of loss function for training:

𝒁 = Sinkhorn
vtx,vtx′

(exp(𝑺/𝜏)) (6)

𝔍NLL(L, 𝒁) = −mean
⟨𝑖, 𝑗 ⟩∈L

(
ln[𝒁]vtx(𝑖) ,vtx′ ( 𝑗)

)
(7)

Our base model uses this loss function and is trained
with the ground-truth linkages as targets.

3.2 Modelling term graph structure

The model just described is a straightforward appli-
cation of attention scores and Sinkhorn’s algorithm
to the problem of finding linkages for a proof frame.
However, the only place where the structured na-
ture of the proof net is exploited is in the polarity
and category restrictions on the matching; other
relevant characteristics are not directly taken into
account, such as the proof frame or the validity con-
ditions. Given that the validity conditions cannot
even be evaluated without the proof frame edges,
we hypothesize that including knowledge of the
proof frame structure will help the model to select
valid linkages, or even the correct one. Similarly,
encoding information about the validity conditions
themselves may also be beneficial. We therefore
incorporate term graph structure into our model in
a number of ways, which we now describe.

3.2.1 Regular and Lambek edges
As is, the parser does not have knowledge of the
internal structure of the lexical categories; while it
receives as input the atomic category and polarity of
each vertex in the proof frame, it has no knowledge
of the regular and Lambek edges. We hypothesize
that incorporating this structure will boost parser
performance, as the edges provide crucial informa-
tion about which links combinations fail to satisfy
the validity conditions for term graphs.

To encode these edges in the parser, we alter the
inputs to the encoder’s attention blocks. We repre-
sent the regular edges as an adjacency matrix 𝑬R ∈
{0, 1}vtx× vtx′ where [𝑬R]vtx(𝑖) ,vtx′ ( 𝑗) = 1 if and only
if the proof frame has a regular edge from (negative)
vertex 𝑖 to (positive) vertex 𝑗 . Lambek edges are rep-
resented similarly as an adjacency matrix 𝑬L. For

each encoder layer 𝑙, we introduce four new trans-
formation matrices 𝑾q,R,𝑙,𝑾q,L,𝑙,𝑾k,R,𝑙,𝑾k,L,𝑙 ∈
Rheads× hdim× vec and alter Equations 1 and 2:

𝑸𝑙 =𝑾k,𝑙 ⊙
vec

𝑿𝑙−1

+
[(
𝑾q,R,𝑙 ⊙

vec
𝑿𝑙−1

)
⊙
vtx

𝑬R

]
vtx′→vtx

+
(
𝑾q,L,𝑙 ⊙

vec
[𝑿𝑙−1]vtx→vtx′

)
⊙

vtx′
𝑬L

𝑲𝑙 =𝑾q,𝑙 ⊙
vec
[𝑿𝑙−1]vtx→vtx′

+
[(
𝑾k,R,𝑙 ⊙

vec
[𝑿𝑙−1]vtx→vtx′

)
⊙

vtx′
𝑬R

]
vtx→vtx′

+
(
𝑾k,L,𝑙 ⊙

vec
𝑿𝑙−1

)
⊙
vtx

𝑬L

Per adjacency matrix, this alteration first com-
putes a transformation of the input for both the
query and key aspects of the self-attention trans-
formation. Multiplying by the adjacency matrix
then, for each vertex 𝑖, sets the value to be equal to
the sum of the values of either 𝑖’s out-neighbours
or 𝑖’s in-neighbours, depending on the particular
term. This serves as a form of message passing
along the graph edges, similar to some methods in
graph-based neural networks (Gilmer et al., 2017).

3.2.2 Planarity-aware attention
Condition T1 requires that term graph linkages be
half-planar. We include planar crossing information
in the attention scores 𝑺𝑙 in Equation 3 for each
vertex pair by subtracting the mean attention score
of conflicting vertex pairs. More formally, let X𝑖 𝑗
denote the set of vertex pairs between which a link
would cross with a link between vertex pair (𝑖, 𝑗)
in the half-plane above the linearly ordered vertices
of the term graph. Then we adjust 𝑺𝑙 as follows:

X′𝑖 𝑗 =
{
(𝑘, 𝑚)

����� 𝑘 < 𝑖 < 𝑚 < 𝑗

or 𝑖 < 𝑘 < 𝑗 < 𝑚

}
X𝑖 𝑗 = X′𝑖 𝑗 ∪ {(𝑚, 𝑘) | (𝑘, 𝑚) ∈ X′𝑖 𝑗} (8)

[𝜇cross(𝑨)]vtx(𝑖) ,vtx′ ( 𝑗) = mean
(𝑘,𝑚) ∈X𝑖 𝑗

[𝑨]vtx(𝑘) ,vtx′ (𝑚)

𝑺′𝑙 =

(𝑸𝑙 + 𝒃k,𝑙) ⊙
hdim

𝑲𝑙 + (𝑸𝑙 + 𝒃r,𝑙) ⊙
hdim

𝑹𝑙√︁
|hdim|

𝑺𝑙 = 𝑺′𝑙 − 𝜇cross(𝑺′𝑙)

3.2.3 Edge filtering
In Equation 5, a mask is applied to the candidate
link scores produced by the model to enforce the
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category and polarity constraints. We augment this
mask in two ways. First, we disallow necessar-
ily non-planar links, i.e., links that cannot be in
any planar linkage. Penn (2004) defined a context-
free grammar for building planar linkages; we use
this CFG with the inside-outside algorithm (Baker,
1979) to identify whether candidate links each exist
in any spanning planar linkage.

Second, we disallow intra-word links, i.e., links
between any two vertices that map to the same word.
Some of these links are permissible according to
the rules of L*, but do not occur in our corpus;
moreover, their linguistic utility is unclear. Overall,
we expect that these restrictions on allowable links
will help reduce the size of the search space, thereby
improving system performance.

Inspecting Figure 2 exemplifies how these extra
filters can be useful. Disallowing necessarily non-
planar links eliminates a candidate link from the
NP+ of “for” to the NP− of “What” as it would
prevent the NP+ and S− of “accounts” as well as
the NP− of “the” each from having any planar links.
This then implies that there must be a link from
the NP+ of “for” to the NP− of “the”, since that is
the only remaining option. Similarly, disallowing
the S+ of “What” from linking to its own S− im-
mediately implies that it must then link to the S−
of “accounts” while also preemptively preventing
a violation of condition T2.

3.3 𝑘-best linkages

While Sinkhorn (with Gumbel noise) provides dif-
ferentiable sampling of matchings, it has two note-
worthy drawbacks. First, it sometimes does not con-
verge to an exact permutation and gets stuck with
some values very close to 0.5 (Guigues, 2020), re-
quiring some means of or discretizing such cases
(e.g., Gold and Rangarajan, 1996a). This does not
pose a potential issue for our parser during training,
since 𝔍NLL does not require a permutation matrix.
During inference, however, the parser needs to be
able to produce a discrete result as its output parse.

Second, Sinkhorn makes it difficult at best to
retrieve multiple matchings from the distribution.
Without Gumbel noise (and with sufficiently small
𝜏), it will converge to the best permutation, but one
cannot specifically retrieve the second-best (etc.)
matchings from this. Sampling (via the addition
of Gumbel noise) may yield multiple matchings,
but there is no guarantee of their overall rank; fur-
thermore, if the input matrix represents a very con-

centrated distribution, retrieving further matchings
may require inordinate sampling rounds.

Since there can be multiple valid parses for a
sentence, a parser should ideally be able to return
multiple parses if they exist. Moreover, there is
no guarantee that the predicted linkage 𝒁 in Equa-
tion 6 will yield an L*-integral term graph, so it
is worthwhile to be able to evaluate alternatives.
We therefore use Murty’s algorithm (Murty, 1968),
a 𝑘-best optimal matching algorithm, to produce
𝑘 candidate linkages from 𝑺. We stably sort the
linkages according to the number of term graph
conditions that they violate when combined with
the input proof frame, allowing fractional viola-
tions of condition T3. Enabling the production of
multiple candidate parses also makes it possible
for the parser to return the correct parse when it
otherwise might not have done so.

3.4 L* structural loss
In contrast to other statistical parsers, the system
presented thus far does not have any explicit encod-
ing of the rules of the grammar. Since the negative
log-likelihood loss function (Equation 7) is based
only on the ground-truth linkage, it is not clear how
well the model will be able to generalize and re-
turn multiple valid linkages when applicable, rather
than linkages most similar to the correct one. We
therefore introduce loss function terms that directly
encode the term graph validity conditions, and posit
that they will help the parser produce linkages that,
with the input proof frame, yield an L*-integral term
graph. These novel loss functions also enable train-
ing our model without ground-truth derivations.

For condition T1, we define the planarity loss
function 𝔍T1 as a function of the post-Sinkhorn
matrix 𝒁 from Equation 6 so that each link in each
pair of crossing links is penalized in proportion to
the scores given to the pair:

𝔍T1(𝒁) =
∑︁
𝑖, 𝑗

(
𝒁vtx(𝑖) ,vtx′ ( 𝑗)

∑︁
(𝑘,𝑚) ∈X𝑖 𝑗

𝒁vtx(𝑘) ,vtx′ (𝑚)

)
where X𝑖 𝑗 is defined as in Equation 8. Minimizing
𝔍T1 then corresponds to minimizing the scores
assigned to crossing links.

The remaining loss terms require further compu-
tation. Note that conditions T2 and T3 both express
constraints on the (non-)existence of certain regu-
lar paths; the latter is already stated as such while
the former can be equivalently restated as barring
regular paths from any vertex to itself. Checking
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for the existence or absence of paths between two
vertices of a graph requires traversing graph edges.
As graph traversal corresponds to multiplication by
the graph’s adjacency matrix, this presents a differ-
entiable means of computing the extent to which a
candidate term graph meets conditions T2 and T3.

For an arbitrary weighted graph 𝐺 with vertices
V, denote byW𝑖, 𝑗 ,𝑛 the set of all walks of length
𝑛 from vertex 𝑖 to vertex 𝑗 . By definition, each
walk 𝑤 ∈ W𝑖, 𝑗 ,𝑛 is a sequence of 𝑛 edges, i.e.,
𝑤 = (⟨𝑘1, 𝑙1⟩, ⟨𝑘2, 𝑙2⟩, . . . , ⟨𝑘𝑛, 𝑙𝑛⟩), 𝑘1 = 𝑖, 𝑙𝑛 = 𝑗 .
Let 𝑨 denote the adjacency matrix of 𝐺; then
the matrix power 𝑨𝑛 represents the sum (over
walks) of walk edge products, i.e., (𝑨𝑛)𝑖, 𝑗 =∑

𝑤∈W𝑖, 𝑗,𝑛

∏
⟨𝑘,𝑙⟩∈𝑤 (𝑨)𝑘,𝑙 . If edges in 𝐺 have only

positive weights, then (𝑨𝑛)𝑖, 𝑗 = 0 if and only if
there are no walks of length 𝑛 from vertex 𝑖 to
vertex 𝑗 . It then follows that (∑𝑁

𝑛=1 𝑨
𝑛)𝑖, 𝑗 = 0 if

and only if there are no walks of length ≤ 𝑁 from
vertex 𝑖 to vertex 𝑗 . Since a cycle in 𝐺 can have
length at most |V|, 𝐺 is therefore acyclic if and
only if (∑𝑁

𝑛=1 𝑨
𝑛)𝑖,𝑖 = 0∀𝑖 ∈ V, 𝑁 ≥ |V|.

Returning to term graphs, for condition T2 this
means that we can detect regular cycles in a can-
didate graph with |V| vertices by constructing an
adjacency matrix 𝑨 ∈ R |V | × |V | from the regular
edges of the proof frame together with the can-
didate linkage, computing

∑ |V |
𝑛=1 𝑨𝑛, and then ver-

ifying that the diagonal entries are all zero. For
condition T3, we can similarly inspect the entries
corresponding to the parent and child nodes of all
Lambek edges and verify that they are all one, in-
dicating that a regular path exists. We can now see
how to specify these conditions as loss functions:

𝑮 =

|vtx |∑︁
𝑛=1

𝑨𝑛 =

|vtx |∑︁
𝑛=1
(𝑬R + 𝒁)𝑛

𝔍T2(𝑮) =
|vtx |∑︁
𝑖=1
(𝑮𝑖,𝑖)2

𝔍T3(𝑮) =
|vtx |∑︁
𝑖=1

|vtx |∑︁
𝑗=1
(𝑬L)𝑖, 𝑗 (𝑮𝑖, 𝑗 − 1)2

Minimizing𝔍T2 and𝔍T3 correspond to minimizing
violations of conditions T2 and T3, respectively.

We refer to the sum of these three loss functions
𝔍L* = 𝔍T1 +𝔍T2 +𝔍T3 as the (L*) structural loss.

4 Related work

A key aspect of our parser is that it makes use of
a structured decomposition of lexical categories

in categorial grammars. In this sense, our work
follows up on the intuition of recent “construc-
tive” supertaggers, which have been explored for
a type-logical grammar (Kogkalidis et al., 2019)
and for CCG (Bhargava and Penn, 2020; Prange
et al., 2021). Such supertaggers construct cate-
gories out of the atomic categories of the grammar;
this challenges the classical approach to supertag-
ging, where lexical categories are treated as opaque,
rendering the task of supertagging equivalent to
large-tagset POS tagging. With this view, it be-
comes possible for novel categories to be produced;
furthermore, the supertaggers are better able to in-
corporate prediction history and thereby produce
grammatical outputs (Bhargava and Penn, 2020).

Recently, Kogkalidis et al. (2020) proposed a
system for parsing a “type-logical” grammar that
is essentially a modal, non-directional extension of
LCG. The Dutch grammar they used is substantially
different from our grammar: their connectives are
both modal and non-directional; in addition, they
have far more atomic categories. While their model
is similar to our baseline (Section 3.1), our work
here differs substantially in that we incorporate
proof-net structural elements and validity condi-
tions, and our system is able to return multiple
linkages (Sections 3.2–3.4). Our approach also en-
ables ground-truth–free training.5

Lastly, our trained parser operates in polynomial
time. Since LCG parsing is NP-complete, our work
adds to the body of recent work applying neural
networks to NP-hard combinatorial optimization
problems to yield polynomial-time approximate
solvers (e.g., Li et al., 2018; Gannouni et al., 2020;
Sultana et al., 2020; Cappart et al., 2021).

5 Experiments

5.1 Data
We train our models on LCGbank, a semi-automatic
conversion of CCGbank to LCG (Fowler, 2016).
This conversion necessitated adjusting for instances
of CCG’s crossing rules that are not permitted in
LCG, as well as providing fully categorial parses for
the cases in CCGbank where non-categorial rules
are used (e.g., unary type-changing).6 LCGbank
also omits features on its categories and includes

5Although Kogkalidis et al. (2020) describe their model’s
training as “end-to-end”, their approach is perhaps better de-
scribed as joint training. A truly end-to-end system would
allow differentiation through the supertagger/proof frame con-
struction, which remains a topic for further investigation.

6Refer to (Fowler, 2016) for further conversion details.
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Category Count

NP 1,356,438
S 563,390
N 419,766
PP 48,642
conj 844

Category Count

, 32
RRB 26
: 16
. 2
LRB 2

Table 1: Counts of atomic categories in LCGbank.

the 274 sentences that were originally excluded
from CCGbank. These adjustments substantially
increase the number of lexical categories in LCG-
bank compared to CCGbank. Without the features,
CCGbank has 476 unique lexical categories, while
LCGbank has 987. Decomposed, the categories
yield 10 atomic categories, shown in Table 1.

We follow the CCGbank/PTB tradition of using
section 0 for development/validation and section
23 for testing, yielding 1,921 and 2,414 sentences,
respectively. For training, however, we use all of the
remaining data (sections 1–22 and 24), in contrast
to the usual training set for CCGbank (sections 2–
21). This is simply to make full use of all available
data and yields 44,833 sentences for training.

5.2 Model & training details

We implement our model with PyTorch (Paszke
et al., 2019) and PyTorch Lightning (Falcon et al.,
2019). Including the truncated top layer, we use
three encoder layers (i.e., 𝐿 = 3) with |vec| =
384 and |heads| = 4. We use ReLU activations
(Nair and Hinton, 2010) throughout. Parameters
are initialized according to PyTorch’s defaults. Our
transformer uses normalization before each layer
rather than after (Wang et al., 2019; Nguyen and
Salazar, 2019). To represent the lexical inputs, we
use a distilled (Sanh et al., 2019) version of Roberta
(Liu et al., 2019) as provided by the Hugging Face
Transformers library (Wolf et al., 2020).

For our inside-outside algorithm implementa-
tion, we adopt Rush’s (2020) overall method for
adapting it to GPU matrix operations. We imple-
ment the intensive parts of the algorithm as custom
CUDA kernels that operate on packed Booleans.
We use the fastmurty library (Motro and Ghosh,
2019) for the 𝑘-best matchings algorithm.

Training examples are sorted by output sequence
length to yield efficient batches; the ordering of the
batches is shuffled every epoch. We clip gradients,
scaling accordingly, if the sum of gradient norms

exceeds 1. We train our models with the AdamW
optimizer (Loshchilov and Hutter, 2019; Kingma
and Ba, 2014) for 40 epochs, halving the learning
rate when performance reaches a plateau with pa-
tience of three epochs. We keep the model weights
from the epoch with the best development set per-
formance. We report results averaged over three
training runs with different random seeds.

We tune hyperparameters with Optuna (Akiba
et al., 2019), using the tree-structured Parzen esti-
mator (Bergstra et al., 2011) for sampling and asyn-
chronous successive halving (Karnin et al., 2013;
Jamieson and Talwalkar, 2016; Li et al., 2020) for
pruning. The initial learning rate and weight decay
coefficients are sampled from log-uniform distribu-
tions on [10−5, 10−2) and [10−7, 10−2), respectively.
The dropout rate is sampled from a uniform distri-
bution on [0, 0.6). We also use dropout on the input
lexical tokens, sampled uniformly on [0, 0.1).

5.3 Experimental conditions and evaluation

We evaluate four conditions: (1) the baseline model
(Section 3.1) trained only with 𝔍NLL; (2) the im-
proved model (Section 3.2) trained only with 𝔍NLL;
(3) the improved model trained with both 𝔍NLL and
𝔍L*; and (4) the improved model trained only with
𝔍L*. The latter condition is trained without ground
truth while the others are trained with it. Since com-
paring the two cases would be unfair (especially on
a measure such as sentence accuracy), we evaluate
them separately. To evaluate the effect of allowing
𝑘-best linkages (Section 3.3), we evaluate all condi-
tions with both 𝑘 = 1 and 𝑘 = 512. Note that with
𝑘 = 1, our baseline model is similar in design to
that of Kogkalidis et al. (2020), with minor differ-
ences such as model sizes and vector embedding
details; this represents the closest point of compar-
ison while controlling for our other model aspects
as well as our grammar and corpus.

We evaluate our parser using four measures:
(1) link accuracy, the percentage of positive ver-
tices that were assigned their correct negative ver-
tex; (2) sentence accuracy, the percentage of sen-
tences with 100% link accuracy; (3) coverage, the
percentage of sentences for which an L*-integral
linkage was found; and (4) the average number of
unique parses (i.e., L*-integral) found per sentence.

When used for computing 𝔍NLL, we use
Sinkhorn temperature 𝜏 = 0.01. We use a sepa-
rate temperature parameter 𝜏L* when computing
𝔍L*. The intuition behind this is that because 𝔍NLL
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Condition LAcc SAcc Cov Parses

Baseline 97.7 86.2 97.3 —
+TG 97.9 87.4 98.4 —
+TG+𝔍L* 97.9 87.2 98.7 —

Baseline 97.9 87.7 99.8 5.9
+TG 98.0 88.2 99.96 5.7
+TG+𝔍L* 98.0 87.8 99.96 5.8

𝑘
=

1
𝑘
=

51
2


Table 2: Link accuracies (LAcc), sentence accuracies
(SAcc), coverage (Cov), and average number of parses
per sentence for the 𝔍NLL-trained systems on the LCG-
bank test set. +TG refers to the model changes of Sec-
tion 3.2. +TG+𝔍L* includes the model changes and is
trained with both 𝔍NLL and 𝔍L*. All values are averages
over three random seeds.

permits one specific parse while 𝔍L* permits multi-
ple parses, they may require different levels of un-
certainty in their corresponding doubly-stochastic
matrices. We treat 𝜏L* as a hyperparameter with
initial values sampled log-uniformly on [0.01, 10).

For the condition that includes both 𝔍NLL and
𝔍L*, we linearly combine the two to obtain the final
objective function 𝔍 = 𝛼𝔍NLL +(1 − 𝛼) 𝔍L*. We
tune 𝛼 as a hyperparameter as well, with initial
uniform sampling on [0.05, 0.95).

5.4 Results
5.4.1 Training with ground truth
Table 2 shows the performance of the systems
trained against gold-standard linkages. Evaluating
multiple linkages from the single score matrix 𝑺
is clearly beneficial on all accounts. In particular,
doing so yields almost complete coverage for all
cases, but especially for our two improved versions.
The accuracies improve as well; since our sorting of
multiple candidates linkages is stable, the improve-
ments to sentence accuracy come from cases where
the correct parse was scored higher than other valid
parses, but lower than some invalid parses. Here,
filtering the list using the term graph validity con-
ditions is clearly useful.

Incorporating term graph structure in the model
as described in Section 3.2 improves performance
as well, though not by as much as evaluating mul-
tiple linkages. While we expected the number of
parses per sentence found by the parser to increase
due to the presence of grammatico-structural in-
formation, in fact it returned fewer parses. With
𝔍NLL as the sole training objective, the model uses
this extra information solely to increase its perfor-

mance as measured by that objective. Interestingly,
adding 𝔍L* to the model improvements seems to de-
crease accuracy, nearly to the baseline’s level for the
𝑘 = 512 case. Coverage remains high, however. In
this case, we believe that the two training objectives
are somewhat conflicting, with 𝔍NLL pushing the
model towards the correct linkage but 𝔍L* equally
preferring other valid linkages.

5.4.2 Training without ground truth
Training a model without ground-truth linkages
impairs system performance substantially, as ex-
pected: the model has no signal guiding it to the
correct linkage, nor differentiating the correct link-
age from other valid ones. With 𝑘 = 1, the system
achieves 91.2% coverage on the LCGbank test set.

With 𝑘 = 512, this increases substantially to
96.2%. Here the parser finds an average of 5.9
parses/sentence. Since it did not find a single valid
parse for 3.8% of sentences, the number of parses
found for covered sentences is 6.2. This is further in
line with the idea that 𝔍L* “pulls” the model away
from the correct parse in the direction of other
(valid) parses.

Since the loss function cannot distinguish correct
linkages from other valid ones, this configuration
cannot be expected to select the correct linkage.
Nonetheless, the correct parse appears in the sys-
tem’s set of output parses for 79.0% of sentences,
appearing at the top (i.e., the correct sentence is
given the highest score) for 53.4% of sentences
with 𝑘 = 1 and 54.9% of sentences with 𝑘 = 512.

5.5 Analysis

Finally, we conduct a post-hoc ablation study for
the ground-truth–free condition. For each ablated
as, we adjust the model or loss function accordingly,
and then retrain the model from scratch using the
same hyperparameters as the original model. Ta-
ble 3 shows the results, comparing coverage of the
ablated versions with that of the original.

We see that removing all planarity information
(i.e., the link filtering, the planarity-aware attention,
and the planarity loss term 𝔍T1) is disastrous; this
condition has by far the largest drop in coverage.
This is especially notable as LCG proof nets must
be half-planar due to the non-commutativity of L*;
this useful constraint is not present in type-logical
grammars that do not have this property, such as
that employed by Kogkalidis et al. (2020).

Other decreases range from moderate to small:
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Condition 𝑘 = 1 𝑘 = 512

+TG+𝔍L*−𝔍NLL 91.2 96.2
−𝔍T1 84.5 95.1
−𝔍T2 72.9 92.9
−𝔍T3 70.6 93.8
−RL 89.0 95.9
−IW 81.1 91.0
−IW−NP 73.9 85.6
−RL−IW−NP−PA 74.9 90.7
−IW−NP−PA−𝔍T1 19.2 44.7

Table 3: LCGbank test set coverage under various
ground-truth–free training conditions. −𝔍𝑥 removes
loss term 𝑥; −RL removes regular and Lambek edges;
−IW removes the filter on intra-word links; −NP re-
moves the filter on non-planar links; −PA removes
planarity-aware attention. In contrast to Table 2, here
the ablated versions (all but the first line) are results
from one single training run each.

• All three loss terms are important, with cov-
erage decreasing notably upon ablation; the
decrease is lowest for 𝔍T1, suggesting that its
removal is partially ameliorated by the other
sources of planarity information in the model.

• Removing the regular and Lambek edge infor-
mation decreases coverage by a small amount.

• Filtering out intra-word links is surprisingly
important; we had suspected that, since the
model has information about which words are
the same for given atomic category pairs, it
would learn to avoid them. If the filter on non-
planar links is also removed, coverage drops
further. Removing planarity-aware attention
and the proof frame edge information (i.e.,
stripping down to the baseline system of Sec-
tion 3.1, but here training with the structural
loss only) strangely slightly restores coverage.

6 Conclusion and future work

We have presented an LCG parser with multiple
novel techniques, including neural term graph struc-
ture and structural constraint encodings, novel loss
functions derived from LCG term graph validity
conditions, and a self-attention–based system for
returning and efficiently evaluating 𝑘-best match-
ings. Evaluating on a corpus of English LCG proof
nets, we found our improvements to be effective,
especially the 𝑘-best matchings. Our loss functions,
furthermore, enable training an LCG parsing model

without ground-truth derivations or linkages. Anal-
ysis shows that planarity conditions are especially
important, but that all of our alterations contribute
to the parser’s improved performance.

As we saw in Table 2, combining 𝔍NLL and 𝔍L*
seems to be detrimental to parser accuracy. The
two loss terms have seemingly conflicting objec-
tives, with the former concentrating probability
mass around a single solution and the latter spread-
ing probability mass over multiple solutions. We
believe it would be worthwhile to explore combin-
ing these two in a more congruent manner.

Since our model allows differentiating through
the structure of lexical categories, the obvious next
step is to incorporate a supertagger and pass gra-
dients down to it. As it stands, supertaggers have
rudimentary knowledge of their context, with no
notion of how the atomic subcategories of one cate-
gory might combine with those of another. A tight
coupling of the techniques we proposed here with
an appropriately designed supertagger would yield
a true end-to-end differentiable LCG parser.

Lastly, we believe further investigation of struc-
tural constraints and objectives to be promising.
Although we still relied on supertags from the
corpus, our results with the grammatico-structural
loss functions demonstrate the training of a high-
coverage parser with a decreased annotation burden.
Techniques such as those presented here suggest a
potential path to parsing with lower data require-
ments, or perhaps even to structured, formalism-
driven unsupervised parsing.
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