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Abstract

This paper presents the system used in our sub-
mission to the IWPT 2021 Shared Task. This
year the official evaluation metrics was ELAS,
therefore dependency parsing might have been
avoided as well as other pipeline stages like
POS tagging and lemmatization. We neverthe-
less chose to deploy a combination of a de-
pendency parser and a graph parser. The de-
pendency parser is a biaffine parser, that uses
transformers for representing input sentences,
with no other feature. The graph parser is a se-
mantic parser that exploits a similar architec-
ture except for using a sigmoid crossentropy
loss function to return multiple values for the
predicted arcs. The final output is obtained by
merging the output of the two parsers. The de-
pendency parser achieves top or close to top
LAS performance with respect to other sys-
tems that report results on such metrics, except
on low resource languages (Tamil, Estonian,
Latvian).

1 System Overview

The shared task 2021 aims specifically at perform-
ing enhanced dependency parsing, starting from
raw text, in a multi-language setting consisting of
seventeen languages Bouma et al. (2021).

We concentrate on the syntactic parsing and en-
hancement stages, by exploiting existing tools for
tokenization, sentence splitting.

2 Syntactic parsing

State of the art dependency parsers currently of-
ten adopt the graph-based model, based on neural
networks for the choice of arcs and labels.

In particular the Bi-LSTM-based deep biaffine
neural dependency parser by Dozat and Manning
(2017) has been quite popular and used in three out
of five of the top submissions to the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text

to Universal Dependencies (Zeman et al., 2018),
in particular in the top non-ensemble submission
(Kanerva et al., 2018).

We trained our own models for each language on
the shared task treebanks using DiaParser, which
uses the Stanza tokenizer and multi-word splitter.

2.1 DiaParser

DiaParser is a dependency parser derived from Su-
par1, which exploits transformers to obtain con-
textualized word representations. Such represen-
tations are obtained by first applying the specific
transformer tokenizer, splitting them into word-
pieces, and then the embeddings for words is ob-
tained as the average of the wordpiece embeddings.

The code for the parser is available on GitHub2.
We exploit the idea to provide hints to the parser,

obtained from structural syntax probes (Hewitt and
Manning, 2019). We explored the idea to use a syn-
tax probe to extract hints for the parser to estimate
the most likely edges for the parse tree. Eventually
a quite simple solution proved effective: to extract
values from one of the attention layers of the trans-
former (typically layer 6) and add them to the score
of the biaffine layer with a trainable weight alpha.

One may consider a transformer as computing
three functions, the outputs To : Rn×d → Rn×d,
the hidden states Th : Rn×d → RL×n×d, and the
attention weights Ta : Rn×d → RH×L×n×n for H
heads and for L layers.

Given a sentence with n words w =
[w1, w2, ..., wn], we feed the parser with E =
[e1, ..., en], where ei = mixl(To(w))i is the scalar
mix of the top l layers of the outputs of the trans-
former T applied to w (Liu et al., 2019a).

The attentive parser estimates the probability of

1https://github.com/yzhangcs/parser
2https://github.com/Unipisa/diaparser
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each possible arc for sentence w as follows:
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where α is a learned weight and A are the attention
weights of the transformer T for a given layer l and
the given head h.

During prediction the syntactic parser applies
the Chu-Liu-Edmonds algoritm (Chu, 1965; ED-
MONDS, 1967) to ensure the well-formedness of
the parse tree, but only after a quick check that the
arcs contain cycles.

The results we obtained with such an extension
on the English development corpus where 92.21
UAS and 90.31 LAS, using Electra (Clark et al.,
2020) as transformer as well as for attention, a
small improvement with respect to 91.32 UAS and
89.33 LAS without using these features.

2.2 Semantic Graph Parser
The graph parser uses the approach of Dozat and
Manning (2018).

The graph parser shares the same architecture as
the biaffine dependency parser, except in for using
a sigmoid cross entropy loss function instead of a
softmax, to allow for multiple results. Those arcs
with a logit value greater than zero are retained.

S
(arc)
ij = {si,j ≥ 0}

P (y
(arc)
ij |w) = argmaxj(S

(arc)
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(2)

The scores of each pair of words in w can be
decoded into a graph by keeping only edges that
received a positive score. Labels are assigned to
each such predicted edge, choosing the highest-
scoring label for that edge.

The two losses of the edge and arc labels pre-
dictors are combined through an hyper-parameter
λ ∈ {0, 1}:

` = λ`(label) + (1− λ)`(edge) (3)

The methods does not ensure a fully connected
graph, hence we merge it with the tree produced by
the syntactic parser.

The final enhanced dependency arcs are obtained
as the union of the arcs predicted by the syntactic

and semantic parsers, with a check that no extra
arcs to the root are introduced.

3 System Description

3.1 Tokenization

DiaParser exploits the Stanza tokenizer and multi-
word splitter to perform sentence splitting, tok-
enization and multi-word splitting. It automatically
downloads tokenizer models for each language
from the Stanza repository. We trained a specific
MWT model for Italian, trained on the Italian UD
treebank Italian ISST, augmented with a special
list of sentences, representative of 75 categories
of verb conjugations and of articled prepositions,
which we contributed back to the official Stanza
distribution.

3.2 Experiments

The syntactic and semantic parsers were trained
separately on each language corpus, using language
specific transformer models, where available. For
languages with more than one corpus, they were
just concatenated together into a single corpus.

We used the following transformers for sentence
representations and attention weights:

Lang. Model
ar asafaya/bert-large-arabic
bg DeepPavlov/bert-base-bg-cs-pl-ru-cased
cs DeepPavlov/bert-base-bg-cs-pl-ru-cased
en google/electra-base-discriminator
fi TurkuNLP/bert-base-finnish-cased-v1
fr dbmdz/bert-base-french-europeana-cased
it dbmdz/electra-base-italian-xxl-cased-discriminator
nl wietsedv/bert-base-dutch-cased
ro DeepPavlov/rubert-base-cased
sv KB/bert-base-swedish-cased
uk dbmdz/electra-base-ukrainian-cased-discriminator

Table 1: Transformer models used for each language.

For all other languages we used
bert-base-multilingual-cased.

4 Settings and Results

4.1 Experimental Settings

In training, we used the official train and gold de-
velopment sets. We used the development set to
select the model hyper-parameters based on LAS
for the dependency parser and labeled F1 on en-
hanced dependencies for the semantic graph parser.

We use a batch size of 2000 tokens with the
AdamW (Loshchilov and Hutter, 2019) optimizer.
The hyper-parameters of our system are shown in



186

Parameter Value
Arc hidden size 500
Rel hidden size 100
MLP dropout 33%
Transformer layers 4
Optimizer AdamW
Learning rate 5e-5
Warmup 0.1
Loss interpolation (λ) 0.1
batch size 2000

Table 2: Hyper parameters used in the experiments.

Table 2, which are mostly adopted from previous
work on dependency parsing.

4.2 Results

The official results are those labeled unipi-smax in
our submission, obtained through merging the out-
puts of the dependency and semantic graph parser.

Table 3 shows our team official results obtained
in tokenization, tagging, parsing and enhancement
on the test sets.

5 Pretrained Multilingual Model

After the submission deadline, we experimented
building a single model on the concatena-
tion of the training corpora of all languages.
The corpora was preprocessed to eliminate
empty nodes, which represent implicit nodes,
denoted with IDs such as 2.1 in the CoN-
LLU file format. We used the official script
enhanced collapse empty nodes.pl,
which collapses graphs reducing such empty
nodes into non-empty nodes and introducing new
dependency labels.

We used the official script to collapse graphs
through reducing such empty nodes into non-empty
nodes and introducing new dependency labels. In
the post-process, we add empty nodes according to
the dependency labels. As the official evaluation
only score the collapsed graphs, such a process
does not impact the system performance.

Then the enhanced dependency labels in the
training corpus were de-lexicalized, stripping lex-
ical information from labels, like in (Grünewald
and Friedrich, 2020), replacing them with place-
holders (e.g. obl:[case]) indicating where in the
dependency graph the lexical information is ex-
pected to be found. This process allowed us to
reduce the total number of enhanced dependency

labels from 6125 to 1282.
This also made it possible to fit the model to

be trained into the 32GB of memory of our V100
GPU. We run the training in parallel on 4 such
GPUs: each epoch took about 45 minutes and run
for 29 epochs.

The model was trained using contextualized
word embeddings from RoBERTa (Liu et al.,
2019b), more precisely xlm-roberta-large
from HuggingFace3 using a scalar mixture of the
top 4 hidden layers (Liu et al., 2019a).

Then the model was fine tuned on each language
with its specific language corpus. The enhanced
dependency labels in the output of the parser are
converted back to their lexical notation using a
heuristic processing similar to the one outlined in
(Grünewald and Friedrich, 2020):

Furthermore, for languages that have case mor-
phology, like Czech, the case is added to the label.

The multilingual model does provide significant
improvements for languages with smaller corpora,
in particular Latvian, Lithuanian and Tamil, as
shown in Table 4:

Notably Lithuanian improves on EULAS by 6.75
points. The ELAS scores do not improve as much,
possibly due to the ri-lexicalization algorithms that
may need tuning to each language.

6 Conclusions

We experimented using two parsers with the same
architecture to perform syntactic and semantic pars-
ing. We first trained parser models on the specific
corpus for each language. The final output is ob-
tained by merging the outputs of the two parsers.
This simple approach works reasonably well for
languages with large enough corpora.

To address the difficulty in handling low resource
languages, we explored building a single model
trained on all corpora and fine tuning it on each
specific corpora. Since enhanced dependency la-
bels contain lexical parts and the number of such
labels is quite large, we adopted a preprocessing
step to de-lexicalize the labels. The approach gave
promising results on some languages, but the back-
convertion algorithm that introduces the lexical
parts in the labels after parsing still needs to be
improved.

Given the similarity of the architectures of the
syntactic and semantic parsers, the prospect of per-
forming joint training is promising and has been

3https://huggingface.co/xlm-roberta-large
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Language Tok Sent UAS LAS EULAS ELAS
Arabic 99.96 80.83 86.19 81.97 79.79 77.17
Bulgarian 99.93 97.49 95.29 92.71 91.89 90.84
Czech 99.91 95.05 94.13 92.36 90.14 88.73
Dutch 99.82 70.55 90.12 87.69 84.92 84.14
English 98.36 91.34 90.64 88.47 87.75 87.11
Estonian 99.62 87.44 87.11 84.14 82.66 81.27
Finnish 99.60 91.90 94.25 92.76 90.61 89.62
French 99.78 96.44 93.47 90.30 88.91 87.43
Italian 99.77 98.75 95.03 93.65 92.52 91.81
Latvian 99.82 99.07 89.90 86.63 83.92 83.01
Lithuanian 99.84 88.11 82.75 78.31 74.61 71.31
Polish 99.41 98.35 94.93 92.71 90.94 88.31
Russian 99.59 99.03 94.51 93.32 91.49 90.90
Slovak 99.96 86.00 93.32 91.75 88.77 86.05
Swedish 99.45 93.53 90.86 88.53 86.61 84.91
Tamil 99.01 88.35 63.27 56.04 54.16 51.73
Ukrainian 99.85 96.75 93.68 91.92 89.41 87.51
Average 99.63 91.70 89.97 87.25 85.24 83.64

Table 3: UNIPI Official results on the test set.

Language Tok Sent UAS LAS EULAS ELAS
Latvian 99.82 99.07 89.90 86.63 87.54 84.78
Lithuanian 99.84 88.11 82.75 78.31 81.36 76.62
Slovak 99.96 86.00 93.32 91.75 91.47 81.17
Tamil 99.01 88.35 63.27 56.04 55.90 53.71

Table 4: Preliminary results with multi-language model.

considered but left for further research.
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