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Abstract
We evaluate three leading dependency parser
systems from different paradigms on a small
yet diverse subset of languages in terms of
their accuracy-efficiency Pareto front. As
we are interested in efficiency, we evaluate
core parsers without pretrained language mod-
els (as these are typically huge networks and
would constitute most of the compute time)
or other augmentations that can be transver-
sally applied to any of them. Biaffine pars-
ing emerges as a well-balanced default choice,
with sequence-labelling parsing being prefer-
able if inference speed (but not training energy
cost) is the priority.

1 Introduction
The inefficiency of modern NLP systems has re-
cently come under scrutiny, especially regarding
their large energy consumption (Strubell et al.,
2019). This hasn’t started a revolution, but there
is some NLP work where efficiency is considered.
Zhang and Duh (2020) studied different settings for
neural machine translation systems, evaluating not
only accuracy but also certain costs such as infer-
ence time, training time, and model size. Zhou et al.
(2021) analysed the fine-tuning and inference time
for pretrained LMs, and estimated the cost of pre-
training. Jacobsen et al. (2021) presented a Pareto
optimisation analysis for POS taggers, considering
accuracy and model size.

In parsing in particular, Strzyz et al. (2019) eval-
uated dependency parsing as sequence labelling
specifically to increase inference efficiency and
also undertook a Pareto optimisation analysis. Oth-
ers used model compression via distillation to in-
crease inference speed of neural parsers with a
mixed bag of results (Dehouck et al., 2020; Ander-
son and Gómez-Rodrı́guez, 2020a). Dehouck et al.
(2020) also took into consideration the training en-
ergy costs of distilling models, which highlighted
the high energy cost of this technique.

We present a Pareto optimisation analysis on
modern dependency parsing systems. We cover
three systems which are broadly representative of
current approaches. We analyse their efficiency
with respect to inference speed and also their train-
ing cost, measured in energy consumption.

Contribution: A simple, modest analysis on the
merits of different parser systems that cover three
current paradigms. Our goal is not to provide sur-
prising results, but a realistic snapshot of the cur-
rent state of affairs of a representative sample of
modern parsing systems on linguistically diverse
data. This analysis runs the systems in a consis-
tent way with respect to software, hardware, and
network settings. We also offer a brief overview
of self-reported performance on PTB for systems
that have a published speed. We add to this mea-
surements for a subset of these systems which we
ran locally for a more consistent comparison, i.e.
something of a reproducibility effort.

Disclaimer We make a practical comparison for
practitioners, so we focus on publicly available
systems on typical hardware that doesn’t require a
huge budget. We are not making general claims that
technique X is always more efficient than technique
Y in the abstract or that this will hold in any hard-
ware. Also, the extent to which an implementation
has been engineered will impact performance, so
we have referenced the original repositories used.1

2 PTB performance

For historical reasons, it is common practice for
parsers to report performance results on the English
Penn Treebank (PTB) (Marcus and Marcinkiewicz,
1993). While such results at best provide a partial
picture on a single language, they are by far the

1The moderately edited code is available at
http://www.grupolys.org/software/
iwpt2021/parsers-code.zip.

http://www.grupolys.org/software/iwpt2021/parsers-code.zip
http://www.grupolys.org/software/iwpt2021/parsers-code.zip
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speed (sent/s)
GPU CPU UAS LAS

HPSG (Zhou and Zhao, 2019) 159∗ - 96.09∗ 94.68∗

Biaffine w CRF (Zhang et al., 2020a) 400∗ 96.14∗ 94.49∗

Pointer-LR (Fernández-González and Gómez-Rodrı́guez, 2019) 23∗ - 96.04∗ 94.43∗

GNN (Ji et al., 2019) 416∗ - 95.97∗ 94.31∗

Pointer-TD (Ma et al., 2018) 10.2† - 95.87∗ 94.19∗

Biaffine (Dozat and Manning, 2017) 411∗ - 95.74∗ 94.08∗

Distilled-Ensemble (Kuncoro et al., 2016) - 20∗ 94.26∗ 92.06∗

BIST - Transition (Kiperwasser and Goldberg, 2016) - 76±1‡ 93.9∗ 91.9∗

SeqLab (Strzyz et al., 2019) 648±20∗ 101±2∗ 93.67∗ 91.72∗

BIST - Graph (Kiperwasser and Goldberg, 2016) - 80±0‡ 93.1∗ 91.0∗

CM (Chen and Manning, 2014) - 654∗ 91.80∗ 89.60∗

Pointer-LR 95±1 8±0 96.02 94.47
Biaffine (PyTorch) 1003±3 53±0 95.74 94.07
UUParser (Smith et al., 2018) - 42±1 94.63 92.77
Distilled-Biaffine (Anderson and Gómez-Rodrı́guez, 2020a) 1153±3 96±0 94.59 92.64
SeqLab 1064±13 99±1 93.46 91.49
MaltParser 1.9.2 w/ Stack lazy (Nivre et al., 2007) - 473±11 89.29 86.95

Table 1: Performance for current leading parsers for the English PTB with POS tags predicted from the Stanford
POS tagger. ∗ denotes values taken from the original paper, † from Fernández-González and Gómez-Rodrı́guez
(2019), and ‡ from Strzyz et al. (2019). Values with no superscript are from running the models on our system
locally (speeds averaged over 5 runs) and with a batch size of 256 (excluding UUParser which doesn’t support
batching) with GloVe 100 dimension embeddings. Table is extended from one in Anderson and Gómez-Rodrı́guez
(2020a).

most comprehensive source of results provided in
the literature under a consistent context (at least in
terms of data and splits, although not hardware),
so they are useful to see high-level trends and as a
starting point to choose parsers for our experiment.

In Table 1 we report performance of modern
parsing systems for which speeds have been re-
ported. We couldn’t find a reported speed of Clark
et al. (2018) which currently has the highest re-
ported performance on PTB (UAS 96.61 and LAS
95.02) when not using BERT. However, its main
contribution is semi-supervised augmentations that
could be utilised by any parsing system, with their
core parser being the Biaffine parser. Zhou and
Zhao (2019)’s system leverages constituency and
dependency parsing and when not using training
data with both constituency and dependency anno-
tations (often not available) the system achieves
UAS 95.82 LAS 94.43 (i.e. very similar in LAS
to the other top-performing sytems). Zhang et al.
(2020a) use a Biaffine parser but with a moderate
beam search, which is obviously less efficient than
the original. It results in a small increase in perfor-
mance. Ji et al. (2019) use graph neural networks
to learn enriched high-order information from par-
tial parses. It again only gains small increases over
Biaffine, but is more computationally complex and
code is not available.

We report results for UUParser of Smith et al.

(2018) that we ran locally (refreshingly the original
paper didn’t use PTB). While the results show a
reasonable speed-accuracy trade-off, we opted not
to use this for the current analysis as the original
code is implemented in DyNet which doesn’t prop-
erly support CUDA, and is a different framework
from that of the other parsers we opted to choose.

Based on this, we opted to use the basic Bi-
affine parser to represent graph-based parsers,
the Pointer-LR network as the representative of
transition-based algorithms,2 and the sequence-
labelling parser to represent SL systems. They all
have the added benefit of working under the same
software and having code available.

Note that, as we make emphasis on efficiency,
we focus on reasonably bare-bones versions of the
parsers. The impact of pretrained language models,
or other augmentations that are transversal to the
parsing system, is outside the scope of this paper.

3 Pareto optimisation analysis
Here we detail the parsing systems, the data we
used, and how model structures were altered.

3.1 Parsers
All the parsers use BiLSTMs, but have additional
structures which set them apart from one another

2Some might argue that it isn’t a clear cut case of a
transition-based parser, but it transitions from state to state
like more traditonal algorithms.
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and use one of three paradigms broadly speaking:
one is a transition-based parser, one is a sequence-
labelling parser, and the last is a graph-based parser.
For space reasons, we only very briefly outline
them here, but give more details in Appendix A.

Left-to-right pointer network (L2R). One of
the current top-performing parsers on PTB, it uses a
left-to-right transition-based algorithm that builds a
number of attachments equal to sentence length us-
ing a pointer network (Ma et al., 2018; Fernández-
González and Gómez-Rodrı́guez, 2019).3

Deep biaffine (BIAFFINE) (Dozat and Manning,
2017) is an edge-factored graph-based parser that
produces a matrix of scores giving a probability
distribution on arcs, where the Chu-Liu-Edmonds
algorithm (Chu and Liu, 1965; Edmonds, 1967) is
then applied to obtain a tree.

Sequence labelling parser (SEQLAB) encodes
trees as a sequence of labels, so that a direct one-
to-one prediction can be made for each token in a
sentence (Spoustová and Spousta, 2010; Li et al.,
2018b; Strzyz et al., 2019).4 We implement it us-
ing the Biaffine system described above (for unifor-
mity) editing it to be a sequence-labelling system.

3.2 Data

In our choice of treebanks, we balance three fac-
tors: the need to use a small number of treebanks
(as our detailed Pareto analysis implies training a
large number of models per treebank), linguistic
diversity and treebank quality. This leads us to
choose 4 high-quality (manually annotated or cor-
rected, and relatively large) treebanks covering 3
different language families and 4 subfamilies: UD-
Hindi-HDTB, UD-Polish-PDB, UD-Korean-Kaist
and the Chinese Penn Treebank. More details of
each treebank, justifying their diversity and ade-
quacy for the analysis are given in Appendix C.

3.3 Methodology

We vary the size of the BiLSTM component of
the networks by their number of layers and nodes.
Each parser has randomly-initialised character em-
beddings and pretrained word embeddings as only
inputs. We use pretrained FastText embeddings
(Grave et al., 2018). Except for Chinese, as the
FastText embeddings are in the traditional script,

3https://github.com/danifg/SyntacticPointer.
4We use refactored encoding/decoding functions from

https://github.com/mstrise/dep2label.

so we use the embeddings from Li et al. (2018a).5

The embeddings are reduced to 100 dimensions
using PCA. The structure of the networks are very
similar. The L2R system uses a biaffine transforma-
tion to score the transitions at each step similar to
the BIAFFINE parser, and we use the same sizes for
the layers. The SEQLAB system is altered from the
BIAFFINE implementation and is exactly the same
except the layers needed for the biaffine transfor-
mation are replaced by two MLPs which predict
the labels for each token. The only major differ-
ence in the networks is that L2R uses a CNN to
create the character embeddings and the other two
use BiLSTMs. We didn’t change this in order to
avoid modifications to the systems. The network
hyperparameters are shown in Table 2 in Appendix
B. Models were trained on GPU, but we report the
energy used by both the GPU and CPU.

We could have altered other aspects of the net-
work, but the main computational cost comes from
the BiLSTM layer. The other main contender to
alter would be the embedding layers. For exam-
ple, we could have altered the size of the character
BiLSTM/CNN, but certain experiments show that
it has a limited impact on accuracy (Smith et al.,
2018; Anderson and Gómez-Rodrı́guez, 2020b).

We measured the speed of each system on each
treebank by running them 5 times using a single
CPU core, both for speeds measured running on
GPU and CPU, so that we get a reasonably accurate
measure of the speed for each treebank. We then
report macro averaged speeds across treebanks.

We use the energyusage package for measur-
ing training energy.6 It measures the power usage
of the GPU and CPU while a process is running
(having taken a measure of the background usage).
We minimised the use of the system when train-
ing these models to obtain accurate measurements,
but they aren’t overly precise. This isn’t a major
issue as the measurements are over long periods of
time and so unless there were massive fluctuations
when training a given model, comparison is fine.
We use joules (or kJ and MJ) as they are the SI
units for energy (BIPM, 2019) and, unlike carbon
emissions, they are independent of external factors
like regional electricity generation grids.
Hardware: Intel Core i7-7700 and Nvidia
GeForce GTX 1080.
Software: Python 3.7.0, PyTorch 1.0.0, and CUDA
8.0.

5https://jima.me/open/cwv/
6https://pypi.org/project/energyusage

https://jima.me/open/cwv/
https://pypi.org/project/energyusage
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Figure 1: Pareto fronts for L2R, BIAFFINE, and SEQLAB for the development data.

3.4 Pareto fronts: inference speed
Figure 1 shows LAS versus parsing speed for the
development data (we also present the same for the
test data in Figure 7 in the Appendix that echoes
the visualisation seen here). The individual Pareto
front for each parser is shown (light grey, dashed)
As expected, models with larger networks are more
accurate but slower. More interestingly, the overall
Pareto front is exclusively constructed of BIAFFINE

and SEQLAB systems. While L2R does achieve
similar accuracy scores as BIAFFINE, it is consid-
erably slower. SEQLAB is the fastest option by a
clear margin (especially smaller networks on CPU).
So the practical advice to draw from this aspect or
the Pareto optimisation would be to use BIAFFINE

if accuracy is the main concern, or SEQLAB if in-
ference time is important.

3.5 Pareto fronts: training energy
Figure 2 shows LAS against the average energy
(across treebanks) consumed during training (in
training, we always use the GPU). There is no clear
link between the energy consumed and the accuracy
of a system. However, this visualisation highlights
that SEQLAB is nowhere near optimal with respect
to training efficiency.

The amount of energy consumed during training
is basically dependent on the time it takes each
system to converge as can be seen in Figure 3. In
this figure, we show individual models (i.e. not av-
eraged over treebanks). The relation for BIAFFINE

and SEQLAB is very clearly linear between energy
and training time, suggesting that there is nothing
intrinsically more energy consuming between these
systems beyond convergence time. For L2R, this

relation seems to hold broadly, but is less clear. It
appears that L2R is more sensitive to the nature of

Figure 2: Pareto fronts for L2R, BIAFFINE, and SE-
QLAB for training energy.

Figure 3: Training energy consumption with respect to
training time.
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the data, which we expand on in Appendix F.

4 Limitations of analysis

While our analysis is not ground-breaking or partic-
ularly expansive in nature, we do think it is useful
in practice and acts as mini-review of the current
state of affairs in dependency parsing. However,
there are a number of limitations in this study. First,
we only look at the parameters associated with the
BiLSTMs. We feel this is fairly justified, but it is
obviously feasible that varying these parameters
and not the others could have different effects for
each parsing system even if that is fairly unlikely.
While we do look at a very diverse set of languages
with diverse linguistic features, it is still a fairly
small sample. We were somewhat limited by hav-
ing to train many models and felt it would be better
to focus on a sample of diverse languages with
quality data than many languages and less model
settings. Of course, this analysis could be extended
to use more languages, but we expect this would
further corroborate the results presented here. Also
by using a small set of treebanks, we don’t cover
a wide array of domains (the data is mainly fiction
and news).

Another potential limitation is only using one
dependency annotation scheme (the scheme used
for CTB was a precursor to UD), but in lieu of a
theoretical reason that the parsers would behave
differently using a different scheme (e.g. surface
syntactic UD (SUD) treebanks containing much
more non-projectivity (Gerdes et al., 2018)) this
feels like a light limitation.

A slightly more pressing limitation is the ab-
sence of a feature analysis because certain systems
could potentially benefit from different features.
Work has been presented in this direction and has
shown that predicted POS tags aren’t wonderfully
useful (Smith et al., 2018; Anderson and Gómez-
Rodrı́guez, 2020b; Zhang et al., 2020b). However,
these analyses didn’t include SEQLAB parsers at all
and the transition-based system used was a lower-
performing system, UUParser. So it is feasible that
L2R and SEQLAB would benefit from predicted
POS tags. That can be left open for the future.

Another limitation is that we only trained one
model for each BiLSTM setting. While training a
model for each treebank somewhat offset this, it is
still possible that with different initialisation, these
parsers would behave slightly differently. How-
ever, it is unlikely to cause material differences in

the performance and as mentioned, this is quite
strongly offset by training on varying treebanks.

And finally, we focused on parsers trained on
fairly large amounts of annotated data. We leave
the analysis of different parsing systems in a low-
resource setting for others, but we point out that
when training on very little data, training costs
aren’t much of a concern and on truly low-resource
languages, data parsed at production is also go-
ing to be scarce so inference speed won’t be the
bottleneck.

5 Conclusion

We have presented a simple Pareto optimisation
analysis for a representative sample of modern de-
pendency parsers. We evaluated efficiency in two
ways. We evaluated the trade-off between accu-
racy and parsing speed and the trade-off between
accuracy and training energy consumption. The
BIAFFINE and SEQLAB occupied the speed Pareto
front with the former being slower and more ac-
curate and the latter being faster and less accurate.
We didn’t observe any real trade-off with regards to
training energy and performance, but it was clear
that SEQLAB is not particularly efficient in this
regard. Typically training energy varied based on
how long a model took to converge, with L2R be-
ing somewhat sensitive to the different treebanks.
Overall, for most scenarios, BIAFFINE emerged as
a well-balanced practical solution. For the sake of
candour, we offer a brief discussion of the limita-
tions of this analysis in Appendix 4.
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Appendix A Parsers

Left-to-right pointer network (L2R) is a parser
which uses a left to right transition-based algo-
rithm that builds a number of attachments equal
to the length of a given sentence together with a

The place had an unco’ souch aboot it
<\ <\ / < <\\> / < \>

DET NSUBJ

DET

AMOD

OBJ

NMOD

CASE

ROOT

Figure 4: The bracketing encoding from Strzyz et al.
(2019). Text is an extract from Robertson (2006).

pointer network which can point to a given po-
sition in the sentence for each token (Ma et al.,
2018; Fernández-González and Gómez-Rodrı́guez,
2019).7 It is one of the current top performing
parsers. We use the implementation as is, except
we make moderate alterations to overcome hard-
coded filepaths and the like. Otherwise, the only hy-
perparameter we change is the number of encoder
layers and the number of nodes in the encoder and
decoder layers.

Sequence labelling parser (SEQLAB) is a pars-
ing system that first encodes trees as a set of la-
bels, so that a direct one-to-one prediction can
be made for each token in a sentence (Spoustová
and Spousta, 2010; Li et al., 2018b; Strzyz et al.,
2019).8 We use the original bracketing encoding
from Strzyz et al. (2019) as it doesn’t require UPOS
tags to decode (as the other leading encoding does),
it performs closely to a more recent bracketing en-
coding that covers more non-projectivity (Strzyz
et al., 2020), and the latter encoding wasn’t publicly
available when this work commenced. It casts a
tree as series of tags which are made up of left and
right brackets and forward and backwards slashes
which encode the incoming and outgoing arcs for
each respective node. The encoding for each token
is based on edges associated with the preceding to-
kens and the direction of the edges. More formally,
the encoding for wi is given by:

< — if εj(i−1) ∈ E ∧ j > i− 1

\— ×k | k =
∑

wj∈S

{
1 if j < i ∧ εij ∈ E
0 otherwise

/ — ×k | k =
∑

wj∈S

{
1 if i−1 < j ∧ ε(i−1)j ∈ E
0 otherwise

> — if εji ∧ j < i

7https://github.com/danifg/
SyntacticPointer

8We use refactored encoding/decoding functions from
https://github.com/mstrise/dep2label.

https://github.com/danifg/SyntacticPointer
https://github.com/danifg/SyntacticPointer
https://github.com/mstrise/dep2label
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We use the biaffine implementation described
below and edit it to be a simple sequence-labelling
system, i.e. an embedding layer, followed by a
number of BiLSTM layers, and MLPs one for pre-
dicting the bracket tags and one for predicting the
edge labels. We use the same hyperparameters as
used for the biaffine parser.

Deep biaffine (BIAFFINE) is a graph-based
parser that creates two representations of each to-
ken from the hidden representations from BiL-
STMs, hypothesised to be a representation of each
token as dependents and as heads (Dozat and Man-
ning, 2017).9 An affine transformation is applied
to the head representation and then this and the de-
pendent one are then combined via a second affine
transformation (hence biaffine) to give a matrix of
scores, which gives a probability distribution for
each node representing the probability any other
node is that node’s head. A well-formed tree is then
enforced using the Chu–Liu/Edmonds’ algorithm
(Chu and Liu, 1965; Edmonds, 1967). The edge
labels are then predicted based on the predicted
edges. We use the standard hyperparameters for
this system except where we match them to better
correspond to the L2R parser and then only alter
the hyperparameters associated with the BiLSTMs.

Appendix B Network hyperparameters

Hyperparameter Value

Word embedding dimensions 100
Character embedding in (¬ L2R) 32
Character embedding out (¬ L2R) 100
Character dimension (if L2R) 100
Embedding dropout 0.33
Arc MLP dimensions (¬ SEQLAB) 512
Label MLP dimensions (¬ SEQLAB) 128
MLP layers 1
Epochs 200
Patience 10
Training batch size 32

Table 2: Hyperparameters for all models. L2R uses a
CNN char. embedding layer and SEQLAB doesn’t have
a biaffine layer. Other parameters are as in the original
(except SEQLAB which uses those of BIAFFINE).

Appendix C Data

We use a small sample of treebanks covering lan-
guages from 3 different language families and 4

9The original repository (https://github.com/
zysite/biaffine-parser) redirects to a larger set of
biaffine based parsers, but is largerly the same.

sub-families and which represent different syntac-
tic systems covering analytic, fusional, and agglu-
tinative languages and all are written in different
scripts. We offer a brief description of the tree-
banks used and some of the salient features of their
respective languages. The treebanks were chosen
to represent varying syntactic features, but also be-
cause of their high quality from being either man-
ually annotated or manually corrected. We also
chose relatively large treebanks. The statistics for
each treebank are shown in Table 3.

UD Hindi-HDTB (Hindi) is a UD treebank for
Hindi based on manually annotated news data
(Palmer et al., 2009; Bhat et al., 2017). Hindi is a
lightly fusional language with some degree of ver-
bal inflection and noun declension but also makes
extensive use of postpositions (McGregor, 1977).
It is a split-ergative language meaning in certain
cases it uses a nominative-accusative structure but
in others it uses an ablative-ergative syntax where
the subject of an intransitive verb behaves like the
object of a transitive one (Comrie, 1978). It also ex-
hibits tripartite behaviour in certain clauses, where
the subject of intransitive verbs, the object of tran-
sitive verbs, and the subject of transitive verbs all
have different case markings (Comrie, 1978). It is
a SOV language, but it has a fairly free word order
(Snell and Weightman, 1989). It is Indo-Iranian
and is written in the Devanagari script.

UD Polish-PDB (Polish) is a UD treebank man-
ually annotated on fiction, non-fiction, and news
data (Wróblewska, 2018). Polish is a highly fu-
sional language with a high degree of verbal inflec-
tion (Feldstein, 2001) and 7 case-markings (Wiese,
2011). It is a null-subject language (Cognola and
Casalicchio, 2018) with a nominal SVO order but
has relatively free word order (Siewierska, 1993).
Like most Slavic languages it doesn’t make use of
articles (Bielec, 1998) but it does have a complex
system of numeral and quantifiers that result in
agreement mistmatches (Klockmann, 2012). It is a
Balto-Slavic language written in the Latin script.

UD Korean Kaist (Korean) is a large treebank
generated from a constituency treebank which was
semi-automatically annotated with manual correc-
tions based on academic, fiction, and news data
(Choi et al., 1994; Chun et al., 2018). Korean is
a strongly suffixing agglutinative language (Ram-
stedt, 1968; Sohn, 1999). This results in a large
number of cases and a high degree of verbal inflec-
tion (Chang, 1996; Song, 1988; Lee and Ramsey,

https://github.com/zysite/biaffine-parser
https://github.com/zysite/biaffine-parser
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Training Development Test
Sents. Tokens Avg. Len. NP Chars. Sents. Tokens Avg. Len. NP Chars. Sents. Tokens Avg. Len. NP Chars.

Chinese 15K 408K 28.2 0.0 4.9 2K 51K 28.0 0.0 4.9 2K 49K 27.3 0.0 4.9
Hindi 13K 281K 22.1 2.6 11.4 2K 35K 22.2 2.4 11.5 2K 35K 22.2 2.4 11.3
Korean 23K 296K 13.9 4.5 8.2 2K 25K 13.2 4.7 8.6 2K 28K 13.4 4.0 8.3
Polish 18K 282K 16.9 1.4 5.4 2K 35K 16.7 1.5 5.4 2K 34K 16.2 1.4 5.4

Table 3: Treebank statistics: number of sentences (Sents.), number of tokens (Tokens), average sentence length
(Avg. Len.), percentage for non-projective arcs (NP), average word length (Chars.).

2000). It is technically a SOV ordered languae
but it has a highly flexible word order (Ramstedt,
1968; Sohn, 1999). Korean also uses honorifics
and speech levels, the former encoding the social
relationship between the speaker and the referents
in a discussion and the latter the speaker and the
person/people being spoken to (Brown, 2015). It is
a Koreanic language written in the Hangul script.

Chinese Penn Treebank (Chinese) is large man-
ually annotated treebank for Mandarin based on
news data (Xue et al., 2002, 2005). It is an analytic,
isolating language with a SVO dominant word or-
der and is a pro-drop language (Li and Thompson,
1981). Chinese has no grammatical tense markers
so relies on context or temporal expressions, but
aspect is expressed via the use of particles (Liu,
2015). Classifiers and measure words must be used
when a noun is preceded by a number, a demon-
strative pronoun, or certain quantifiers which are
particles that appear between these qualifiers and
their respective nouns (Her and Hsieh, 2010). Chi-
nese is said to be a verb stacking language, where
more than one verb or verb phrases are stacked
together in the same clause, but there is some dis-
agreement if the way verbs are combined actually
constitutes verb stacking (Li and Thompson, 1981;
Paul, 2008). It is a Sino-Tibetan language written
in simplified Hanzi. We re-split the data because
the standard split has tiny development and test
sets. The resulting sizes are shown Table 3.

Appendix D Training time

Figure 6 shows the average training time (across
treebanks) for each parser against the BiLSTM
structure. There is a clear linear relation as the
complexity of the BiLSTM increases. That is con-
sidering a BiLSTM with 2 layers and 1000 nodes
to be less complex than one with 3 layers and 400
nodes. We also show a similar plot in the Figure
5, but against the total number of parameters in the
network, which shows a similar but less clear trend.

Figure 5: Average training time against total network
parameters.

Figure 6: Average training time against BiLSTM struc-
ture.

Appendix E Full data

Table 4 shows the full LAS scores for each system
for each treebank with different BiLSTM configu-
rations on the development data. Similarly, Table 5
shows the results for the test data. Figure 7 shows
LAS against inference speed for the test data and
echoes what was observed for the development data
in Figure 1. Table 6 shows the total training energy
cost, total training time, and the parameters for
each parser and for each BiLSTM configuration.



129

BiLSTM BIAFFINE SEQLAB L2R
Layers Nodes zh hi ko pl avg zh hi ko pl avg zh hi ko pl avg

2


400 80.59 89.83 85.35 86.22 85.50 71.35 85.18 80.47 79.88 79.22 79.68 89.99 83.81 85.32 84.70
600 81.33 90.48 85.43 86.88 86.03 72.76 86.11 81.05 81.55 80.37 80.62 90.31 84.11 86.54 85.40
800 81.81 90.61 86.02 87.38 86.45 74.27 86.48 81.63 82.60 81.24 81.59 90.03 83.97 86.77 85.59
1000 82.15 90.56 85.91 87.95 86.64 74.82 87.06 81.55 82.91 81.58 81.66 90.54 84.06 87.45 85.93

3


400 81.71 90.55 85.45 86.83 86.13 73.62 86.42 81.23 82.15 80.85 82.50 90.85 84.67 87.16 86.29
600 81.93 90.62 86.04 87.66 86.56 75.46 87.32 81.64 83.03 81.86 83.25 91.13 84.75 87.83 86.74
800 82.65 91.06 85.94 88.35 87.00 76.20 87.65 81.66 83.90 82.35 83.57 91.00 84.99 88.66 87.06
1000 82.98 91.16 86.03 88.64 87.20 76.74 87.50 81.61 84.21 82.51 83.41 91.20 85.28 88.84 87.18

Table 4: Full LAS results on the development data.

BiLSTM BIAFFINE SEQLAB L2R
Layers Nodes zh hi ko pl avg zh hi ko pl avg zh hi ko pl avg

2


400 81.03 89.74 84.58 86.76 85.53 72.92 86.66 80.11 82.68 80.59 79.95 90.27 83.13 85.39 84.69
600 81.82 90.39 84.89 87.38 86.12 74.43 87.59 80.84 83.84 81.68 80.74 90.43 83.77 86.68 85.41
800 82.27 90.60 85.10 88.20 86.55 75.27 87.74 80.93 84.43 82.09 81.73 90.27 83.57 86.76 85.58
1000 82.70 90.71 84.83 88.44 86.67 76.44 87.71 80.40 85.07 82.41 81.86 90.35 83.73 87.42 85.84

3


400 81.93 90.42 84.51 87.49 86.09 76.14 88.21 81.40 85.58 82.83 82.63 90.98 84.57 87.59 86.44
600 82.27 90.23 85.45 88.39 86.59 78.13 88.77 81.96 86.69 83.89 83.69 91.22 84.10 88.09 86.78
800 83.11 91.08 85.46 88.78 87.11 78.67 88.61 81.75 86.88 83.98 83.72 90.93 84.43 89.18 87.06
1000 83.47 90.94 85.56 88.86 87.21 78.91 89.26 81.68 87.20 84.26 83.65 91.18 84.47 89.34 87.16

Table 5: Full LAS results on the test data.

BiLSTM Total Energy (MJ) Total Time (hours) Avg. Parameters (×106)
Layers Nodes BIAFFINE SEQLAB L2R BIAFFINE SEQLAB L2R BIAFFINE SEQLAB L2R

2


400 0.54 0.59 0.69 6.1 7.0 8.3 167.3 165.4 166.3
600 0.58 0.63 0.75 6.6 7.8 9.1 169.3 167.2 167.5
800 0.53 0.68 0.65 6.0 7.9 7.8 172.0 169.6 169.0
1000 0.73 0.83 0.76 8.4 9.6 9.1 175.3 172.7 170.9

3


400 0.83 0.81 0.92 9.9 8.9 11.1 168.3 166.3 167.2
600 0.66 0.96 0.84 7.5 12.0 10.2 171.5 169.3 169.6
800 0.82 0.98 1.00 9.8 11.2 11.9 175.8 173.4 172.9
1000 1.01 1.07 0.92 11.2 11.9 11.1 181.3 178.7 176.9

Table 6: Total energy consumed during training, total training time, and average parameters for each parser system
for different BiLSTM configurations.

Figure 7: Pareto fronts for L2R, BIAFFINE, and SEQLAB on the test data.
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Appendix F L2R training efficiency

Figure 8 shows training energy against training
time for L2R for each treebank used. Clearly, the
points associated with each treebank cluster. It
is clear training the parser on the Korean data is
much more energy consuming compared to the
others (which form a linear dispersion). It isn’t
particularly clear why this would be the case based
on the statistics in Table 3, except that Korean has
the largest number of instances.

Figure 8: Energy against training time for L2R systems.
L2R is more impacted by different data.


