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Abstract
We present a method for computing all quan-
tifer scopes that can be extracted from a sin-
gle CCG derivation. To do that we build
on the proposal of Steedman (1999, 2011)
where all existential quantifiers are treated as
Skolem functions. We extend the approach
by introducing a better packed representation
of all possible specifications that also includes
node addresses where the specifications hap-
pen. These addresses are necessary for recov-
ering all, and only, possible readings.

1 Introduction

Quantifiers often introduce a peculiar type of
semantic ambiguity. Take for instance the
following sentence: Every farmer owns a donkey.
This sentence has two readings: a wide reading
where there is one donkey that all farmers share
and narrow reading where each farmer has a
different donkey. If we express these readings
as first-order logic they would look as follows:
Wide:
∃a [donkey′(a)∧∀b [farmer′(b)⇒ own′(b,a)]]

Narrow:
∀b [∃a [donkey′(a)∧ (farmer′(b)⇒ own′(b,a))]]
From these formulas it is clear where the name

for different readings come from. In the wide read-
ing the existential quantifier takes the wide scope
i.e. it contains the universal quantifier. In the nar-
row reading the existential quantifier’s scope does
not cover the universal quantifier.

Any theory of the syntax-semantics interface
needs to account for the fact that quantifiers can
introduce scope ambiguity. Early approaches to
this problem involved either representing the two
meanings with distinct logical forms like the above,
obtained from the surface string either by treating
every farmer and a donkey as generalized quanti-
fiers or “quantifying in” in either order to a proposi-
tion containing distinguished variables (Montague,

1973), or via equivalent structure-changing oper-
ations of “quantifier raising” (May, 1985). Later
approaches decoupled scope from syntactic deriva-
tion by the use of “storage” to pass scope informa-
tion (Cooper, 1983; Keller, 1988). However, all of
these approaches overgenerate unattested readings
for certain examples involving coordination, first
noted by (Geach, 1970) and considered in section 3
below. The approach of (Steedman, 2011) can be
thought of as reuniting a storage-like account with
surface-compositional syntactic derivation.

2 Computing Scope with CCG

Steedman (1999, 2011) introduces a different
view of existential quantifiers, according to which
the only true quantifiers are universal quantifiers
and that existential quantifiers can be treated as
generalized Skolem terms in the following way:
Wide: ∀b

[
farmer′(b)⇒ own′(b,sk{}donkey′)

]
Narrow: ∀b

[
farmer′(b)⇒ own′(b,sk{b}donkey′)

]
Here, skα

β
represents the Skolem function whose

arguments are variables of type α and whose result
is of type β .

In the wide scope reading sk{}donkey′ is a Skolem
constant (Skolem function with no arguments).
This means that it will produce only a unique value
of type donkey′, somewhat like a proper name. In
the narrow scope reading sk{b}donkey′ is a Skolem func-
tion that has the variable b bound by the universal
as its argument. This function will produce a dif-
ferent value for each b, in other words there will be
a different donkey′ for each farmer′.

Other non-universal generalized quantifiers are
also treated as Skolem terms. Steedman (2011)
also discusses negation which we do not present
here, but our approach naturally extends to it. We
do not deal with intentionality.

This view of quantifiers allows for a simple
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Every farmer owns a donkey

S/(S\NP) (S\NP)/NP S\(S/NP)
λa. ∀b [ f armer′(b)⇒ (a b)] λa. λb. own′ (b,a) λa. a(skolem donkey′)

>B . . . . . . . . . . . . . . . . . . . . . . .
S/NP : λa. ∀b [ f armer′(b)⇒ own′(b,a)] S\(S/NP) : λa. a sk{}donkey′

<

S : ∀b
[

f armer′(b)⇒ own′(b,sk{}donkey′)
]

(a) Wide reading.

Every farmer owns a donkey

S/(S\NP) (S\NP)/NP S\(S/NP)
λa. ∀b [ f armer′(b)⇒ (a b)] λa. λb. own′ (b,a) λa. a(skolem donkey′)

>B
S/NP : λa. ∀b [ f armer′(b)⇒ own′(b,a)]

<
S : ∀b [ f armer′(b)⇒ own′(b,skolem donkey′)]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S : ∀b

[
f armer′(b)⇒ own′(b,sk{b}donkey′)

]
(b) Narrow reading.

Figure 1: Two different readings.

Every farmer owns a donkey

S/(S\NP) (S\NP)/NP S\(S/NP)
λa. ∀b [ f armer′(b)⇒ (a b)] λa. λb. own′ (b,a) λa. a(sk{}donkey′)

>B
S/NP :λa. ∀b [ f armer′(b)⇒ own′(b,a)]

<

S :∀b
[

f armer′(b)⇒ own′(b,sk{} {b}donkey′)
]

Figure 2: Packed representation.

syntax-semantics interface. CCG derivations for
wide and narrow readings are presented in Fig-
ure 1, for one of the two derivation trees allowed
by CCG. Syntactic component of these two trees
is the same, only the semantics differ. Semantic
entry for all words are the usual lambda expres-
sions except for the indefinite articles whose entry
is λa.λb.b(skolem a). Here skolem a is a under-
specified Skolem term of type a. An underspecified
Skolem term becomes a Skolem function/constant
when it is specified. Skolem specification is marked
in the derivation tree with a dotted underline, and in-
fluences only the logical form, converting an under-
specified Skolem terms by giving it as arguments
all universally bound variables into whose scope
it has been brought by the derivation so far. In
Figure 1a that set is empty, so the result of Skolem
specification is a Skolem constant, yielding the
wide scope reading. In Figure 1b, that set includes
the single variable b. By choosing to specify at a
different point in the derivation, we get a different
narrow-scope reading for the sentence.

In order to prevent overgeneration of unattested
readings, we must impose a further rather natural
constraint on Skolem specification requiring that
any embedded unspecified Skolem terms are
specified at the same time in the same environment.
Thus we get the following readings for “every
farmer owns a donkey that ate a hat”:
∀b[ f armer′(b)⇒ own′(b,sk{}

λa.donkey′(a)∧ate′(a,sk{}hat′ )
)]

∀b[ f armer′(b)⇒ own′(b,sk{b}
λa.donkey′(a)∧ate′(a,sk{b}hat′ )

)]

∀b[ f armer′(b)⇒ own′(b,sk{b}
λa.donkey′(a)∧ate′(a,sk{}hat′ )

)]

However, we exclude a fourth reading with a

wide-scope Skolem constant donkey eating multi-
ple farmer-dependent hats:1

#∀b[ f armer(b)⇒ own′(b,sk{}
λa.donkey′(a)∧ate′(a,sk{b}hat′ )

)]

To ensure that all available readings are obtained,
it is inefficient to choose all possible specification
points in the derivation, because most of them yield
duplicate results where there has been no change in
the set of scoping variables. To eliminate such re-
dundancy, Steedman (2011) proposed a packed rep-
resentation presented in Figure 2 where the Skolem
term is associated with multiple bindings. At points
in the derivation where the binding environment of
the function changes, a new argument combination
is introduced.

3 Problems with Taking Scope over
Coordination

The proposal of Steedman (2011) was implemented
by Kartsaklis (2010) and it works quite well for
examples that we have seen so far. However, coor-
dination poses some challenges for the packed rep-
resentation. Consider coordination of two universal
quantifiers in Figure 3a. Here NP↑ is a shorthand
for a type-raised NP. For a moment ignore addi-
tional annotations in the arguments of the Skolem
functions. In this example, the specification of an
apple will either happen before it is combined with
the universals, or after. This means that either it
will be in the scope of both or none. The only two
readings are given in Figure 3b. However, if we
were to unpack the packed formula by computing
all combinations of Skolem arguments we would
get four readings, including the impossible reading
of an apple being within scope of one universal
quantifier but not the other. We stress that this is
a problem arising from the packed representation,
not the theory of scope itself.

It may look like the solution to this problem
is simple: take all Skolems stemming from the

1This condition was inadvertently omitted from the origi-
nal proposal.
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same noun phrase and combine their arguments
in order i.e. first arguments of both Skolems go
together and second arguments of both Skolems
go together. While this solves the example in Fig-
ure 3, it does not work on that in Figure 4 where we
coordinate one universal and one existential quanti-
fier. Here there is no clear correspondence between
arguments of two Skolem functions: one of them
has two different arguments ({} and {a}) while the
other one has only one possible argument ({}). Of
course, in principle the difference in the number of
possible combinations could be significantly larger
and it may not be clear how to combine them. To
solve this problem we need a more principled so-
lution that directly reflects the mechanism of the
non-packed derivations.

4 Proposed Solution

The packed representation can be seen as a dynamic
programming approach to computing all possible
orders of specifications of Skolem terms. How-
ever, the packed representation of Steedman (2011)
that we considered so far is incomplete: from a
given packed representation we cannot reconstruct
the non-packed representations that are encoded
in it. That is caused by the missing information
of the location in the tree where the specification
was done. We extend the packed representation
with this information: whenever a new argument
combination is added, together with it we add the
Gorn address of the current node. For instance
sk{}

trrl {a}t
apple′ from Figure 4a signifies that there are

two possible arguments for this Skolem function:
an empty argument list specified at Gorn address
trrrl (top→ right→ right→ right→ left) and a
non-empty argument {a} at address t (top). We
know that all the Gorn addresses for a given Skolem
function will be on a single path from the root of
the tree to the determiner that introduced it into
derivation. This means that, for a given function,
we can sort all addresses by their height in the tree.

Assume we have a Skolem function with k possi-
ble argument sets e1,e2, . . . ,ek sorted by the height
of their Gorn addresses g1,g2, . . . ,gk such that gk
is closest to the root of the tree. We can say that
every argument set ei corresponds to the special-
izations done on any node g for which it holds
gi ≤ g < gi+1.2 In other words g can be any node
between gi and gi+1, including gi but excluding

2For simplicity, when gk 6= t we can consider gk+1 = t in
order to have a complete coverage to the root of the tree.

gi+1. If we take again sk{}
trrl {a}t

apple′ as an example
we can say that the argument {} corresponds to
specialization of Skolem function for nodes trrl,
trr and tr.

Additional important point is that we know for
certain that g1 is the address of the leaf of the tree
because that is the first point in the derivation where
the specification can be done. This is important
because in the cases of coordination the logical
formula can have copies of the Skolem term that
comes from the same noun phrase. We can use
the Gorn address of the leaf to identify the Skolem
terms that originate in the same noun phrase. Steed-
man (2011) uses a special index to keep track of
this information, but that index is not necessary
in our representation due to the existance of Gorn
addresses.

Now we can define unpacking of the new version
of the packed representation. We will illustrate it
with the example packed formula from the top node
of Figure 4a: ∀a

[
man′ (a)⇒ eat′

(
a,sk{}

trrl {a}t
apple′

)]
∧

eat′
(

sk{}
tlrrl

woman′ ,sk{}
trrl

apple′

)
step 1 Group Skolem terms by the NP they belong

to. For that we can use the first Gorn address
that specifies the leaf node. In the example
that would give {sk{}

tlrrl

woman′} for the first NP and

{sk{}
trrl {a}t

apple′ ,sk{}
trrl

apple′} for the second.

step 2 For each group of the Skolems extract the
unique Gorn addresses where specification
changes. In this example that would be {tlrrl}
for the first noun phrase and {trrl, t} for the
second.

step 3 Compute the Cartesian product of the sets
of Gorn addresses. That will give all possible
combinations of specification points. Each
combination will correspond to one possible
reading of the sentence. In the example that
will give {(tlrrl, trrl),(tlrrl, t)}.

step 4 To transform each entry to a reading we fil-
ter the Skolem arguments by the Gorn address.
Let us consider how we extract the reading
for entry (tlrrl, t). Filtering arguments for the

first noun phrase Skolem term {sk{}
tlrrl

woman′}with
tlrrl is easy because there is only one entry
that matches it exactly. Filtering arguments
for the second noun phrase is more interesting
because there are two copies of it. We need to



36

Every man and every woman eat an apple

NP↑/N N conj NP↑/N N (S\NP)/NP NP↑/N N
λa. λb. ∀c [(a c)⇒ (b c)] man′ and′ λa. λb. ∀c [(a c)⇒ (b c)] woman′ λa. λb. eat′ (b,a) λa. λb. b sk{}

trrl

a apple′
> > >

NP↑ NP↑ NP↑

λa. ∀b [man′ (b)⇒ (a b)] λa. ∀b [woman′ (b)⇒ (a b)] λa. a sk{}
trrl

apple′
>Φ >

NP↑\NP↑ S\NP
λa. λb. (a b)∧∀c [woman′ (c)⇒ (b c)] λa. eat′

(
a,sk{}

trrl

apple′

)
<

NP↑
λa. ∀b [man′ (b)⇒ (a b)]∧∀c [woman′ (c)⇒ (a c)]

<
S

∀a
[
man′ (a)⇒ eat′

(
a,sk{}

trrl {a}t
apple′

)]
∧∀b

[
woman′ (b)⇒ eat′

(
b,sk{}

trrl {b}t
apple′

)]
(a) Packed derivation.

∀a
[
man′ (a)⇒ eat′

(
a,sk{}

trrl

apple′

)]
∧∀b

[
woman′ (b)⇒ eat′

(
b,sk{}

trrl

apple′

)]
∀a
[
man′ (a)⇒ eat′

(
a,sk{a}

t

apple′

)]
∧∀b

[
woman′ (b)⇒ eat′

(
b,sk{b}

t

apple′

)]
(b) Readings.

Figure 3: Coordination with two universal quantifiers.

Every man and some woman eat an apple

NP↑/N N conj NP↑/N N (S\NP)/NP NP↑/N N
λa. λb. ∀c [(a c)⇒ (b c)] man′ and′ λa. λb. b sk{}

tlrrl

a woman′ λa. λb. eat′ (b,a) λa. λb. b sk{}
trrl

a apple′
> > >

NP↑ NP↑ NP↑

λa. ∀b [man′ (b)⇒ (a b)] λa. a sk{}
tlrrl

woman′ λa. a sk{}
trrl

apple′
>Φ >

NP↑\NP↑ S\NP
λa. λb. (a b)∧

(
b sk{}

tlrrl

woman′

)
λa. eat′

(
a,sk{}

trrl

apple′

)
<

NP↑

λa. ∀b [man′ (b)⇒ (a b)]∧
(

a sk{}
tlrrl

woman′

)
<

S
∀a
[
man′ (a)⇒ eat′

(
a,sk{}

trrl {a}t
apple′

)]
∧ eat′

(
sk{}

tlrrl

woman′ ,sk{}
trrl

apple′

)
(a) Packed derivation.

∀a
[
man′ (a)⇒ eat′

(
a,sk{}

trrl

apple′

)]
∧ eat′

(
sk{}

tlrrl

woman′ ,sk{}
trrl

apple′

)
∀a
[
man′ (a)⇒ eat′

(
a,sk{a}

t

apple′

)]
∧ eat′

(
sk{}

tlrrl

woman′ ,sk{}
trrl

apple′

)
(b) Readings.

Figure 4: Coordination with one universal and one existential quantifier.

select for specification on node t. In the first
copy sk{}

trrl {a}t
apple′ we just select argument {a}

since it corresponds to node t. In the second
copy sk{}

trrl

apple′ we select for {} because it covers
all nodes from trrl to the root including t.

5 Conclusion

This approach is really just a full dynamic pro-
gramming representation of the unpacked repre-
sentations that could easily be extracted from this
representation. We do not have to explicitly encode
all the nodes where specification happens, but only
for the places where that specification changes the

existing result and we also encode exactly at which
places in the tree this happens.

Here we have described how to get all possible
readings from a single CCG derivation. However,
in some cases there can be alternative CCG deriva-
tions that can provide additional readings. To get
those readings we can apply the same method on
all alternative derivations either by chart parsing,
as described in (Steedman, 2011), or by recover-
ing alternative derivations with the tree-rotation
operation (Niv, 1994; Stanojević and Steedman,
2019)

Evang and Bos (2013) show that there is a strong
preference for subject to take scope over object.
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Our representation of Skolem terms could be ex-
tended to encode the information of the type of
noun phrase they originate from. With this ex-
tension we could rank the extracted readings by
subject > object preference.

The implementation of our approach is
available at https://github.com/stanojevic/

CCG-Quantifiers.
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