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Abstract

Active learning has been shown to reduce an-
notation requirements for numerous natural
language processing tasks, including seman-
tic role labeling (SRL). SRL involves labeling
argument spans for potentially multiple predi-
cates in a sentence, which makes it challeng-
ing to aggregate the numerous decisions into
a single score for determining new instances
to annotate. In this paper, we apply two ways
of aggregating scores across multiple predi-
cates in order to choose query sentences with
two methods of estimating model certainty:
using the neural network’s outputs and us-
ing dropout-based Bayesian Active Learning
by Disagreement. We compare these meth-
ods with three passive baselines — random
sentence selection, random whole-document
selection, and selecting sentences with the
most predicates — and analyse the effect these
strategies have on the learning curve with re-
spect to reducing the number of annotated sen-
tences and predicates to achieve high perfor-
mance.

1 Introduction

The ability to identify the semantic elements of a
sentence (who did what to whom, where and when)
is crucial for machine understanding of natural lan-
guage and downstream tasks such as information
extraction (MacAvaney et al., 2017) and question-
answering systems (Yih et al., 2016). The process
of automatically identifying and classifying the
predicates in a sentence and the arguments that re-
late to them is called semantic role labeling (SRL).
The current state-of-the-art semantic role labeling
systems are based on supervised machine learning
and rely on large corpora in order to achieve good
performance. Large corpora have been created for
languages such as English (Weischedel et al., 2013),
but such resources are lacking in most other lan-
guages. Additionally, those corpora created may

still not translate well to other in-language domains,
due to sentence structure or domain-specific vocab-
ulary. Creation of additional annotated corpora
requires a significant amount of time and often the
hiring of domain experts, causing a bottleneck for
developing advanced NLP tools for other languages
and domains.

Active learning (AL) focuses on choosing only
the most informative and least repetitive instances
to have annotated, thereby reducing the total
needed annotation to train a supervised model,
without sacrificing performance. This is done by
iteratively re-training the model and assessing its
confidence in its predictions in order to choose addi-
tional data for annotation that would have maximal
impact on the learning rate.

Traditionally, practitioners use the model’s prob-
ability distributions for the annotation candidates to
quantify how informative a new training instance
would be for the model. However, state-of-the-
art SRL systems rely on deep learning, whose
predictive probabilities are not a reliable metric
of uncertainty. In lieu of this, Gal and Ghahra-
mani (2016) found that we can estimate model
confidence by calculating the rate of disagreement
of multiple Monte Carlo draws from a stochastic
model, accomplished by utilising dropout during
forward passes. Previous work (Siddhant and Lip-
ton, 2018)(Shen et al., 2017) has combined this
finding with Bayesian Active Learning by Disagree-
ment (Houlsby et al., 2011) as a way of selecting
informative instances for active learning for SRL
and other NLP tasks; hereafter referred to as DO-
BALD.

Semantic role labeling for a single sentence is a
complicated structural prediction, involving mul-
tiple predicates and varying spans. This complex-
ity makes identifying the training examples with
maximal impact more challenging. In this work,
we compare two ways of aggregating confidence
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scores for individual predicates into a unified score
to assess the usefulness of selecting a sentence for
active learning. We test these strategies with two
active learning approaches to calculating certainty
for a predicate instance: the model’s output proba-
bilities and a granular DO-BALD selection method.
Additionally, we compare the benefits of these AL
approaches with three baselines: random sentence
selection, random document selection, and select-
ing sentences with the most predicates.

We will discuss the practical workflow of SRL
annotation and the way this must be considered in
utilising active learning effectively to create new
datasets. Although the current standard data selec-
tion methodology for SRL corpora, which typically
involves selecting entire documents, leaves much
room for improvement by even passive strategies,
we will show that active learning can provide sig-
nificant reductions in annotation of both number
of sentences and number of predicates. We aim to
provide this comparison within the broader context
and understanding of SRL annotation in practice.

2 Background

Active learning begins with the selection of a clas-
sifier, a small pool of labeled training data (also
referred to as a seed set) for the classifier to initially
be trained on, and a large amount of unlabeled data.
AL is an iterative process where the classifier is
trained on the labeled data and then through some
query selection strategy, an instance or instances
are chosen from the unlabeled data for a human
annotator to provide a label for. Typically, they’re
chosen after the classifier attempts to predict labels
for the unlabeled data and provides feedback about
what instances may be the most informative. The
newly annotated data is then added to the pool of
labeled data that will be used to train the classifier
on the next iteration. This iteration continues until
some stopping criteria are met, such as the classi-
fier’s confidences about the remaining unlabeled
data exceeding a certain threshold, or simply until
funds or time are exhausted.

Proposition Bank (PropBank) (Palmer et al.,
2005) is verb-oriented semantic representation.
Predicates in text are assigned a roleset ID based
on the sense of the word, such as play.01 (to play
a game) or play.02 (to play a role). The roleset
determines the permissible semantic roles, or
arguments, for that predicate. The core arguments
are given generalised numbered labels, ARG0

Roleset id: give.01
transfer

Arg0 giver
Arg1 thing given
Arg2 entity given to

Table 1: PropBank roleset for give.01.

through ARG5. Typically an ARG0 is the agent
or experiencer, while ARG1 is typically the
patient or theme of the predicate. Additionally,
there are modifier arguments to incorporate other
semantically relevant information such as location
(ARGM-LOC) and direction (ARGM-DIR). The
following is an example of the arguments related
to the predicate ”give” according to the roleset in
Table 1:

[ARG0 She] had [Pred given] [ARG1 the answers]
[ARG2 to two low-ability geography classes].

Sentences may contain several predicates and
each predicate has its own arguments. Predicates
commonly consist of verbs, but also include nomi-
nalisations and predicative adjectives.

Many large corpora have been annotated in En-
glish, such as Ontonotes (Weischedel et al., 2013).
Although Ontonotes has since been retrofitted to
unify different parts of speech into the same role-
sets based on sense and given expanded nominali-
sations, light verb constructions, and other multi-
word expressions (O’Gorman et al., 2018), an ear-
lier version of it was released as the dataset for
the CoNLL-2012 shared task. This dataset is still
frequently used as an evaluation corpus for ex-
perimental SRL techniques. Additionally, there
are many domain-specific SRL corpora, such as
clinical records (Albright et al., 2013) and the
geosciences (Duerr et al., 2016). These domain-
specific annotations are necessary because the vo-
cabulary and sentence structure may differ too
much for models trained on more general text to
perform well.

Much of the text annotated with PropBank an-
notations was annotated using Jubilee (Choi et al.,
2010). The text is set up to be presented to annota-
tors in the order of the predicate’s lemma, enabling
annotators to concentrate on the differences be-
tween rolesets of particular lemmas and providing
efficiency through minimising context-switching.
With this methodology, annotation time can pri-
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marily be reduced by minimising the number of
predicates being annotated.

While this setup is typical of large-scale anno-
tation projects, it’s less feasible in the context of
active learning. If each iteration results in querying
annotators for only 100 sentences, there is little
benefit to splitting annotation tasks based on lem-
mas. The more practical approach is to annotate
on a sentence-by-sentence basis. In this case, re-
ducing predicates is still beneficial, but since the
cognitive burden of reading and understand the sen-
tence must be done anyway, reducing the number
of sentences is of high importance.

When new datasets are annotated, typically en-
tire documents are chosen. Annotation projects
frequently do several layers of annotation on the
same text, which may include NER, syntactic pars-
ing, SRL, coreference resolution, and event coref-
erence. In the case of SRL, this results in numerous
sentences with the same topic and vocabulary be-
ing used. The random selection of sentences used
as a baseline in active learning studies may be an
improvement over the selection criteria used in
practice since the distribution of it will result in a
more diverse dataset. For this reason, it’s important
when discussing how much annotation reduction
an AL technique provides by selecting individual
sentences to compare to the learning curve of ran-
dom selection, rather than the full dataset. Our
experiments include a whole-document selection
method to provide comparison.

3 Related Work

Active learning has been utilised with success in
numerous NLP tasks, such as named entity recogni-
tion (Shen et al., 2017), word sense disambiguation
(Zhu and Hovy, 2007), and sentiment classification
(Li et al., 2013). In recent years, active learning has
been applied to SRL. Since probabilities from off-
the-shelf NN models may sometimes be inaccessi-
ble, Wang et al. (2017) proposed working around
this by designing an additional neural model to
learn a strategy of selecting queries. Given an SRL
model’s predictions, this query model classifies in-
stances as requiring human annotation or not. Their
approach was a hybrid of active learning and self-
training. The self-training is enacted by accepting
the SRL model’s predicted labels into the train-
ing pool for future iterations when the sentence
was determined not to require human annotation.
This approach requires 31.5% less annotated data

to achieve comparable performance as training on
the entirety of the CoNLL-2009 dataset.

Koshorek et al. (2019) compared data selec-
tion policies while simulating active learning for
question-answer driven SRL (QA-SRL). QA-SRL
is a form of representing the meaning of a sentence
using question-answer pairs. Rather than annotat-
ing spans of text with argument names, such as
PropBank’s ARG0, annotators enumerate a list of
questions relating to the actions in a sentence, such
as who is performing an action and when is it hap-
pening, along with the corresponding answers from
the original text. This representation provides sim-
ilar coverage to PropBank, but can also represent
implicit arguments that aren’t directly represented
by the syntax.

The process of identifying spans that are argu-
ments of a predicate and the generation of questions
based on the arguments were treated as independent
tasks. To provide an approximate upper bound on
the learning curve, they simulated active learning
on the dataset, splitting the unlabeled candidates
into K subsets, and selecting the subset that im-
proved the model the most on the evaluation data.
Against this oracle policy, they compared the fol-
lowing selection strategies, sampling K random
subsets to choose from: selecting a random sub-
set, selecting the subset with the highest average
token count among sentences, and selecting the
subset that has the maximal average entropy over
the model’s predictions.

The uncertainty strategy performed worse than
random selection for argument span detection, and
was not tested for question generation. Selecting
the sentences with high token counts tended to im-
prove the F-score for argument span detection by
1-3% given an equal number of training instances
(and attaining 60% on the full dataset), while being
largely comparable to random selection for ques-
tion generation.

Active learning for SRL has also been applied in
combination with multi-task learning (Ikhwantri
et al., 2018), using a subset of PropBank roles
along with a new ”greet” role. The authors com-
pared single- and multi-task SRL, both with and
without active learning. Under multi-task learn-
ing the model jointly learns to identify semantic
roles as well as to classify tokens as entities such as
”Person” or ”Location”. They introduced a set of se-
mantic roles that accommodate conversational lan-
guage and annotated a small corpus of Indonesian
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chatbot data to provide training and testing data.
By selecting sentences using model uncertainty in
the single-task context, F-score was improved by
less than 1% compared to randomly selecting the
data.

Modern SRL systems utilise deep learning,
which poses a challenge to assessing the model’s
certainty in its predictions. The predictive proba-
bilities in the output layer cannot be reliably inter-
preted as a measure of model certainty. Gal and
Ghahramani (2016) proposed using dropout as a
Bayesian approximation for model certainty, esti-
mating it using the variation in multiple forward
passes.

This dropout principle was tested on numerous
NLP tasks by Siddhant and Lipton (2018), includ-
ing SRL. For their SRL experiments, they used a
neural SRL model based on the He et al. (2017)
model, with modifications to the decoding method
(instead using a CRF decoder) and increasing the
dropout rate from 0.2 to 0.25.

In comparison to the baseline of random se-
lection, they tested the classic uncertainty mea-
sure of using the output probabilities of the
model, normalised for sentence length, with two
Bayesian Active Learning by Disagreement meth-
ods for selecting additional instances: Monte Carlo
Dropout Disagreement (DO-BALD) and Bayes-by-
Backprop (BB-BALD). The DO-BALD method
applies dropout during multiple predictions of in-
stances in the unlabeled pool and selects instances
based on how many of those predictions disagree
on the most common label of the entire sequence.
This selection strategy is similar to the selection
method we propose in this paper, but with several
differences. The most significant difference is that
the authors treat agreement between predictions as
all-or-nothing, rather than allowing partial agree-
ment based on arguments. They also are using a
higher number of predictions (100 per sentence as
opposed to 5 per predicate) to calculate disagree-
ment between, which may be necessary in this all-
or-nothing approach. In contrast, we consider each
predicate-argument label sequence independently.

They tested their methods on both the CoNLL-
2005 and CoNLL-2012 datasets, which use Prop-
Bank annotation. While the Bayesian methods
were similar to the standard uncertainty selection
method in the case of SRL, these methods resulted
in approximately 2-3% increase for F-score com-
pared to random selection when training on the

same number of tokens. These results were much
more modest than results for other tasks such as
NER.

4 Data

We used two independent datasets for our experi-
ments: The English section of Ontonotes (version
5.0) (Weischedel et al., 2013) with the latest frame
updates (O’Gorman et al., 2018) and the colon can-
cer portion of THYME (Albright et al., 2013).

Ontonotes 5.0 consists of 1.5 million words
across multiple genres. The majority of this data is
sourced from news, but it also includes telephone
conversations, text from The Bible, and web data.
THYME is comprised of clinical notes and pathol-
ogy reports of colon and brain cancer patients. For
our experiments, we used only the colon cancer
portion. The data is split into training, validation,
and test subsets.

We simulated active learning on the training sub-
set of each corpus, dividing it into an initial seed
set and a set of sentences to select from. The ini-
tial seed sets for sentence-based experiments were
200 randomly chosen sentences. For the whole-
document baseline, the seed set is comprised either
of documents from multiple genres, totalling 200
sentences, in the case of Ontonotes; or a single
patient (consisting of two clinical notes and one
pathology report, totalling 195 sentences) in the
case of the THYME corpus.

In both cases, we utilised validation data to de-
termine early stopping. Due to the excessive com-
putational time required to predict the standard
validation sets for these corpora for every epoch
for every iteration, as well as the fact that a real-
world scenario would be unlikely to have such a
disproportionally large validation set to perform ac-
tive learning, we selected a subset of the validation
data for use. In the experiments involving selecting
individual sentences, we used the same randomly
chosen 250 sentences. In the case of the baselines
of choosing random documents, we used validation
datasets approximating 250 sentences, comprised
of whole documents.

Evaluation was performed on the standard test
subset for each respective corpus.

5 Model

We used AllenNLP’s (Gardner et al., 2018) imple-
mentation of a state-of-the-art BERT-based model
(Shi and Lin, 2019). Our training procedure for
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this model used 25 epochs or stopped early with a
patience of 5. Trained under the same experimen-
tal configuration on the full training subsets, this
model achieves an F-score of 83.82 and 83.48 on
the Ontonotes and THYME datasets respectively.

After training on the initial seed dataset, each
iteration of active learning selected batches of 100
sentences re-trained from scratch. In the case of
the whole-document baseline, for the creation of
each batch, we selected random documents until
the number of sentences selected met or exceeded
100.

6 Selection Methods

6.1 Model Output

We used the classic approach of selecting query
sentences based on the probability distribution over
labels from the model’s output. For each predicate
in a sentence, we summed the highest probability
for each token and then normalised by sentence
length. This results in a single confidence score for
the label sequence.

6.2 DO-BALD

The model output of neural networks are a poor es-
timate of confidence, due to their nonlinearity and
tendency to overfit and be overconfident in their pre-
dictions (Gal and Ghahramani, 2016)(Dong et al.,
2018).

Using Monte Carlo dropout as a Bayesian ap-
proximation of uncertainty, as proposed by Gal
and Ghahramani (2016), we applied a dropout rate
of 10% during the prediction stage. We employ
the Bayesian Active Learning by Disagreement
approach by predicting each candidate sentence
multiple times to select sentences based on how
often those predictions agree with each other.

The number of predictions used correspondingly
increases the time required to select data upon each
iteration. Gal and Ghahramani (2016) used be-
tween 1000 and 10 forward passes in their exper-
iments and Siddhant and Lipton (2018) used 100
per sentence when applying DO-BALD to SRL.
An ideal solution would minimise this variable for
efficiency with as little loss as possible in the ben-
efit gained by sampling the distribution. In our
experiments, we chose to perform 5 predictions per
predicate. Due to sentences containing multiple
predicates, this typically results in 10-15 predic-
tions per sentence.

Prediction 1 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 2 [ARG0 John] Smith [Pred bought] [ARG1 apples].
Prediction 3 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 4 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 5 [ARG0 John] Smith [Pred bought] [ARG1 apples].

Table 2: An example of varying argument predictions
for a predicate, bought, by multiple forward-passes
with dropout.

From these predictions, agreement was calcu-
lated based on entire argument spans. For each
predicate in the sentence, we considered the percent
of predictions for each argument type that agreed
with the most frequent span choice for that type.
Referring to the example in Table 2, the most fre-
quently chosen span for ARG0 was ”John Smith”,
although two of the predictions chose only the par-
tial match of ”John”. In this case, since two out of
the five disagree with the most common prediction,
the argument ARG0 has a disagreement rate of 0.4.
The rate of disagreement was calculated for each
argument type present in the set of predictions and
then averaged to summarise the consensus for the
entire predicate-argument structure.

By examining the forward-pass predictions
predicate-by-predicate and argument-by-argument
to determine agreement, our approach is more gran-
ular than Siddhant and Lipton (2018)’s method of
determining disagreement from the mode of the
entirety of the sentence’s labels. Our strategy al-
lows for partial credit when the predictions are in
agreement about particular arguments.

6.3 Combining Predicate Scores
Since sentences often contain multiple predicates,
we must aggregate the scores into a single mea-
sure in order to rank sentences by their potential
informativeness. We propose two such ways of
combining the predicate scores, which we applied
to both the Output and DO-BALD methods of cal-
culating certainty of a single predicate-argument
structure:

• Average of Predicates (AP): The score for
all predicate-argument structures in a sentence
is averaged. This provides a balance between
the predicates in the sentence, but high con-
fidence for one predicate may diminish the
value of a more uncertain predicate.

• Lowest Scoring Predicate (LSP): The score
for a sentence is the lowest score of all the
predicate-argument structures present in the
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sentence. This strategy prioritises sentences
that contain a predicate that is most likely to
have a high impact on learning, although this
may allow selecting for sentences that require
annotating additional predicates that have al-
ready been learned well by the model.

In the case of DO-BALD, a sentence with two
predicates will have ten total forward-passes, five
for each predicate. In the following example,
a sentence contains one predicate that’s very
common and may likely already occur in the
dataset, come.01 (motion), and a second predicate
that’s less common, make it.14 (achieve or arrive
at).

[ARG0The governor] [ARGM-OutputD could]
[ARGM-NEG n’t] [Pred make it], so the lieutenant
governor came instead.

The governor could n’t make it, so [ARG1
the lieutenant governor] [Pred came] instead.

A plausible scenario is that the predictions of the
arguments for the rarer predicate ”make it” will be
in higher disagreement compared to the predictions
of the arguments for ”came”. In this case, the LSP
method will be more likely to select the sentence
than AP, since it will rank this sentence’s likely
informativeness based only on the disagreement
rate of ”make it”, whereas AP will average between
the two disagreement rates.

6.4 Baselines
We include three passive baseline measurements:

• Random Sentences (RandSent): Choose
random batches of sentences on each iteration
of active learning.

• Random Documents (RandDoc): Choose
random batches of entire documents, until the
chosen sentence batch size is reached.

• Most Predicates (MostPred) Choose
batches of sentences, selecting for those
with the highest number of predicates
present. Identification of predicates was done
automatically using AllenNLP.

7 Results

Out results are reported as a learning curve across
number of sentences (Figures 1, 3) and predicates

# sentences 300 600 900 1200 1500
Ontonotes

RandSent 55.48 64.32 71.00 72.02 74.95
RandDoc 61.26 64.27 70.20 72.31 73.59
MostPred 59.39 74.60 76.13 77.55 77.52
DO-BALD LSP 60.25 73.48 74.80 76.23 78.13
DO-BALD AP 62.26 63.92 66.28 69.83 67.29
Output LSP 61.91 70.29 71.08 73.27 74.87
Output AP 62.12 58.52 64.52 62.28 68.39

THYME
RandSent 64.53 72.07 74.23 75.67 76.88
RandDoc 49.32 64.23 67.11 73.62 75.21
MostPred 66.66 74.61 76.37 77.49 78.66
DO-BALD LSP 58.01 74.66 75.81 76.91 79.03
Output LSP 64.80 72.87 76.24 77.03 78.69

Table 3: F-score for number of sentences for each
query selection method: random sentences, random
documents, most predicates, DO-BALD (Lowest Scor-
ing Predicate and Average of Predicates), model output
(Lowest Scoring Predicate and Average of Predicates).
Sentence count is approximate for whole-document se-
lection.

Figure 1: Learning curve of F-score by number of sen-
tences in Ontonotes training data.

(Figures 2, 4) present in the training pool after each
iteration. Selected F-scores for the methods are
reported according to number of sentences (Table
3) and approximate number of predicates (Table 4)
in the training pool at various points.

7.1 Ontonotes

We can estimate the annotation savings gained by
the tested methods by examining the statistics re-
quired for each curve to reach a particular F-score.
For this purpose, we will choose 78% as a bench-
mark for a viable SRL model that can produce suf-
ficiently accurate results to feed into downstream
NLP applications.
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Approx. # predicates 1000 1500 2000 2500 3000
Ontonotes

RandSent 55.48 66.89 64.32 70.79 72.18
RandDoc 61.26 64.27 67.72 70.20 69.73
MostPred - - 59.39 - -
DO-BALD LSP 60.25 68.27 68.26 71.08 73.47
DO-BALD AP 62.43 66.61 69.67 70.12 70.53
Output LSP 61.91 68.83 70.29 71.03 72.28
Output AP 56.68 56.00 62.28 68.39 71.09

THYME
RandSent 66.47 72.06 72.25 76.28 75.67
RandDoc 64.23 67.11 73.32 75.35 76.23
MostPred - - 70.69 72.57 74.60
DO-BALD LSP 58.01 71.63 74.66 75.82 75.81
Output LSP 67.30 72.87 71.57 76.24 76.03

Table 4: F-score for approximate number of predicates
for each query selection method: random sentences,
random documents, most predicates, DO-BALD (Low-
est Scoring Predicate and Average of Predicates),
model output (Lowest Scoring Predicate and Average
of Predicates). MostPred takes too large of selections
to always be within range of these numbers.

Figure 2: Learning curve of F-score by number of pred-
icates in Ontonotes training data.

The passive selection of random sentences at-
tains this score after 3,000 sentences. The DO-
BALD LSP method and MostPred methods achieve
this score after 1,400 and 1,200 respectively, pro-
viding a 53%-60% reduction in data. Using the
model’s output with LSP provided a more slight,
but still significant, reduction of 10%. When se-
lecting whole documents, this performance was not
achieved until 4,126 sentences were in the training
pool. Both of the AP methods, which averaged the
predicates in the sentences, performed significantly
worse than the baseline.

On the other hand, the reduction in predicate
annotation offered by active learning was more
modest. The passive strategies of selecting ran-

Figure 3: Learning curve of F-score by number of sen-
tences in THYME training data.

dom sentences and documents required 9,333 and
11,598 predicates, respectively. DO-BALD LSP
required 7,673 predicates (18% fewer). The Most-
Pred strategy, which offered the best performance
on reducing sentences, didn’t achieve this until
11,460 predicates, almost comparable to random
whole-document selection. Output LSP provided a
negligible reduction, with 9,073 predicates.

The two selection methods that averaged the
predicates performed worse than the baselines by
sentences. One reason for this may be that the
presence of frequent, but easily learned, predicates
such as copulas inflating the average confidence of
the sentence.

In terms of assessing the impact of whole-
document selection, which is necessary for other
NLP tasks such as coreference, compared to sam-
pling individual sentences, the difference between
sentences (4,126 vs 3,000, respectively) and pred-
icates (11,598 vs. 9,333) required to reach our
benchmark was significant. Sampling individual
sentences reduces sentence annotation by 27% and
predicate annotation by 20% to reach our bench-
mark.

7.2 THYME
Due to the weak performance of the AP aggrega-
tion method on the Ontonotes dataset, we did not
perform those experiments on the THYME dataset.

As with our evaluation on the Ontonotes dataset,
we can consider the annotation requirements to
reach an F-score of 78.

The baseline sentence selection method obtains
this benchmark after 1,600 sentences. Consistent
with the results on the Ontonotes dataset, the DO-
BALD LSP and MostPred methods are the most
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Figure 4: Learning curve of F-score by number of pred-
icates in THYME training data.

efficient ways of selecting sentences, with both
requiring 60% fewer sentences to train a model
with a test F-score of 78. The Output LSP method
requires 18% fewer sentences.

With respect to predicates, once again we see the
baseline RandSent performance (4355 predicates)
significantly improved by DO-BALD LSP (20%
- 4355 predicates) and Output LSP (16% - 3666
predicates), but MostPred is a detriment (30% more
annotation - 5651 predicates).

8 Conclusions

Between the two proposed methods of aggregat-
ing predicate-argument structure scores into a sin-
gle value to represent a sentence, averaging across
them (AP) or only considering the weakest pred-
icate (LSP), our results show the latter to be sub-
stantially better.

Both selecting sentences for the most predicates
and selecting sentences with the predicate with the
lowest DO-BALD agreement offer a significant
53%-60% decrease in the number of sentences re-
quired to train the model to a viable performance
level. These findings are consistent for both the
broad, general Ontonotes corpus and the niche
colon cancer clinical note domain of the THYME
corpus.

We assessed the performance of these selection
strategies in terms of reducing both number of sen-
tences and number of predicates annotated. Typi-
cally, the SRL annotation process of a large annota-
tion project benefits most from a reduction of pred-
icates, due to presenting annotators with batches of
a specific predicate to annotate, thereby reducing
the cognitive load of switching between different

predicate frames. But in the case of projects at-
tempting to develop new corpora with significant
budget constraints that would most benefit from
an active learning approach, the piecemeal nature
of each annotation iteration makes this approach
less viable and likely necessitates presenting anno-
tators with the data sentence-by-sentence. In this
case, reducing the number of sentences will have a
more substantial impact than reducing the number
of predicates.

While both DO-BALD LSP and the simpler strat-
egy of selecting sentences with high predicate den-
sity provide significant reduction in sentence an-
notation, only DO-BALD LSP simultaneously re-
duced predicate annotation as well.

9 Future Work

Smaller batch sizes per iteration allow more effi-
cient selection of data since the model is updated
more frequently and we can reduce redundant infor-
mation content within the batch that would waste
annotation time. Using very small batches is not
tractable in tasks that require long model training
times. Koshorek et al. (2019) tested selection strate-
gies on randomly sampled batches of data, rather
than determining priority of individual instances,
but that waters down the benefits of using the selec-
tion heuristic. In the future, we plan to investigate
ways to balance syntactico-semantic redundancy
with the model-based selection techniques in or-
der to improve the learning rate for SRL, while
reducing training time for each iteration.

We chose to use a random 200 sentences as
our seed set, but the ideal amount and method of
selection for active learning for SRL remains an
open question. If too few sentences are chosen, or
they’re not sufficiently diverse, we may encounter
the missed class effect (Tomanek et al., 2009),
where the model becomes overconfident about in-
stances that greatly differ from what’s present in its
current training pool, and fails to select them for
annotation. On the other hand, selecting too large
of a seed set negates the benefits of active learning.
In future work we plan to explore unsupervised
methods of selecting a semantically diverse seed
set. Prior work (Dligach and Palmer, 2011) (Peter-
son et al., 2014) shows that language models may
offer an unsupervised way of selecting rare verb
instances and thus beneficial SRL instances.
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