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Abstract

Dependency parsing is a tool widely used in
the field of Natural Language Processing and
computational linguistics. However, there is
hardly any work that connects dependency
parsing to monotonicity, which is an essential
part of logic and linguistic semantics. In this
paper, we present a system that automatically
annotates monotonicity information based on
Universal Dependency parse trees. Our system
utilizes surface-level monotonicity facts about
quantifiers, lexical items, and token-level po-
larity information. We compared our system’s
performance with existing systems in the liter-
ature, including NatLog and ccg2mono, on a
small evaluation dataset. Results show that our
system outperforms NatLog and ccg2mono.

1 Introduction

The number of computational approaches for Natu-
ral Language Inference (NLI) has rapidly grown in
recent years. Most of the approaches can be cate-
gorized as (1) Systems that translate sentences into
first-order logic expressions and then apply theo-
rem proving (Blackburn and Bos, 2005). (2) Sys-
tems that use blackbox neural network approaches
to learn the inference (Devlin et al., 2019; Liu et al.,
2019). (3) Systems that apply natural logic as a
tool to make inferences (MacCartney and Man-
ning, 2009; Hu et al., 2020; Angeli et al., 2016;
Abzianidze, 2017). Compared to neural network
approaches, systems that apply natural logic are
more robust, formally more precise, and more ex-
plainable. Several systems contributed to the third
category (MacCartney and Manning, 2009; Hu
et al., 2020; Angeli et al., 2016) to solve the NLI
task using monotonicity reasoning, a type of log-
ical inference that is based on word replacement.
Below is an example of monotonicity reasoning:

1. (a) All students| carry a MacBook.
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(b) All students carry a laptop.
(c) All new students carry a MacBook.

2. (a) Not all new students? carry a laptop.

(b) Not all students carry a laptop.

As the example shows, the word replacement is
based on the polarity mark (arrow) on each word.
A monotone polarity (1) allows an inference from
(1a) to (1b), where a more general concept laptop
replaces the more specific concept MacBook. An
antitone polarity () allows an inference from (1a)
to (1c), where a more specific concept new stu-
dents replaces the more general concept students.
The direction of the polarity marks can be reversed
by adding a downward entailment operator like
Not which allows an inference from (2a) to (2b).
Thus, successful word placement relies on accurate
polarity marks. To obtain the polarity mark for
each word, an automatic polarity marking system
is required to annotate a sentence by placing po-
larity mark on each word. This is formally called
the polarization process. Polarity markings sup-
port monotonicity reasoning, and thus are used by
systems for Natural Language Inference and data
augmentations for language models. (MacCartney
and Manning, 2009; Hu et al., 2020; Angeli et al.,
2016).

In this paper, we introduce a novel automatic po-
larity marking system that annotates monotonicity
information by applying a polarity algorithm on
a universal dependency parse tree. Our system is
inspired by ccg2mono, an automatic polarity mark-
ing system (Hu and Moss, 2018) used by Hu et al.
(2020). In contrast to ccg2mono, which derives
monotonicity information from CCG (Lewis and
Steedman, 2014) parse trees, our system’s polariza-
tion algorithm derives monotonicity information
using Universal Dependency (Nivre et al., 2016)
parse trees. There are several advantages of us-
ing UD parsing for polarity marking rather than
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CCG parsing. First, UD parsing is more accurate
since the amount of training data for UD parsing
is larger than those of CCG parsing. The high
accuracy of UD parsing should lead to more ac-
curate polarity annotation. Second, UD parsing
works for more types of text. Overall, our system
opens up a new framework for performing infer-
ence, semantics, and automated reasoning over UD
representations. We will introduce the polariza-
tion algorithm’s general steps, a set of rules we
used to mark polarity on dependency parse trees,
and comparisons between our system and some
existing polarity marking tools, including NatLog
(MacCartney and Manning, 2009; Angeli et al.,
2016) and ccg2mono. Our evaluation focuses on a
small dataset used to evaluate ccg2mono (Hu and
Moss, 2020). Our system outperforms NatlLog and
ccg2mono. In particular, our system achieves the
highest annotation accuracy on both the token level
and the sentence level.

2 Related Work

Universal Dependencies (UD) (Nivre et al., 2016)
was first designed to handle language tasks for
many different languages. The syntactic annota-
tion in UD mostly relies on dependency relations.
Words enter into dependency relations, and that is
what UD tries to capture. There are 40 grammati-
cal dependency relations between words, such as
nominal subject (nsubj), relative clause modifier
(acl:relcl), and determiner (det). A dependency
relation connects a headword to a modifier. For
example, in the dependency parse tree for All dogs
eat food (figure 1), the dependency relation nsubj
connects the modifier dogs and the headword eat.
The system presented in this paper utilizes Univer-
sal Dependencies to obtain a dependency parse tree
from a sentence. We will explain the details of the
parsing process in the implementation section.
There are two relevant systems of prior work:
(1) The NatLog (MacCartney and Manning, 2009;
Angeli et al., 2016) system included in the Stan-
ford CoreNLP library (Manning et al., 2014); (2)
The ccg2mono system (Hu and Moss, 2018). The
NatLog system is a natural language inference sys-
tem, a part of the Stanford CoreNLP Library. Nat-
Log marks polarity to each sentence by applying
a pattern-based polarization algorithm to the de-
pendency parse tree generated by the Stanford de-
pendency parser. A list of downward-monotone
and non-monotone expressions are defined along
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Figure 1: A dependency parse tree for "All dogs eat
food."

with an arity and a Tregex pattern for the system to
identify if an expression occurred.

The ccg2mono system is a polarity marking
tool that annotates a sentence by polarizing a
CCG parse tree. The polarization algorithm of
ccg2mono is based on van Benthem (1986)’s work
and Moss (2012)’s continuation on the soundness
of internalized polarity marking. The system uses
a marked/order-enriched lexicon and can handle
application rules, type-raising, and composition in
CCG. The main polarization contains two steps:
mark and polarize. For the mark step, the sys-
tem puts markings on each node in the parse tree
from leaf to root. For the polarize step, the system
generates polarities to each node from root to leaf.
Compared to NatLog, an advantage of ccg2mono
is that it polarizes on both the word-level and the
constituent level.

3 Universal Dependency to Polarity

3.1 Overview

Our system’s polarization algorithm contains three
steps: (1) Universal Dependency Parsing, which
transforms a sentence to a UD parse tree, (2) Bina-
rization, which converts a UD parse tree to a binary
UD parse tree, and (3) Polarization, which places
polarity marks on each node in a binary UD parse
tree.

3.2 Binarization

To preprocess the dependency parse graph, we de-
signed a binarization algorithm that can map each
dependency tree to an s-expression (Reddy et al.,
2016). Formally, an s-expression has the form
(expl exp2 exp3), where expl is a dependency
label, and both exp2 and exp3 are either (1) a word
such as eat; or (2) an s-expression such as (det
all dogs). The process of mapping a dependency
tree to an s-expression is called binarization. Our
system represents an s-expression as a binary tree.
A binary tree has a root node, a left child node, and
a right child node. In representing an s-expression,
the root node can either be a single word or a de-
pendency label. Both the left and the right child
nodes can either be a sub-binary-tree, or null. The
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Figure 2: A binarized dependency parse tree for "All
dogs eat apples."

system always puts the modifiers on the left and the
headwords on the right. For example, the sentence
All dogs eat apples has an s-expression

(nsubj (det All dogs) (obj eat apples))

and can be shown as a binary tree in figure 2. In
the left sub-tree (All dogs), the dependency label
det will be the root node, the modifier all will be
the left child, and the headword dogs will be the
right child.

Our binarization algorithm employs a depen-
dency relation hierarchy to impose a strict traversal
order from the root relation to each leaf word. The
hierarchy allows for an ordering on the different
modifier words. For example, in the binary depen-
dency parse tree (nsubj (det All dogs) (obj eat

relation level-id relation level-id
conj-sent 0 obl:tmod 50
advcl-sent 1 obl:npmod 50
advmod-sent 2 cop 50
case 10 det 55
mark 10 det:predet 55
expl 10 acl 60
discourse 10 acl:relcl 60
nsubj 20 appos 60
csubj 20 conj 60
nsubj:pass 20 conj-np 60
conj-vp 25 conj-adj 60
ccomp 30 obj 60
advcl 30 iobj 60
advmod 30 cc 70
nmod 30 amod 75
nmod:tmod 30 nummod 75
nmod:npmod 30 compound 80
nmod:poss 30 compound:prt 80
xcomp 40 fixed 80
aux 40 conj-n 90
aux:pass 40 conj-vb 90

obl 50 flat 100

Table 1: Universal Dependency relation hierarchy. The
smaller a relation’s level-id is, the higher that relation

is in the hierarchy.
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apples)), the nominal subject (nsubj) goes above
the determiner (det) in the tree because det is lower
than nsubj in the hierarchy. We originally used the
binarization hierarchy from Reddy et al. (2016)’s
work, and later extended it with additional depen-
dency relations such as oblique nominal (obl) and
expletive (expl). Table 1 shows the complete hier-
archy where the level-id indicates a relation’s level
in the hierarchy. The smaller a relation’s level-id
is, the higher that relation is in the hierarchy.

Algorithm 1 Binarization

1: root < GET_ROOT_NODE(G)
2: T < COMPOSE(root)

3: return 7

4.

5: function COMPOSE(node):

6: C < GET_CHILDREN(node)

7. Cs < SORT_BY_PRIORITY(C)

8: if | Cs | == 0 then

9: B < BINARYDEPENDENCYTREE()
10: B.val = node

11: return 3

12: else

13: top + C.pop()

14: B <+ BINARYDEPENDENCYTREE()
15: B.val = RELATE(top, node)

16: B.left = COMPOSE(top)

17: B.right = COMPOSE(node)

18: return B3

19: end if

20: end function

3.3 Polarization

The polarization algorithm places polarities on each
node of a UD parse tree based on a lexicon of polar-
ization rules for each dependency relation and some
special words. Our polarization algorithm is simi-
lar to the algorithms surveyed by Lavalle-Martinez
et al. (2018). Like the algorithm of Sanchez (1991),
our algorithm computes polarity from leaves to
root. One difference our algorithm has is that often,
the algorithm computes polarity following a left-to-
right inorder traversal (left—sroot—sright) or a
right-to-left inorder traversal (right—root—:left)
in additional to the top-down traversal. In our al-
gorithm, each node’s polarity depends both on its
parent node and its sibling node (left side or right
side), which is different from algorithms in Lavalle-
Martinez et al. (2018)’s paper. Our algorithm is
deterministic, and thus never fails.

The polarization algorithm takes in a binarized
UD parse tree 7 and a set of polarization rules,
both dependency-relation-level (£) and word-level
(W). The algorithm outputs a polarized UD parse
tree 7 such that (1) each node is marked with
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Figure 3: Visualization of a polarized binary depen-
dency parse tree for a triple negation sentence No stu-
dent refused to dance without shoes.

a polarity of either monotone (1), antitone (J.), or
no monotonicity information (=), (2) both 7 and
T* have the same universal dependency structure
except the polarity marks. Figure 3 shows a visu-
alization of the binary dependency parse tree after
polarization completes. The general steps of the
polarization start from the root node of the binary
parse tree. The system will get the correspond-
ing polarization rule from the lexicon according to
the root node’s dependency relation. In each po-
larization rule, the system applies the polarization
rule and then continues the above steps recursively
down the left sub-tree and the right sub-tree. Each
polarization rule is composed from a set of basic
building blocks include rules for negation, equal-
ization, and monotonicity generation. When the re-
cursion reaches a leaf node, which is an individual
word in a sentence, a set of word-based polariza-
tion rules will be retrieved from the lexicon, and
the system polarizes the nodes according to the rule
corresponding to a particular word. More details
about word-based polarization rules will be covered
in section 3.4.2, Polarity Generation. An overview
of the polarization algorithm and a general scheme
of the implementation for dependency-level polar-
ization rules are shown in Algorithm 2.

3.4 Polarization Rules

Our polarization algorithm contains a lexicon of po-
larization rules corresponding to each dependency
relation. Each polarization rule is composed from a
set of building blocks divided into three categories:
negation rules, equalization rules, and monotonic-
ity generation rules. The generation rules will gen-
erate three types of monotonicity: monotone (7),
antitone ({), and no monotonicity information (=)
either by initialization or based on the words.

Algorithm 2 Polarization

Input: 7 binary dependency tree
L: dependency-level polarization rules
W: word-level polarization rules
Output: 7 *: polarized binary dependency tree

1: if 7T .is_tree then

2 relation < 7 .val

3 POLARIZATION_RULE(.) <— L[relation]
4: POLARIZATION_RULE(T)

5: end if

6.

7

: > General scheme of a polarization rule’s implementation
for a dependency relation

8: function POLARIZATION_RULE(7)
9: > Initialize or inherit polarities
10: if 7.mark # NULL then

11: T right.mark = 7 .mark

12: T left.mark = 7 .mark

13: else

14: T .right.mark =

15: T left.mark = 1

16: end if

17:

18: > Polarize sub-trees

19: POLARIZATION(T .left)

20: POLARIZATION(7 .right)

21: > O, for relations like nsubj:

22: > POLARIZATION(T .right)

23: > POLARIZATION(T .left)

24:

25: > Apply negation and equalization rules

26: if NEGATE is applicable then

27: NEGATE(T)

28: end if

29: if EQUALIZE is applicable then

30: EQUALIZE(T)

31: end if

32:

33: > Apply word-level rules

34: if not 7 .is_tree and 7 .val € W keys then

35: WORD_RULE(.) <= W([T .val]

36: WORD_RULE(T)

37: end if

38: end function

3.4.1 Building Blocks

Negation and Equalization The negation rule
and the equalization rule are used by several core
dependency relations such as nmod, obj, and
acl:recl. Both negation and equalization have two
ways of application: backward or top-down. A
backward negation rule is triggered by a downward
polarity () on the right node of the tree (marked be-
low as R), flipping every node’s polarity under the
left node (marked below as L). Similarly, a back-
ward equalization rule is triggered by a no mono-
tonicity information polarity (=) on the tree’s right
node, and it marks every node under the left node
as =. Examples for trees before and after applying
a backward and forward negation and equalization
are shown as follows:
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Backward Negation:

obj" obj’
-(L") R L' R'
* Backward Equalization:
obj’ obj’
o (LT) R™ L~ R™
* Forward Negation:
advmod' advmod'
L' —(R") L' R
* Forward Equalization:
advmod' advmod’
/\ = =
L= ~(R" L R

where — means negation and = means equalization.

A top-down negation is used by the polarization
rule like determiner (det) and adverbial modifier
(advmod). It starts at the parent node of the current
tree, and flips the arrow on each node under that
parent node excluding the current tree. This top-
down negation is used by det, case, and advmod
when a negation operators like no, not, or at-most
appears. Below is an example of a tree before and
after applying the top-down negation:

—(nsubj") nsubj*
det' —(flies™) det’ flies*
No' cat No' catt

Polarity Generation The polarity is generated
by words. During the polarization, the polarity can
change based on a particular word that can promote
the polarity governing the part of the sentence to
which it belongs. These words include quantifiers
and verbs. For the monotonicity from quantifiers,
we follow the monotonicity profiles listed in the
work done by Icard IIT and Moss (2014) on mono-
tonicity, which built on van Benthem (1986). Addi-
tionally, to extend to more quantifiers, we observed
polarization results generated by ccg2mono. Over-
all, we categorized the quantifiers as follows:

* Universal Type

Every | + Each| 1 All| ?

» Negation Type

Nol | Lessthan| | Atmost] |

» Exact Type

Exactly n = The= 1 This= 1
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» Existential Type

Some T T Severalt T A,An7?T 1

* Other Type

Most = T Few = |

Where the first mark is the monotonicity for the
first argument after the quantifier and the second
mark is the monotonicity for the second argument
after the quantifier. For verbs, there are upward
entailment operators and downward entailment op-
erators. Verbs that are downward entailment opera-
tors, such as refuse, promote an antitone polarity,
which will negate its dependents. For example, for
the phrase refused to go, refused will promote an
antitone polarity, which negates fo dance:

xcomp' xcomp'
+ T
—(mark™) refused? ~ mark refused
tot ot
~(to)  —(go") #

In addition to quantifiers and verbs, some other
words also change the monotonicity of a sentence.
For example, words like not, none, and nobody
promote an antitone polarity. Our system also han-
dles material implications with the form if x then
y. Based on Moss (2012), the word if promotes
an antitone polarity in the antecedent and posi-
tive polarity in the consequent. For background
on monotonicity and semantics, see van Benthem
(1986), Keenan and Faltz (1984), and also Kart-
tunen (2012).

3.4.2 Dependency Relation Rules

Each dependency relation has a corresponding po-
larization rule. All the rules start with initializing
the starting node as upward monotone polarity (1).
Alternatively, if the starting node has a polarity
marked, each child node will inherit the root node’s
polarity. Each rule’s core part is a combination of
the default rules and monotonicity generation rules.
In this section, we will briefly show three major
types of dependency relation rules in the polariza-
tion algorithm. The relative clause modifier rela-
tion will represent rules for modifier relations. The
determiner relation rule will represent rules con-
taining monotonicity generation rules. The Object
and open clausal complement rule will represent
rules containing word-level polarization rules.



Algorithm 3 Polarize_acl:relcl

Algorithm 4 Polarize_det

Input: 7 binary dependency sub-tree
Output: 7*: polarized binary dependency sub-tree

: if 7.mark # NULL then
T .right.mark = 7.mark
else
T right.mark = 1
: end if
: T leftmark =1

: POLARIZE(T .right)
: POLARIZE(T .left)

SoENOUE WY~

Ju—
Ju—

. if 7 .right.mark == | then
NEGATE(T .left)

: else if 7 .right.mark == = then
EQUALIZE(T .left)

: end if

—_— ==

Relative Clause Modifier For the relative clause
modifier relation (acl:relcl), the relative clause de-
pends on the noun it modifies. First, the polariza-
tion will first be performed on both the left and
right nodes, and then, depending on the polarity
of the right node, a negation or an equalization
rule will be applied. The algorithm first applies a
top-down inheritance if the root already has its po-
larity marked; otherwise, it initializes the left and
right nodes as monotone. The algorithm polarizes
both the left and right nodes. Next, the algorithm
checks the right node’s polarity. If the right node
is marked as antitone, a backward negation is ap-
plied. Alternatively, if the right node is marked as
no monotonicity information, a backward equaliza-
tion is applied. During the experiments, we noticed
that if the root node is marked antitone, and the left
node inherits that, a negation later will cause a dou-
ble negation, producing incorrect polarity marks.
To avoid this double negation, we exclude the left
node from the top-down inheritance rule by initial-
izing the left node directly with a monotone mark.
The rule for acl:relcl also applies to the adverbial
clause modifier (advel) and the clausal modifier of
noun (acl). An overview of the algorithm is shown
in Algorithm 3.

Determiner For the determiner relation (det),
each different determiner can assign a new mono-
tonicity to the noun it modifies. First, the algorithm
performs a top-down inheritance on the left node if
the root already has polarity marked. Next, the al-
gorithm assigns the polarity for the noun depending
on the determiner’s type. For example, if the deter-
miner is a universal quantifier, an antitone polarity
is assigned to the right node. For negation quanti-

126

Input: 7 binary dependency sub-tree
D: determiner mark dictionary
Output: 7*: polarized binary dependency sub-tree

det_type <~ GET_DET_TYPE(T .left)
if 7.mark # NULL then
T left.mark = 7 .mark
else
T left. mark = 1
end if

T right.mark = D[det_type]
POLARIZE(T .right)

e A U S

—_—
— O

: if det_type == negation then
NEGATE(T .parent)
: end if

—_—
W N

fiers like no, its right node also receives an antitone
polarity. Thus, a top-down negation is applied at
the determiner relation tree’s parent. Algorithm 4
shows an overview of the algorithm.

Object and Open Clausal Complement For
the object relation (obj) and the open clausal com-
plement relation xcomp, both the verb and the noun
would inherit the monotonicity from the parent in
the majority of cases. The inheritance procedure is
the same as the one used in acl:relcl’s rule. Sim-
ilarly, after the inheritance, the rule will polarize
both the right sub-tree and the left sub-tree. Differ-
ently, since obj and xcomp both have a verb under
the relation, they require a word-level polarization
rule that will check the verb determine if the verb
is a downward entailment operator, which prompts
an antitone monotonicity. The algorithm takes in
a dictionary that contains a list of verbs and their

Algorithm 5 Polarize_obj

Input: 7 binary dependency sub-tree
Output: 7*: polarized binary dependency sub-tree

if 7.mark # NULL then
T right.mark = 7 .mark
else
T .right.mark =
end if
T left. mark = 1

POLARIZE(T .right)
POLARIZE(T .left)

. > Word-level polarization rule for downward entailment
operators

: if IS_DOWNWARD_OPERATOR(7 .right.mark) then

NEGATE(T .left)

: end if




implicatives. The dictionary is generated from the
implicative verb dataset made by Ross and Pavlick
(2019). If a verb is a downward entailment opera-
tor, which has a negative implicative, the rule will
apply a negation rule on the left sub-tree to flip
each node’s arrow in the left sub-tree. An overview
of the algorithm is shown in Algorithm 5.

4 Comparison to Existing Systems

We conducted several preliminary comparisons to
two existing systems. First, we compared to Nat-
Log’s monotonicity annotator. Natlog’s annotator
also uses dependency parsing. The polarization al-
gorithm does pattern-based matching for finding oc-
currences of downward monotonicity information,
and the algorithm only polarizes on word-level. In
contrast, our system uses a tree-based polarization
algorithm that polarizes both on word-level polari-
ties and constituent level polarities. Our intuition
is that the Tregex patterns used in Natl.og is not
as common or as easily understandable as the bi-
nary tree structure, which is a classic data structure
wildly used in the filed of computer science.

According to the comparison on a list of sen-
tences, NatLog’s annotator does not perform as
well as our system. For example, for a phrase the
rabbit, rabbit should have a polarity with no mono-
tonicity information (=). However, NatLLog marks
rabbit as a monotone polarity (1). NatLog also
incorrectly polarizes sentences containing multiple
negations. For example, for a triple negation sen-
tence, No newspapers did not report no bad news,
NatLog gives: No! newspapers* did* not* report’
no' bad" news'. This result has incorrect polar-
ity marks on multiple words, where report, bad,
news should be |, and no should be 1. Both of the
scenarios above can be handled correctly by our
system.

Comparing to ccg2mono, our algorithm shares
some similarities to its polarization algorithm. Both
of the systems polarize on a tree structure and rely
on a lexicon of rules, and they both polarize on
the word-level and the constituent level. One dif-
ference is that ccg2mono’s algorithm contains two
steps, the first step puts markings on each node, and
the second step puts polarities on each node. Our
system does not require the step of adding mark-
ings and only contains the step of adding polarities
on each node.

Our system has multiple advantages over
ccg2mono. For parsing, our system uses UD pars-
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ing, which is more accurate than CCG parsing used
by ccg2mono due to a large amount of training
data. Also, our system covers more types of text
than ccg2mono because UD parsing works for a
variety of text genres such as web texts, emails, re-
views, and even informal texts like Twitter tweets.
(Silveira et al., 2014; Zeldes, 2017; Liu et al., 2018).
Our system can also work for more languages than
ccg2mono since UD parsing supports more lan-
guages than CCG parsing.

Overall, our system delivers more accurate po-
larization than ccg2mono. Many times the CCG
parser makes mistakes and leads to polarization
mistakes later on. For example, in the annotation
Thet market® is* not' impossible' to* navigate*,
ccg2mono incorrectly marks every word as . Our
system, on the other hand, uses UD parsing which
has higher parsing accuracy than CCG parsing, and
thus leads to fewer polarization mistakes compared
to ccg2mono. For the expression above, our sys-
tem correctly polarizes it as The! market= is' not"
impossible* to' navigate'.

Our system also handles multi-word quantifiers
better than ccg2mono. For example, for a multi-
word quantifier expression like all of the dogs,
ccg2mono mistakenly marks dogs as =. Our sys-
tem, however, can correctly mark the expression:
all’ of T the' dogs*.

Moreover, the core of ccg2mono does not in-
clude aspects of verbal semantics of downward-
entailing operators like forgot and regret (Moss
and Hu, 2020). For example ccg2mono’s polariza-
tion for Every' member' forgot! to attend" the'
meeting™ is not correct because it fails to flip the
polarity of fo attend the. In contrast, our system
produces a correct result: Every' member* forgot"
tot attend* thet meeting=.

All three systems have difficulty polarizing sen-
tences containing numbers. A scalar number n’s
monotonicity information is hard to determine be-
cause it can presenter different contexts: a single
number n, without additional quantifiers or adjec-
tives, can either mean at least n, at most n, exactly
n, and around n. These contexts are syntactically
hard to identify for a dependency parser or a CCG
parser because it would require pragmatics and
some background knowledge which the parsers do
not have. For example, in the sentence A dog ate
2 rotten biscuits, the gold label for 2 is = which
indicates that the context is "exactly 2". However,
our system marks this as "] since it considers the



sentence type
MoreT dogs™ than' cats® sit= comparative
Less' than" 57 peoplet ran* less-than
AT dog" who' ate” two™ rotten” biscuits” was sick" for! three* days* number

Every" dog* who' likes* most* cats= was™ chased” by" at" least” twot of" them™
Even' if" you' are* addicted* to* cigarettes* you' can

every:most:at-least
conditional:number

T smokeTtwo* a' day'

Table 2: Example sentences in Hu and Moss (2020)’s evaluation dataset

context as "at least 2", which is different from the
gold label.

5 Experiment

Dataset We obtained the small evaluation dataset
used in the evaluation of ccg2mono (Hu and Moss,
2020) from its authors. The dataset contains 56
hand-crafted English sentences, each with manu-
ally annotated monotonicity information. The sen-
tences cover a wide range of linguistic phenomena
such as quantifiers, conditionals, conjunctions, and
disjunctions. The dataset also contains hard sen-
tences involving scalar numbers. Some example
sentences from the dataset are shown in Table 2.

Dependency Parser In order to obtain a univer-
sal dependency parse tree from a sentence, we uti-
lize a parser from Stanza (Qi et al., 2020), a Python
natural language analysis package made by Stan-
ford. The neural pipeline in Stanza allow us to
use pretrained neural parsing models to generate
universal dependency parse trees. To achieve op-
timal performance, we trained two neural parsing
models: one parsing model trained on Universal
Dependency English GUM corpus (Zeldes, 2017).
The pretrained parsing model achieved 90.0 LAS
(Zeman et al., 2018) evaluation score on the testing
data.

Experiment Setup We evaluated the polariza-
tion accuracy on both the token level and the sen-
tence level, in a similar fashion to the evaluation for
part-of-speech tagging (Manning, 2011). For both
levels of accuracy, we conducted one evaluation on
all tokens (acc(all-tokens) in Table 3) and another
one on key tokens including content words (nouns,
verbs, adjectives, adverbs), determiners, and num-
bers (acc(key-tokens) in Table 3). The key tokens
contain most of the useful monotonicity informa-
tion for inference. In token-level evaluation, we
counted the number of correctly annotated tokens
for acc(all-tokens) or the number of correctly anno-
tated key tokens for acc(key-tokens). In sentence-
level evaluation, we counted the number of cor-

Token-level
system NatLog | ccg2mono | ours
acc(all-tokens) 69.9 76.0 96.5
acc(key-tokens) 68.1 78.0 96.5
Sentence-level
system NatLog | ccg2mono | ours
acc(all-tokens) 28.0 44.6 87.5
acc(key-tokens) 28.6 50.0 89.2

Table 3: This table shows the polarity annotation accu-
racy on the token level and the sentence level for three
systems: NatLog, ccg2mono, and our system. The to-
ken level accuracy counts the number of correctly anno-
tated tokens, and the sentence level accuracy counts the
number of correctly annotated sentences. Two types of
accuracy are used. For acc(all-tokens), all tokens are
evaluated. For acc(key-tokens), only key tokens (con-
tent words + determiners + numbers) are evaluated.

rect sentences. A correct sentence has all tokens
correctly annotated for acc(all-tokens) or all key
tokens correctly annotated for acc(key-tokens). We
also evaluated our system’s robustness on the token
level. We followed the robustness metric for eval-
uating multi-class classification tasks, which uses
precision, recall, and F1 score to measure a sys-
tem’s robustness. We calculated these three metrics
for each polarity label: monotone(t), antitone(l.),
and None or no monotonicity information(=). The
robustness evaluation is also done both on all to-
kens and on key tokens.

6 Evaluation

Table 3 shows the performance of our system, com-
pared with NatLog and ccg2mono. Our evaluation
process is the same as Hu and Moss (2020). From
Table 3, we first observe that our system consis-
tently outperforms ccg2mono and NatLog on both
the token level and the sentence level. For accuracy
on the token level, our system has the highest ac-
curacy for the evaluation on all tokens (96.5) and
the highest accuracy for the evaluation on key to-
kens (96.5). Our system’s accuracy on key tokens
is higher than the accuracy on all tokens, which
demonstrates our system’s good performance on
polarity annotation for tokens that are more signif-
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All Tokens
system NatLog ccg2mono ours
Polarity Monotone | Antitone | None | Monotone | Antitone | None | Monotone | Antitone | None
precision 71.4 43.5 70.7 86.0 75.6 58.0 97.6 96.5 91.7
recall 87.3 15.9 63.9 71.8 78.3 74.6 97.2 894 87.3
F1-score 78.6 233 67.1 81.7 76.9 65.3 974 97.6 89.4
Key Tokens
system NatLog ccg2mono ours
Polarity Monotone | Antitone | None | Monotone | Antitone | None | Monotone | Antitone | None
precision 68.7 70.9 421 85.2 78.7 62.7 96.9 96.4 94.2
recall 88.6 61.5 14.0 80.3 79.3 73.7 97.9 98.5 86.0
F1-score 77.4 65.9 21.1 82.7 79.0 67.7 974 974 89.9

Table 4: Token level robustness comparison between NatLog, ccg2mono, and our system. The robustness score
is evaluated both on all tokens and on key tokens (content words + determiners + numbers). For each of the three
polarities: monotone(T), antitone(]), and None or no monotonicity information(=), the relative precision, recall

and F1 score are calculated.

icant to monotonicity inference. For accuracy on
the sentence level, our system again has the high-
est accuracy for the evaluation on all tokens (87.5)
and the highest accuracy for the evaluation on key
tokens (89.2). Such results suggest that our system
can achieve good performance on determining the
monotonicity of the sentence constituents. Overall,
the evaluation validates that our system has higher
polarity annotation accuracy than existing systems.
We compared our annotations to ccg2mono’s an-
notation and observed that of all the tokens in the
56 sentences, if ccg2mono annotates it correctly,
then our system also does so. This means, our sys-
tem’s polarization covers more linguistic phenom-
ena than ccg2mono. Table 4 shows the robustness
score of our system and the two existing systems.
Our systems has much higher precision and recall
on all three polarity labels than the other two sys-
tems. For the F1 score, our system again has the
highest points over the other two systems. The con-
sistent and high robustness scores show that our
system’s performance is much more robust on the
given dataset than existing systems.

7 Conclusion and Future Work

In this paper, we have demonstrated our system’s
ability to automatically annotate monotonicity in-
formation (polarity) for a sentence by conducting
polarization on a universal dependency parse tree.
The system operates by first converting the parse
tree to a binary parse tree and then marking po-
larity on each node according to a lexicon of po-
larization rules. The system produces accurate an-
notations on sentences involving many different
linguistic phenomena such as quantifiers, double
negation, relative clauses, and conditionals. Our

system had better performance on polarity marking
than existing systems including ccg2mono (Hu and
Moss, 2018) and NatLog (MacCartney and Man-
ning, 2009; Angeli et al., 2016). Additionally, by
using UD parsing, our system offers many advan-
tages. Our system supports a variety of text genres
and can be applied to many languages. In general,
this paper opens up a new framework for perform-
ing inference, semantics, and automated reasoning
over UD representations.

For future work, an inference system can be
made that utilizes the monotonicity information an-
notated by our system, which is similar to the Mon-
allog system (Hu et al., 2020). Several improve-
ments can be made to the system to obtain more
accurate annotations. One improvement would be
to incorporate pragmatics to help determine the
monotonicity of a scalar number.
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