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Abstract

This paper addresses the question to which ex-
tent neural contextual language models such
as BERT implicitly represent complex seman-
tic properties. More concretely, the paper
shows that the neuron activations obtained
from processing an English sentence pro-
vide discriminative features for predicting the
(non-)causativity of the event denoted by the
verb in a simple linear classifier. A layer-wise
analysis reveals that the relevant properties are
mostly learned in the higher layers. Moreover,
further experiments show that appr. 10% of
the neuron activations are enough to already
predict causativity with a relatively high accu-
racy.1

1 Introduction and motivation

In natural language processing (NLP), machine
learning models based on artificial neural networks
have achieved impressive results in recent years,
due to large amounts of available training data
and powerful computing infrastructures. Contex-
tual language models (LMs) such as ELMO (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), and
XLNet (Yang et al., 2019) have particularly con-
tributed to this. However, it is oftentimes not clear
which kinds of generalizations these models make,
i.e., what exactly they learn. In this respect, neural
networks suffer from a lack of transparency and in-
terpretability. Recent research has started to inves-
tigate these questions. Since the successful use of
neural word embeddings and LMs (e.g., Word2Vec,
Mikolov et al. 2013; ELMO, Peters et al. 2018;
BERT, Devlin et al. 2019) for a range of NLP/NLU
tasks, it is clear that LMs capture meaning to a
certain degree, in particular lexical meaning. Con-
cerning syntactic information, work on different

1Our datasets are available at
https://github.com/eseyffarth/
predicting-causativity-iwcs-2021

types of language models, in particular RNNs and
transformer-based contextual language models, has
shown that these models learn morphology (Liu
et al., 2019a), syntactic structure and syntactic pref-
erences to a certain degree (see Futrell and Levy,
2019; Lin et al., 2019; Hewitt and Manning, 2019;
McCoy et al., 2020; Wilcox et al., 2019; Hu et al.,
2020; Warstadt et al., 2020).

In this paper, we expand the question of what
linguistic properties these models learn towards
whether pretrained contextualized models capture
more abstract semantic properties, in particular
properties that contribute to the structure of the se-
mantic representation underlying a given sentence.
More concretely, we investigate whether an LM
such as BERT represents whether a sentence de-
notes a causative event or not. If this was the case,
we would expect a systematic difference between
for instance BERT’s neuron activations for (1-a)
and for (1-b).

(1) a. Kim broke the window.
b. Kim ate an apple.

Note that the two sentences share almost no lexical
elements, so the neuron activations are expected
to be mostly different. Our research question is
focused on whether there are systematic activation
patterns that can be observed that are common to all
instances of causative sentences, and others that are
common to all instances of noncausative sentences,
independent of sentence content.

One of the common approaches to probe neu-
ral network models is to use a probing classifier.
Given a linguistic property of interest, the idea
is to extract contextualized activations of units
(words/phrases/sentences) relevant to the property.
A classifier is then trained to learn the property by
using the extracted activations as features. The per-
formance of the classifier is taken to approximate

https://github.com/eseyffarth/predicting-causativity-iwcs-2021
https://github.com/eseyffarth/predicting-causativity-iwcs-2021
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the degree to which the language model learned
the linguistic property. We also use probing classi-
fiers and probe the model as a whole, its individual
layers and its neurons with respect to causativity.
We use the NeuroX toolkit (Dalvi et al., 2019b) to
conduct the probing experiments.

We experiment using two 12-layer pretrained
models, BERT (Devlin et al., 2019) and XLNet
(Yang et al., 2019), as well as a distilled version
of BERT, DistilBERT (Sanh et al., 2019). Our
findings and contributions are as follows: We cre-
ate a novel dataset of sentences with verbs that
are labeled for causativity/non-causativity. Using
this dataset for probing, we show that this abstract
semantic property is learned by the pretrained mod-
els. It is better represented in the higher layers of
the model and, furthermore, there is a subset of
appr. 10% of the neurons that encodes the property
in question.

2 Related work

A number of interpretation studies have analyzed
representations of pre-trained models and showed
that they learn linguistic information such as part
of speech tagging, semantic tagging and CCG tag-
ging (Conneau et al., 2018; Liu et al., 2019a; Ten-
ney et al., 2019a,b; Voita et al., 2019). A typical
procedure to analyze representation is a post-hoc
analysis using a probing classifier. It has been
shown that word-level concepts are learned at lower
layers while sentence-level concepts are learned
at higher layers (Liu et al., 2019b). Dalvi et al.
(2019a) extended the layer-level analysis towards
individual neurons of the network. They proposed
linguistic correlation analysis (LCA) to identify
neurons with respect to a linguistic property. Dur-
rani et al. (2020); Dalvi et al. (2020) later used
LCA to analyze pre-trained models in the context
of linguistic learning and redundancy in the net-
work respectively.

In this work, we also aim to analyze pre-trained
models at model-, layer- and neuron-level using
post-hoc analysis methods. Different from others,
we concentrate on an abstract, structure-building se-
mantic property, namely causativity of events. Our
focus is on lexical causatives, that is, verbs whose
lexical meaning has a causative aspect (Dowty,
1979). In Dowty’s aspect calculus, such verbs
are analyzed as [φ CAUSE ψ], where φ and ψ are
sentences and causation is a “two-place sentential
connective”, notably even for sentences that only

contain a single verb phrase. Thus, John killed Bill
is decomposed as in (2) (Dowty, 1979, p. 91).

(2) [[John does something] CAUSE
[BECOME¬[Bill is alive]]]

The “semantically bipartite” nature of causative
verbs means that sentences with such verbs actu-
ally express not one event, but two subevents, one
being the causing event and the other one being
the caused event, or result, of the first. This event
structure is a challenge to model with NLP systems
when no superficial indicators for causativity are
available. While there are verbs that are lexically
causative (such as refresh) and verbs that are lexi-
cally noncausative (such as prefer), there are also
verbs that vary in their causativity depending on the
context in which they appear (such as open). Our
goal is to determine to what extent the causativity
or noncausativity of these types of verbs is implic-
itly learned by large language models.

3 Method

Over the last years, there has been an increasing
interest in assessing linguistic properties encoded
in neural representations. A common method to
reveal these linguistic representations employs di-
agnostic classifiers or probes (Hupkes et al., 2018).
A common diagnostic classifier is a linear classifier
trained for the underlying linguistic task, using the
activations generated from the trained neural net-
work model as features. The performance of the
classifier is used as a proxy to measure the amount
of linguistic information present in the activations.
We also use a linear classifier for probing.

Consider a pre-trained neural network model M
with L layers: {l1, l2, . . . , lL}, where each layer li
is of size H . Given a dataset D = {s1, s2, ..., sT }
consisting of T sentences, the contextualized em-
bedding of sentence sj at layer li is zij = li(sj).
In pretrained models like BERT, a special token
[CLS] is appended with every training instance
during training. The token is later optimized for
sentence embedding during transfer learning (De-
vlin et al., 2019). We consider the representations
of [CLS] for sentence embedding in this study. The
[CLS] representation extracted from various layers
is used as input features to the probing classifier.

Model-level probing: To assess to what extent
a linguistic property is learned in the model, we
first take the sentence representations of all layers
as features for linear classification, i.e., all zij for
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1 ≤ i ≤ L and 1 ≤ j ≤ H . The classifier is
trained by minimizing the following loss function:

L(θ) = −
∑
j

logPθ(tsj |sj) (1)

where tsj is the predicted label for sentence sj . In
this work, binary labels are used to encode whether
the property is present in a sentence or not.

Layer-level probing: Here, we question how
much individual layers of a model represent our
property of interest. We train a linear classifier on
the activations of each individual layer. The perfor-
mance of each layer serves as a proxy to how much
information it encodes with respect to our property.

Neuron-level probing: While the layer-level
probing tells about how much linguistic informa-
tion is learned in a layer, it does not tell about the
learning of individual neurons in the network. It
is possible that while a particular layer performs
best in the layer-level probing, the best neurons
learning about the linguistic property are spread
across many layers. In neuron-level probing, we
aim to identify the most salient neurons across the
network that learn the linguistic property at hand.

We follow the linguistic correlation analysis
method (LCA) of Dalvi et al. (2019a) to conduct
this analysis. Given representations of the model
as in the model-level probing, LCA trains an Elas-
ticNet (Zou and Hastie, 2005) classifier, and pro-
vides a salient list of neurons with respect to the
linguistic property. ElasticNet provides a balance
between selecting very focused localized features
and distributed features (here: neurons). Equation
(2) gives the loss function:

L(θ) = −
∑

j logPθ(tsj |sj)
+λ1‖θ‖1 + λ2‖θ‖22

(2)

where λ1 and λ2 are parameters, for which we
use the suggested value of 0.00001 (Dalvi et al.,
2019a).

4 Data

To prepare our datasets, we create different sets
of verbs that are labeled for (non)causativity, and
then use them as seeds to collect sentences from a
corpus to be used as input to the classifier.

4.1 Verb set selection

Causative and noncausative verbs We collect a
set of English verbs that are either always causative

or never causative when appearing in basic transi-
tive sentences (NP V NP). This property is derived
from VerbNet 3.3 (Kipper et al., 2000) according to
the event-semantic description of each basic tran-
sitive syntactic frame in each verb class. We only
consider members of VerbNet classes where either
all basic transitive frames or none of them are asso-
ciated with causativity. Two trained linguists man-
ually prune the lists of causative and noncausative
verbs to remove ambiguous verbs and other edge
cases. This results in a list of 2157 causative and
617 noncausative verbs.

Alternating verbs We also create a set of verbs
whose causativity property depends on whether
they appear in transitive or intransitive sentences.
This is the case for verbs in VerbNet that are
marked with the “Causative” property in basic tran-
sitive syntactic frames, and with the “Inchoative”
property in basic intransitive frames. These verbs
participate in the causative-inchoative alternation.
They represent a special case for our experiments
because the classifier needs to distinguish between
causative and noncausative uses of identical verbs,
whereas the sets of causative and noncausative
verbs are completely distinct. In this setting, the
classifier cannot rely purely on the verb lemma (be-
cause alternating verbs can appear in both classes),
and it also cannot rely purely on the (in)transitivity
of sentences (because verbs outside the alternation
can be causative in intransitive sentences). Since
this makes the task more difficult, we expect the
classification accuracy to be lower in this setting
than in settings with non-alternating verbs.

4.2 Sentence selection

We collect three datasets for our experiments.2 All
sentences are extracted from ENCOW (Schäfer and
Bildhauer, 2012; Schäfer, 2015), an English web
corpus (9.6 billion tokens) annotated with depen-
dencies created with MaltParser. Each dataset con-
tains 40,000 sentences in the train portion, 5,000
sentences in dev and 5,000 sentences in the test
portion. Each portion contains an equal number of
causative and noncausative instances. Each test set
contains sentences that were not previously seen
in the train set, but not all verbs in the test set are
unseen.

2All datasets are available at
https://github.com/eseyffarth/
predicting-causativity-iwcs-2021

https://github.com/eseyffarth/predicting-causativity-iwcs-2021
https://github.com/eseyffarth/predicting-causativity-iwcs-2021
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Transitive sentences, same sentence length
The first dataset (Dtr 5) is based on the sets of
causative and noncausative verbs and contains only
transitive sentences of length 5 (including punctu-
ation). This yields a dataset where all sentences
have the same basic syntactic pattern. Examples
are given in (3) (root verbs in bold).

(3) a. The answer surprised me . (caus)
b. It contains no surprises . (noncaus)

Transitive sentences, varying sentence length
The second dataset (Dtr) is based on the same verb
sets, but contains sentences of varying lengths be-
tween 5 and 20 tokens. Examples are given in (4).

(4) a. This affects the calculation . (caus)
b. I envy you in that respect ! (noncaus)

Intransitive and transitive sentences, varying
length The third set (Dall) is based on the verb
set that includes verbs in the causative-inchoative
alternation. Sentences in Dall are either transitive
or intransitive and have a length between 5 and
20 tokens. Again, each portion contains an equal
number of causative and noncausative instances,
consisting of verbs of all three types (alternating,
always causative, always noncausative). Examples
are given in (5); note that (5-e) and (5-f) share the
same alternating root verb.

(5) a. I bring a book ! (caus)
b. Everything about them intimidates . (caus)
c. Each layer had its own opacity . (noncaus)
d. A total of 24 people attended . (noncaus)
e. He opened the pack . (caus)
f. The main console opens . (noncaus)

5 Evaluation

5.1 Experimental Settings

Pre-trained models We conduct experiments us-
ing three transformer-based pre-trained language
models: BERT (Devlin et al., 2019), DistilBERT
(Sanh et al., 2019), and XLNet (Yang et al., 2019).
The BERT model is an auto-encoder trained with
two unsupervised objectives: masked word predic-
tion and next sentence prediction. It is pre-trained
on Wikipedia text and BooksCorpus (Zhu et al.,
2015), and comes with hundreds of millions of
parameters. It contains an encoder with 12 Trans-
former blocks, hidden size of 768, and 12 self-
attention heads. DistilBERT is an approximate

Data BERT DistilBERT XLNet

Dtr 5 95.24 93.34 90.92
Dtr 89.48 87.28 88.84
Dall 85.28 83.96 86.00

Table 1: Model-level results (accuracy) using all neu-
rons for classification

distilled version of BERT. It is comprised of 6 en-
coder layers while retaining 97% of BERT perfor-
mance. We also employ XLNet-base in all our
experiments. Although it is trained with the same
parameter configurations as BERT-base, it uses im-
proved training methodology based on a permuta-
tion auto-regressive objective function.

Since we are interested in analyzing sentence
representations, we use the representation of the
[CLS] token. However, the representation of [CLS]
is not optimized for sentence embedding in the pre-
trained models. In order to tune it for sentence
representation, we fine-tune the pre-trained model
on a sentence classification task, the Stanford senti-
ment treebank (Socher et al., 2013). We understand
that by fine-tuning the pre-trained model, the rep-
resentations of the network are tuned for the task.
An alternate strategy is to use average activations
of words in a sentence as sentence representation.
We did not explore it in this paper.

Probing Classifier We train a linear classifier
using a categorical cross-entropy loss, optimized
using Adam. For neuron-level analysis, we used
elastic-net regularization. We used the recom-
mended values of elastic-net parameters, i.e., λ1
and λ2 each equal to 0.0001.

5.2 Results
Model-level Results Table 1 presents the results
of using all neuron activations of the model as fea-
tures for classification. The general high classi-
fication results show that the model has learned
causitivity. However, as the dataset becomes hard
in terms of varying sentence length and including
more challenging instances with alternating verbs,
the performance drops to as low as 83.96% for
DistilBERT, which is still substantially better than
random performance (50%).

Layer-level Results Here we want to see which
layers of pretrained models learn causativity. We
train our probing classifier on individual layers.
Figure 1 summarizes the results. As a general trend,
causitivity is best represented at the higher layers
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BERT DistilBERT XLNet

Neua 9984 5372 9984

Dtr 5 Neut 1000/10% 540/10% 300/3%
Acct 95.06 92.6 92.02

Dtr Neut 1000/10% 540/10% 1000/10%
Acct 88.70 86.06 89.24

Dall Neut 1000/10% 540/10% 1000/10%
Acct 86.48 82.66 86.8

Table 2: Selecting minimal number of neurons. Neua
= Total number of neurons, Neut = Top selected neu-
rons, Acct = Accuracy after retraining the classifier us-
ing only selected neurons.

of the models, which is in line with previous find-
ings that sentence-level properties such as syntax
are better learned at higher layers (Durrani et al.,
2020). For all models, we see a slight drop in
the performance for the last layer, which is due
to the fact that the last layer is optimized for the
objective function (Kovaleva et al., 2019). Com-
pared to BERT and DistilBERT, the middle layer
of XLNet consistently showed a small drop in the
performance for all datasets. This trend is more
prevalent in the neuron-level results. We discuss it
later in this section.

Neuron-level Results We use LCA to determine
a minimal set of neurons that still achieve a classi-
fication performance (Acct) within 2% of the per-
formance using all the neurons of the network for
classification. We additionally evaluate the effec-
tiveness of the LCA method by comparing the clas-
sification performance using the top selected neu-
rons with the randomly selected neurons. We found
the salient neurons of LCA to perform substantially
better than random neurons.

Table 2 presents the numbers of salient neurons
selected for each model and for each dataset to-
gether with the resulting classification accuracy.
Note that in the case of BERT and the dataset
Dall and also for XLNet on all datasets, the ac-
curacy increased due to the elimination of non-
discriminative features.

Given salient neurons with respect to our task,
we observe their distribution across the model. Fig-
ure 2 summarizes the results. Across all models
and datasets, the LCA method never selected any
neurons from the embedding layer. This is in line
with the layer-wise results where the performance
using embedding layer representation is similar to
random classification, i.e., no causativity informa-

verb type BERT DistilBERT XLNet

Dtr 5 caus 95.24 93.04 98.84
noncaus 96.44 94.92 84.12

Dtr caus 90.44 89.60 90.44
noncaus 88.88 84.76 86.12

Dall all alternating 81.52 75.43 83.05
alt. caus 89.73 84.35 94.87
alt. noncaus 52.59 43.97 41.38
nonalt. caus 91.25 84.60 93.93
nonalt. noncaus 85.36 86.03 79.28

Table 3: Accuracy per verb type and data set in all set-
tings. Dtr 5, Dtr and Dall each contain an equal num-
ber of caus(ative) and noncaus(ative) instances.

tion is present.
For BERT and DistilBERT, the distribution of

salient neurons is skewed towards higher layers
(excluding top layer), i.e., causativity information
is more represented at the higher layers. XL-
Net presents a slightly different picture where the
salient neurons selected from the middle layers are
substantially lower than most of the other layers.
As the task becomes harder, the contribution of
lower middle layers (3-4) substantially increases
while the last layer contribution drops.

The number of neurons selected from middle
layers (5-6 in the case of 12 layer models and 3 in
the case of 6 layer models) are substantially lower
than the neighbouring layers across all models and
data sets. We hypothesize that learning causitivity
requires word-level and sentence-level information
which is dominating at the lower and higher layers.

6 Discussion

As shown in Table 1, all classifiers performed best
on Dtr 5. With little syntactic variation between
instances in Dtr 5, this is the least challenging
setting for the task: The verbs and arguments in
each sentence are the main indicators for the clas-
sifiers to identify causativity. In Dtr, all models
achieve slightly lower accuracy. Longer sentences
are more likely to contain conjunctions or subor-
dinate clauses, which may distract the classifiers
from the sentence’s (non)causative root verb and
its arguments. As expected, the lowest accuracy
scores are observed in Dall, which includes both
transitive and intransitive sentences, as well as al-
ternating verbs whose causativity property changes
in these different environments. Table 3 shows that
all three models mislabel alternating verbs more
often than nonalternating verbs. BERT and XLNet
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(a) Dtr 5– BERT (b) Dtr– BERT (c) Dall– BERT

(d) Dtr 5– XLNet (e) Dtr– XLNet (f) Dall– XLNet

(g) Dtr 5– DistilBERT (h) Dtr– DistilBERT (i) Dall– DistilBERT

Figure 1: Layer-wise results: X-axis = Layer number, Y-axis = Classification accuracy

achieved the best accuracy for causative verbs in
almost all experiments, while DistilBERT often
performed better on noncausative verbs.

Our datasets are randomly collected from a
larger corpus with no regard for verb frequency.
This results in datasets where some verbs occur
only once or twice, some are never seen in the train-
ing data, and some are more common. Our goal
is to determine whether the classifiers successfully
learn to predict (non)causativity, independently of
specific verb lemmas. The results reported so far
are all averaged over all verbs in a dataset, illustrat-
ing that some models are more successful on the
classification task than others (e.g. BERT achieving
higher accuracy scores than the other models on
the first two datasets). Additionally, it is also worth
exploring the accuracy of the classifiers for indi-
vidual verbs, particularly those that are most likely
to be mislabeled by any of the classifiers. Table 4
reports the two most-mislabeled verbs of each type
per dataset (across all models). Notably, the XLnet
classifier consistently makes more mistakes with
noncausative instances than with causative ones, as
is also apparent from Table 3.

Broadly, the frequently mislabeled verbs fall in
three categories: 1. presumed errors due to parsing
mistakes and subsequent errors in the gold data; 2.
errors due to incorrect labels of ambiguous verbs
in the gold data; 3. errors due to an ambiguity
between full verb, light verb, and auxiliary verb.

Presumed errors due to parsing mistakes and
subsequent errors in the gold data Most of the
frequently-mislabeled verbs in Dtr 5 fall into this
category. These verbs occur only a few times each,
indicating that they do not represent a deeper struc-
tural issue with the classifiers; for instance, sen-
tences with the root verb mark occasionally appear
incomplete in ENCOW, as exemplified in (6).

(6) the symptoms marked gr . (ENCOW-02-
23709973)

The verb sound is labeled as a causative verb
in our gold data (e.g., “to sound the bells”), but
appears often in another word sense, as exemplified
in (7-a). In these sentences, the verb does not have
a direct object as expected; the reason for their
inclusion in our datasets is an incorrect dependency
parse in ENCOW. In other words, the causative
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(a) Dtr 5BERT (b) DtrBERT (c) DallBERT

(d) Dtr 5XLNet (e) DtrXLNet (f) DallXLNET

(g) Dtr 5DistilBERT (h) DtrDistilBERT (i) DallDistilBERT

Figure 2: How top neurons spread across different layers for each causativity dataset. X-axis = Layer number,
Y-axis = Number of neurons selected from that layer

gold label is assigned by mistake. A similar case is
mean; as with sound, many instances do not involve
a direct object at all, as exemplified in (7-b), but
are included because of an incorrect parse.

(7) a. that sounds so scary !!! (ENCOW-05-
11095175)

b. you mean screw justice ? (ENCOW-14-
01839826)

Dall also contains incorrect gold labels that are
to a large extent due to parsing errors, for instance
bring. All sentences included in (8) were parsed as
having bring as their root verb. That the classifiers
tended to assign a noncausative label to these sen-
tences suggests that they instead assigned labels for
take for granted, love, or be, respectively (which is
actually correct).

(8) a. people take for granted what tax money
brings . (ENCOW-11-16881058)

b. knowledge is power , and what americans
really love is the power knowledge brings .
(ENCOW-13-11898010)

c. sugar is a barrow boy with all that epithet
brings . (ENCOW-10-21805613)

In future work, we will improve our datasets to
minimize the number of this type of errors, using a
more recent dependency parser and some manual
checking.

Errors due to incorrect gold labels of ambigu-
ous verbs In Dtr, face is the most mislabeled
causative verb. The presumed causative label for
this verb comes from the VN class confront-98,
which contains verbs such as target or combat.
However, the mislabeled examples from the dataset
seem to evoke a weaker, more passive sense of face,
as in (9-a), where human annotators might not as-
sign a causative label. In these cases, the label
assigned by the classifier is actually correct, while
the gold label is not. The mislabeled instances of
cover in Dall are, similarly to face, an artefact of
verb polysemy and should in fact not be regarded
as causative sentences, as exemplified in (9-b).

(9) a. older mums face similar risks . (ENCOW-
05-25724129)
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BERT DistilBERT XLNet

causative verbs in Dtr 5

mark 6 (60.00%) 6 (60.00%) 2 (20.00%)
sound 1 (2.00%) 9 (18.00%) 4 (8.00%)

noncausative verbs in Dtr 5

leave 4 (10.00%) 7 (17.50%) 15 (37.50%)
mean 1 (1.37%) 2 (2.74%) 15 (20.55%)

causative verbs in Dtr

face 11 (25.00%) 11 (25.00%) 17 (38.64%)
express 12 (33.33%) 8 (22.22%) 10 (27.78%)

noncausative verbs in Dtr

leave 7 (17.07%) 19 (46.34%) 17 (41.46%)
represent 8 (8.42%) 17 (17.89%) 15 (15.79%)

alternating causative verbs in Dall

set 3 (8.82%) 10 (29.41%) 1 (2.94%)
open 3 (12.00%) 4 (16.00%) 3 (12.00%)

alternating noncausative verbs in Dall

close 4 (57.14%) 5 (71.43%) 6 (85.71%)
open 4 (66.67%) 2 (33.33%) 5 (83.33%)

nonalternating causative verbs in Dall

cover 9 (6.52%) 32 (23.19%) 10 (7.25%)
bring 9 (9.47%) 10 (10.53%) 9 (9.47%)

nonalternating noncausative verbs in Dall

have 25 (4.64%) 19 (3.53%) 43 (7.98%)
be 20 (10.81%) 25 (13.51%) 36 (19.46%)

Table 4: Most mislabeled verbs in all settings. Each
cell states the number of instances with the given verb
with an incorrect label, giving the absolute number fol-
lowed by the percentage of all instances with this verb.

b. the manual that comes with the game covers
everything you need to know , including the
mission editor . (ENCOW-08-06019647)

Sentences with the verb represent are frequently
labeled as causative by one or more of the classi-
fiers. When the verb is used in a legal or political
sense, as in (10), this may in fact be appropriate.
Since our verb sets are labeled on the lemma level
and we do not perform any word sense disambigua-
tion, these differences are not explicitly marked
in our datasets, so these sentences are counted as
mislabeled instances.

(10) they represent the voice of over 80,000 stu-
dents and 62,000 members in 155 countries .
(ENCOW-09-01862399)

InDtr, all classifiers occasionally label instances
of noncausative leave as causative, particularly XL-
Net. leave is a member of the VN classes become-
109.1-1-1, escape-51.1-1-1, fulfilling-13.4.1, fu-
ture having-13.3, keep-15.2, and others. While
not all of these classes license basic intransitive

sentences of the type included in our datasets, this
illustrates the polysemy of leave, which might be
an explanation for the relatively high number of
mislabeled instances in our experiments.

Generally, in Dall, noncausative alternating
verbs are among the most mislabeled verbs. Since
the dataset contains different numbers of verbs of
each type, this may be a sparsity effect more than
an effect of these verbs being more difficult to label.
This question will be approached with new datasets
in future work.

The reason for most errors of this type is that
our datasets were created automatically with the
help of a lexical resource. In order to avoid such
polysemy issues, a version of the datasets with
human annotations would be necessary.

Errors due to an ambiguity between full verb,
light verb, and auxiliary verb Finally, the verbs
have and be are the most mislabeled nonalternating
noncausative verbs in Dall. These verbs appear in
light verb constructions, as auxiliary verbs, and in
a range of word senses that can be causative or non-
causative. The examples in (11) illustrate why the
classifiers are struggling to label such sentences as
noncausative. Note that in all cases, the MaltParser
annotations provided alongside ENCOW mark a
form of have as the root verb.

(11) a. hi we have just moved house and the house
has no tv aerial . (ENCOW-11-17855426)

b. we had a small cup made up not long ago
with a very simple design . (ENCOW-06-
00570494)

c. local people have the power to stop this by
not buying counterfeit products . (ENCOW-
08-19775040)

ENCOW was parsed between 2015 and 2018
using the standard engmalt model available on the
MaltParser website (Roland Schäfer, p.c.) This
type of error would be minimized if a more recent
dependency parser was used.

To summarize, many of the “errors” of the clas-
sifiers are actually not errors but incorrect labels in
the gold data. This means that the classifiers might
be better in predicting causativity than assessed by
our evaluation.

7 Conclusion

We set up a series of classification experiments
with a range of datasets to determine whether large
language models learn implicit representations of
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causativity, a linguistic property that is not neces-
sarily represented syntactically or morphologically
in English. We compare classifiers based on BERT,
DistilBERT, and XLNet, and find that all learn to
predict causativity to a large extent. Differences in
classification accuracy are observed across differ-
ent datasets (see Table 1). As expected, all models
achieve the highest accuracy on Dtr 5 and the low-
est accuracy on Dall. The latter set, in addition to
verbs that are lexically causative or lexically non-
causative, also includes verbs that participate in the
causative-inchoative alternation, which presents an
additional challenge to the classifiers.

We also show that causativity is represented
rather in the higher layers of the models and, fur-
thermore, that reducing each model to only the
10% of its neurons that are most correlated with the
causativity property only leads to small differences
in accuracy, sometimes an increase in accuracy due
to the elimination of non-discriminative features.

Our error analysis suggests that many of the clas-
sification errors are actually labeling errors in the
data, due either to a wrong parse of the sentence
in our source corpus ENCOW or to the polysemy
of verbs that can be causative in certain readings
but are not causative in some of the readings misla-
beled in the dataset. Put differently, the classifiers
were probably better in identifying causativity than
their accuracy scores suggest. While our datasets
were created with little manual effort and already
led to good results, we are planning on pursuing
possible improvements in the future in order to
avoid these labeling errors as far as possible.
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Roland Schäfer. 2015. Processing and querying large
web corpora with the COW14 architecture. In Pro-
ceedings of Challenges in the Management of Large
Corpora 3 (CMLC-3), Lancaster. UCREL, IDS.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019b. What do you
learn from context? probing for sentence structure
in contextualized word representations.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the As-
sociation for Computational Linguistics, 8:377–392.

Ethan Wilcox, Roger Levy, and Richard Futrell. 2019.
Hierarchical representation in neural language mod-
els: Suppression and recovery of expectations. In
Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 181–190, Florence, Italy. As-
sociation for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding.

https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.18653/v1/W19-4825
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://doi.org/10.18653/v1/S19-2194
https://doi.org/10.18653/v1/S19-2194
https://doi.org/10.18653/v1/S19-2194
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://www.lrec-conf.org/proceedings/lrec2012/pdf/834_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/834_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/834_Paper.pdf
http://rolandschaefer.net/?p=749
http://rolandschaefer.net/?p=749
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.18653/v1/P19-1452
http://arxiv.org/abs/1905.06316
http://arxiv.org/abs/1905.06316
http://arxiv.org/abs/1905.06316
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W19-4819
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237


120

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

Hui Zou and Trevor Hastie. 2005. Regularization and
variable selection via the elastic net. Journal of the
Royal Statistical Society, Series B, 67:301–320.


