No more fumbling in the dark -
Quality assurance of high-level NLP tools in a multi-lingual infrastructure

Linda Wiechetek

linda.wiechetek @uit.no

Thomas Omma

thomas.omma@uit.no

Flammie A Pirinen

tommi.pirinen@uit.no

Bgrre Gaup

boerre.gaup@uit.no

Divvun, UiT Norgga arktalas universitehta

Abstract GramDivvun lea njuolggadusvuoddu-
duvvon davvisdmi rabas gildokoda

We argue that regression testing is nec- grammatihkkadarkkisteaddji. Regre-

essary to ensure reliability in the contin-
uous development of NLP tools, espe-
cially higher level applications like gram-
mar checkers. Our approach is rule-based,
building on successful work for a number
of low-resourced languages over the last 20
years. Instead of working with a black box,
we choose a method that allows us to pin-
point the exact reasons for failures in the sys-
tem. We present a tool for regression test-
ing for GramDivvun, the rule-based open
source North Sdmi grammar checker. The
regression tool is available for any of the
135 languages in the Giella-LT infrastruc-
ture and can be applied when respective
tools are built. An evaluation of the system
shows how the precision of the regression
tests improves with almost 20% over a time
span of 1.5 years. We also illustrate that the
regression tool can detect undesired effects
of rule changes that affect the performance
of the grammar checker.

Abstrakta

Mii dkkastallat ahte regreSuvdnaiskosat
leat darbbaslaccat jus galgd sdhttit rahkadit
luohtehahtti NLP-reaidduid, erenoamazit
reaidduid nugo grammatihkkaddrkki-
steddjiid, mat sorjdstit manga eard
programmaide. Min bargu lea njuolggadus-
vuodduduvvon, huksejuvvon barggu ala
mii lea dahkkon smévva-resursagielaiguin
manemus$ 20 jagi. Dan sajis go bargat
”Cahppes bovssain”, mii vélljet vuogi man
bokte mii daldn oaidnit gokko vuogddagas

.....

iskd leatgo GramDivvumis regreSuvnnat.

Suvdnaiskanreaidu lea oldmuttus visot 135
gillii mat leat GiellaLT-infrastruktuvrras ja
dan sdhttd vuodjit go gullevas reaiddut leat
huksejuvvon. Vuogddatevalueren c¢éjeha
ahte regreSuvdnaiskosiid bohtosat leat buor-
rdnan measta 20 %:in beannot jagis. Mii
maid ¢4jehit ahte regreSuvdnaiskanreaidu
gavdna meattdhusaid manné rievdadusaid
mat vdikkuhit grammatihkkadéarkkisteadd;i
bohtosiidda.

Tiivistelma

Tassd artikellissa esitimme ettd regressio-
testaus on vilttiméatontd kielitekonologia-
tyokalujen, eritoten korkeampitasoisten so-
vellusten kuten kieliopiontarkistinten, jat-
kuvassa kehityksessd. Meiddn ldhestymis-
lihtokohtamme on sddntdpohjainen, ja ra-
kentuu aiemmalle vihdresurssisten kielten
tyolle viimeisen 20 vuoden ajalta. Mus-
ta laatikko -ldhestymistavan sijaan kay-
timme menetelmid joiden avulla voim-
me suoraan paikantaa ongelmakohdat jar-
jestelmédssd. Esittelemme tyokaluja joilla
regressiotestataan GramDivvunia, saanto-
pohjaista pohjoissaamen kieliopintarkistin-
ta. Regressiotestaus on valmiina kéytettavis-
sd 135 kielelle, joita kehitetdfin Giellal.T-
infrastruktuurissa ja sitd voi hyodyntii vas-
taavissa tyokaluissa. Jirjestelmidd evaluoi-
malla huomaamme ettd tarkkuus kasvaa
20 % 1,5 vuoden seurantajakson aikana.
Sen lisidksi tuomme esille kuinka regres-
siotesteilld voi havaita sddnnostomuutosten
vaikutuksia kieliopintarkistimen suoritus-

kykyyn.

1 Introduction

This paper illustrates an efficient way to quality
check high level rule-based NLP applications for
low resource languages with complex morphology
like North Sdmi. In particular, we develop a
powerful regression testing tool for the rule-based
open source North Sdmi grammar checker Gram-
Divvun (Wiechetek et al., 2019a) that provides
statistics of precision and recall specific to each er-
ror type! and a detailed analysis of each sentence in-
cluding one or more (nested) errors?, together with
an advanced system of error mark-up that allows us
to properly identify each error type module that is
successful enough to be included in the grammar
checker released to the public.

GramDivvun has been released by Divvun as a
free plugin for Microsoft Office and Google Docs>.
A grammar checker, as opposed to a spellchecker, is
a tool that verifies and corrects errors in writing that
are not mere mistyped non-words, but real words
where the error is dependent on the whole sentence-
context and its grammatical features.

North Sdmi is a minority language in a bilingual
language community, which faces challenges as re-
gards writing proficiency. In this context, a reliable
grammar checker can therefore also serve as a tool
to improve writing skills. However, it is a difficult
task to make a precise tool that meets users needs. If
it underlines too many or even any correct sentences,
the user will easily be frustrated and switch off the
grammar checking. Regression testing resolves this
problem in a robust and uniform way and ensures
high quality of the tools.

North Sdmi is a Uralic language spoken in Nor-
way, Sweden and Finland by approximately 25,700
speakers (Simons and Fennig, 2018). It is a syn-
thetic language, where the open parts of speech
(PoS) —e.g. nouns, adjectives — inflect for case, per-
son, number and more. The grammatical categories
are expressed by a combination of suffixes and stem-
internal processes affecting root vowels and conso-
nants alike, making it perhaps the most fusional of
all Uralic languages. In addition to compounding,
inflection and derivation are common morphologi-
cal processes in North Sdmi. Due to its morpho-
logical complexity and, in addition, a large amount

"More information on the different error types covered
in GramDivvun can be found in (Wiechetek, 2017) and
(Wiechetek et al., 2019b)

INested errors are errors within errors (typically with dif-
ferent scopes), for example a typo within an agreement error.

https://divvun.no/korrektur/gramcheck.html

of homonymous forms or similar forms that can be
confused in writing, there are many different gram-
matical error types. Similarly to other low-resource
languages, there is little to no error marked-up data
available for it, and the available data is seldom qual-
ity checked with regard to spelling and grammar.
This poses a challenge to automatic grammar check-
ing and testing.

Regression testing within software programming
practice is defined as testing that ensures that recent
code changes do not have any negative effects on
existing features.* While regression testing is not a
new idea and has been applied for some decades, to
our knowledge, there are no in-detail publications of
the challenges and practical solutions for it in gram-
mar checking. However, Butt and Holloway King
(2003) describe different testing strategies and their
necessity for syntactic parsing. Since 2003, com-
plexity of Natural Language Processing (NLP) tools
has increased, which also requires adapting appro-
priate testing routines.

The rule-based model enables us to be very pre-
cise in locating the shortcomings of our grammar
checker, and the regression tests ensure that the
grammar checker keeps improving as new rules and
tests to check them are added. The novelty in our
approach to building grammar checkers lies in the
workflows of simultaneously building the grammar
checker rules, the error corpus and the regression
testing suite. This workflow is an efficient approach
to both building regression data and constructing
our tools. The features of our tool are powerful
enough to handle these multi-modular applications
as well as an advanced mark-up system for a real
world corpus that includes some spelling, morpho-
logical, syntactic, punctuation, space, real-word er-
rors as well as nested errors per sentence. Also, the
regression tool provides a detailed error analysis and
not just overall regression statistics. It outputs error-
specific statistics, including error subtypes, and en-
ables efficient debugging of the system. The regres-
sion tools come with a database of tests, including
several thousand sentences marked-up manually per
error type.

2 Background

2.1 Framework

We are using a NLP development infrastructure
called GiellaLT (Moshagen et al., 2014), which is

*https://www.guru9d9.com/regression-testing.
html (Accessed 2021-03-23)

https://divvun.no/korrektur/gramcheck.html
https://www.guru99.com/regression-testing.html
https://www.guru99.com/regression-testing.html

at present used by 135 languages. It consists of
systems capable of building, testing and deploy-
ing a large range of NLP applications — includ-
ing spelling and grammar checkers among others —
based on finite-state morphology (Beesley and Kart-
tunen, 2003) and Constraint Grammar (Karlsson,
1990). We apply a rule-based approach, which has
a long tradition for the previously mentioned 135
languages, but is not as wide-spread as neural net-
work approaches these days. Neural networks have
shown to provide good results for many higher level
NLP applications. However, they are also known to
require large amounts of high quality or marked-up
data, which for North Sdmi would mean a manual
quality check or mark-up as this data is not avail-
able. Our current error marked-up corpus (for all er-
ror types including nested errors) contains 120,459
words—a typical amount for training a neural net-
work is at least several millions, and for a morpho-
logically complexer language possibly more. Con-
sidering the amount of different types of errors
there are and that not all of the sentences contain an
error at all, this is very little data to train any kind
of model.

Our work strategy consists in minimizing the
workload by a combination of developing rule-
based tools that reliably annotate and quality check
our data and searching for and annotating example
sentences from the corpus that give us further in-
sight in the grammatical issue we are dealing with.

There is current work on neural network error de-
tection/correction for specific ‘simpler’ grammatical
errors (i.e. compound errors) in North Sdmi that
do not involve changing morphological forms or re-
structuring of a whole sentence (Wiechetek et al.,
2021). However, rule-based tools were used, both
to prepare the data and to access PoS information.
Furthermore, its insertion of non-sense words re-
stricts its usability for a community of real users. A
full-fledged neural network grammar checker - that
is not based on the rule-based grammar checker - is
not to be realized in the near future.

Rule-based methods have the advantage of for-
malizing concise rules about the grammatical struc-
ture of a language. This gives us detailed insights in
the language - as opposed to the black box of a neu-
ral network. This knowledge is necessary for defin-
ing errors in the first place, especially in cases where
normative descriptions do not exist. It is also a pre-
requisite for debugging errors in our system. As we
are able to translate language insights into formal

grammar rules, we can pinpoint the exact causes of
errors in our system. In other words, we can write a
grammar that is both machine-, and to some extent,
human-readable, which means that our knowledge
can be used in other contexts outside of the gram-
mar checker.

In the context of grammar checking tasks, specif-
ically for morphologically complex and/or low-
resourced languages, we would like to discuss two
relevant tasks for neural network approaches, i.e.
the systems for Latvian (Deksne, 2019) and Rus-
sian (Rozovskaya and Roth, 2019). The evaluation
of Latvian neural network grammar checker shows
a good performance with precisions between 78%
and 98.5% (evaluated on a corpus of 115,000 sen-
tences) depending on the error type. However, judg-
ing from their regular expressions to insert artificial
errors, most of their error types seem to be fairly
local errors that can be resolved based on shorter n-
grams. The Russian system, on the other hand, fo-
cuses on more advanced error types, including case
and agreement. However, precision (evaluated on
a 206,258 token learners’ corpus) is significantly
lower — between 22% and 56%, only gender agree-
ment reaches 68%. The corpus is rather small with
regard to the task of correcting a large variety of er-
rors. None of these two approaches deal with the ad-
vanced syntactic constructions we resolve in our ap-
proach, requiring an analysis of the whole sentence,
valencies, semantic cues, etc.

The testing approach described here, while used
in conjunction with a rule-based system, is agnostic
of underlying technology, and could well be applied
in the context of a neural system as well, should
there be one that allows for correcting the errors the
system makes.

2.2 Continuous integration and deployment

In order to provide a consistent grammar checking
experience but also automatic updates and improve-
ment, we apply stringent testing and combine that
with a continuous integration / deployment (CI/CD)
environment. To our knowledge, there are no pub-
lications on how to apply CI / CD to NLP prod-
uct pipelines such as grammar checking, so in this
article we lay out some guidelines and good prac-
tices. However, in the text books for the develop-
ment of NLP applications we find some recommen-
dations on the use of regression tests to compare
different versions of the same application. (Grove,
2009, p.222) There have also been some work-

shops on regression testing in NLP, e.g. (Farrow
and Dzikovska, 2009), however, these ideas have
not found popular use, yet. One of the scientific
contributions of our work is not only that we can
provide the end users with products that work as ex-
pected, but also we can maintain scientific integrity
of the systems in terms of reproducibility. We can
apply the CI methods to ensure that systems can
reproduce comparable results at all times. This is
especially attractive for our case, since we apply
mainly rule-based methods for grammar checking
and correction, the results should stay relatively sta-
ble for the same versions of the system. In the recent
years, the reproducibility has been brought to focus
of the NLP research, with famous works like Peder-
sen (2008).

Typically, continuous development of rule-based
NLP applications involves unexpected breakage.
With regression tests for each error type in the gram-
mar checker, regressions are caught quickly. This
means that refactoring or larger changes to the code
can be done without decreasing the overall quality
of the grammar checker.

The main motivation behind introducing regres-
sion testing came from the need of automatizing
the grammar checker evaluation. Manual evalua-
tion to calculate precision and recall got rather cum-
bersome. This led to the development of a more
powerful tool for testing grammar checking auto-
matically (Wiechetek et al., 2019b), and there was
parallel work and methodological in-depth study on
corpus mark-up. Based on this work, we did not
have to make a big leap to get regression testing. We
reused the evaluation tool and turned it into a proper
tester, with detailed statistics of the performance of
the tool and sentence-by-sentence analysis that pro-
vides a basis for debugging.

2.3 The North Sami grammar checker

The grammar checker for North Sami (Gram-
Divvun) performs both spell- and grammar check-
ing — i.e. requiring full sentence analysis to iden-
tify local and global syntactic errors — in addition
to punctuation and format checking. It includes a
version of the open-source spelling checker that has
been freely distributed since 2007°, cf. also Gaup
etal. (2006). It uses the HFST-based spelling mech-
anism described in Pirinen and Lindén (2014) for
a number of modules, and in addition includes six
Constraint Grammar modules, cf. Figure 1. These

Shttp://divvun.no/korrektur/korrektur.html

are:

e Two valency grammars applied before and
after spellchecking (valency.cg3 and valency-
postspell.cg3)

* A tokenizer (mwe-dis.cg3)

* Two morpho-syntactic disambiguators
applied before and after spellchecking (grc-
disambiguator.cg3 and
after-speller-disambiguator.cg3)

* A module for more advanced grammar check-
ing (grammarchecker-release.cg3)

The current version of the grammar checker mod-
ule in GramDivvun® includes 313 error detection
rules, 4 purely morpho-syntactic rule types, 17
morpho-syntactic rule types that are caused by gen-
eral real-word rule types, 17 idiosyncratic real word
error rule types, 14 punctuation or space error rule
types and one spelling error rule type. A real word
error is typically a misspelling, but unlike regular
typos it results in (similar) real word rather than a
non-word. Therefore, an analysis of the sentence is
necessary to identify the error. In English language,
dessert can be a real word error of desert and vice
versa.

As in English, there are numerous idiosyncratic
real word error types in North Sdmi, made by na-
tive speakers for various reasons (i.e. dialectal pho-
netic differences that do not coincide with the writ-
ten norm, vowel and consonant errors based on con-
fusion of different forms, etc.) But some of these
errors are more systematic, such as the confusion
of case-marked (locative case) vs. attributive adjec-
tive forms. This is the case in ex. (1)’, where the
locative form dlkis should be an attributive one, i.e.
dlkes, and the only distinction between these forms
is the vowel - e vs. i.

) Snoranuohtti lea gehppes ja alkis
Danish seine be.3sG light and simple.Loc
veahkkeneavvu.
tool

‘Danish seine is a light and simple tool.’

Instead of resulting in a simple non-word, in
North Sdmi vowel confusion can have grammatical

*https://github.com/giellalt/lang-sme/
releases/tag/naacl-2021-4

"All examples are original examples or fragments from
SIKOR and are most likely native speaker texts or translations.

http://divvun.no/korrektur/korrektur.html
https://github.com/giellalt/lang-sme/releases/tag/naacl-2021-4
https://github.com/giellalt/lang-sme/releases/tag/naacl-2021-4

INPUT TEXT

tokeniser—gramcheck—gt—:
desc.pmhfst |

i Tokenisation & de-
' | scriptive morphologi-

valency.cg3:
1

1

I

:

I
Disambiguation of | !
compound errors, |
I

I

]

I

I

]

I

I

1
|
1
1
i
1
i >
i
1
|
1
1

. Whitespace taggin ' | Valency annotation .
cal analysis (with error P 888 i Y ' other ambiguous
. | . .
& semantic tags) ! 1 tokenisations
1
g hfst-tokenise ! divvun-blanktag i visleg3, { vislcg3
]

R AU N e

analyser—-gt-
errorwhitespace.hfst

Whitespace error

disambiguated tokens tagging

i Reformatting

errmodel.default.hfst
acceptor.default.hfst

valency-postspell.cg3

Valency annotation of

(unknown words) speller suggestions

i Spellchecking

divvun-cgspell vislcg3 |

spellchecker.cg3I

Disambiguation and
syntactic analysis (excl

: I i
speller suggestions) speller suggestions

E_>i CG-based filtering of |

grammarchecker—
release.cg3

generator-gt-norm.hfstol
errors.xml

Word form and error

' | Grammar, punctuation

i | and formatting errors | ! message generation

i :

! 1

I visleg3 divvun-suggest |

SUGGESTIONS AND FEEDBACK MESSAGES

Figure 1: System architecture of GramDivvun

consequences. That means that a certain grammat-
ical form can be confused with another grammati-
cal form of the same lemma. Since both forms re-
gard the same lemma, these errors can be detected
and corrected systematically. Apart from that, other
(morpho-phonetic) criteria decide which forms are
eligible for this error type. These are lemma end-
ings (e.g. -it, -at, or -ut), number of syllables (even
vs. uneven), and consonant gradation class mem-
bership.® Table 1 illustrates one of the consonant
gradation classes with examples.

Nominal derivations of certain types of verbs (i.e.
with a particular ending and a specific consonant
gradation pattern In ex. (2), the vowel confusion
(u/0) regards derived nouns (that should be past par-
ticiple forms) from consonant gradation class 4D
(cf. Table 1). Here, the (derived) noun vdksun ‘(the
act of)) observing’ is confused with the past partici-
ple vdkson ‘observed’.

2) Politiijat leat otne vakSun johtolaga
police be.3pL today observing.Nowm traffic

8A number of Finno-Ugric languages use stem-internal
morpho-phonological changes in addition to suffixes to mark
case and other morphological processes. In North Sdmi there
are 123 consonant gradation patterns (Nickel, 1994, p.23-30)

Consonant Example Translation
center

kc vee cikecut civeeui ‘(to) pinch — s/he
pinched’

ké vee gokéat govécat | ‘(to) cover — you
cover’

ks vss oaksi oavssit ‘branch — branches’

kst vstt teaksta teavsttat | ‘text — texts’

kS v§§ diksut div§Sun | ‘(to) take care — I
take care’

kt vt [...]

Table 1: Consonant gradation group 4D according
to Nickel (1994, p. 30)

Guovdageainnus.
Guovdageaidnu.Loc
‘The police has conducted a traffic control in

Guovdageaidnu today.’

The complex structure of the grammar checker
shows that there are modifications in many differ-
ent modules that can be responsible for possible
mishaps, since changes in one module can affect the
input to subsequent modules.

The input for the grammar checker are unmarked
sentences. The input for the regression tests are sen-
tences with an error mark-up like in ex. (3).

3) D4l beassaziid leaba soai
now Easter ~ have they.pu
{lavlun}e{lavlon} ddid sadlmmaid
singer sing.pastp these psalm.Acc.pL

girkuin Guovdageainnus,
church.Loc.pL Guovdageaidnu.Loc,
Karasjogas ja Mazes.

Kaérasjohka.Loc and Méze.Loc
‘This Easter they have sung these psalms in

the churches of Guovdageaidnu, KéraSjohka
and Maze.

Figure 2 shows the output for the grammar
checker including error detection (red rectangle)
and error correction (blue rectangle). The sentence
is tokenized and reads from the top to the bottom.
Word forms are in angle brackets, indented lines are
homonymous analyses of each form, including lem-
mata, morphological, semantic and syntactic tags
followed by numerical dependencies.

"<Da1>"
"dal" Adv Sem/Time <W:0.0> <firstCohort> @ADVL> #I1->1

"<beassaziid>"
"beassazat" N Sem/Time Pl Gen <W:0.0> @ADVL> #2->2
H "beassi” Ex/N G3 Sem/Mat Der/Dimin N Pl Acc
H "beassi" Ex/N G3 Sem/Mat Der/Dimin N Pl Gen
H "beassazat" N Sem/Time Pl Acc

"<leaba>"

"leat" <mv> V <copula> <TH-Nom-Any> <mielde> <OR-Loc-
HumGroup> <OR-eret-Plc> <du$$e><TH-Inf> <drvvus> <LO-Loc-johtu><DE- ‘
I1l-Plc> <AT-Loc-Mat> |

<AT-Abe-Any> <AT-Nom-Any> <AT-Nom-Adj><EX-I11-Ani> <PO-Loc-Hum> |
<P0-Gen-Hum> <MA-mielde-Any> <MA-Adv-Manner> <XT-Gen-Measr> <LO-
mannil-Time> <LO-Acc-Time> <LO-Loc-Time> <CO-Com-Ani> <ID-Nom-Any>
<TH-Nom-Any><R0-Ess—-Any><EX-I11-Any> <EX-I11-Ani><TH-Nom-Adj> <EX-
I11-Ani> <TH-Nom-0bj><RE-I11-Ani> <LO-Loc-Any> <AktioEss> <BE-I11-
Ani><PU-Ess—-Any> <RO-Ess-Any><PU-I1l1-Act> <RO-Ess-Any> <Inf> IV Ind
@+FMAINV #3->3

H "ba" Pcle"<ba>"

H "leat" V IV Ind Prs Sg3 "<lea>"

"<soais"
"son" Pron Sem/Hum Pers Du3 Nom <W:@.0> @<SUBJ] #4->4

"<lavlun>"
"lavlu" A Sem/Hum Ess <W:0.0> @<SPRED #5->5
“lavlu" A Sem/Hum Sg Loc South Err/0Orth <W:0.0> @<ADVL #5->5
"lavlu" N <NomGenSg> NomAg Sem/Hum Ess <W:0.0> @<SPRED #5->5,
"lavlu" N <NomGenSg> NomAg Sem/Hum Sg Loc South Err/Orth
@<ADVL #5->5
"lavlu" N <NomGenSg> Sem/Prod-audio Ess @<SPRED #5->5
"lavlun" N <NomGenSg> Sem/Act Sg Nom @<SPRED #5->5
lavlui Ex/\V TV Der/NomAct N <NomGenSg> Sg Gen Allegro @N

real-DerNomActSgGen-PrfPrc Jt5->5
:0,0> @N V TV PrfPrc &SUGGEST #5->5
avlut+V+TV+PrfPrc évlon |

Figure 2: Output of GramDivvun in the command
line

3 Regression testing for grammar
checking

Regression testing for grammar checking is based
on an error marked-up corpus. We have collected
an error corpus of representative errors in Yaml-
formatted” files specific to each error type. At the
current date in august 2021, these include 17,800
sentences. Typically, each regression file contains

https://yaml.org/spec/1.2/spec.html

several hundred sentences, some up to 4,300 sen-
tences. There should be a balance of correct and
erroneous sentences covering the same phenom-
ena so that one can test for false positives and
false negatives. Test sentences should cover a va-
riety of syntactic contexts and pay attention to long-
distance relationships between syntactic functions.
They should include coordination, (inserted) sub-
clauses, complex noun phrases, multiple adverbials,
idiomatic constructions, multiple errors, punctua-
tion, and other phenomena that can alter the status
of the error/correct form. The collected errors are
designed to cover a maximally large amount of real-
world errors that people make when writing texts,
in order to keep the grammar checker usable for
people. The file naming is now error-specific,'® but
as they come from an authentic corpus, they can
contain multiple errors per sentence including other
types of errors and nested errors.

Yaml is a mark-up language with a simple syn-
tax that makes writings of the tests convenient and
co-operation with programmers and linguists easier.
We chose to use the Yaml format for grammar test-
ing because of positive experiences with the use of
the same format for spell checker testing.!! The orig-
inal test framework for morphology testing initiated
by Brendan Molloy can be found on GitHub.?

The regression test script measures both error de-
tection and error correction and whether they match
the manual error mark-up. False negatives of the
type fn; are correctly detected errors that do not
receive any corrections by the grammar checker.
False negatives of the type fno are undetected errors.
The same goes for false positives, where: fp, are
correctly detected errors with a wrong correction,
and fp, are error detections that are not manually
marked up. True positives (tp), on the other hand,
are detected and corrected errors that match with
the manual mark-up. In our final evaluation, we will
not distinguish between these and only take into ac-
count successful vs. unsuccessful error correction
in terms of false negatives and true/false positives.
The tester script is implemented in Python and can
be downloaded from GitHub'?.

Ocurrent examples: https://github.com/giellalt/

lang-sme/tree/main/tools/grammarcheckers/tests
Unttps://giellalt.uit.no/infra/infraremake/
AddingMorphologicalTestData.html#Yaml+tests
https://github.com/apertium/
apertium-tgl-ceb/blob/master/dev/verbs/
HfstTester.py
Bhttps://github.com/giellalt/giella-core/
blob/master/scripts/gramcheck-test.py

https://yaml.org/spec/1.2/spec.html
https://github.com/giellalt/lang-sme/tree/main/tools/grammarcheckers/tests
https://github.com/giellalt/lang-sme/tree/main/tools/grammarcheckers/tests
https://giellalt.uit.no/infra/infraremake/AddingMorphologicalTestData.html#Yaml+tests
https://giellalt.uit.no/infra/infraremake/AddingMorphologicalTestData.html#Yaml+tests
https://github.com/apertium/apertium-tgl-ceb/blob/master/dev/verbs/HfstTester.py
https://github.com/apertium/apertium-tgl-ceb/blob/master/dev/verbs/HfstTester.py
https://github.com/apertium/apertium-tgl-ceb/blob/master/dev/verbs/HfstTester.py
https://github.com/giellalt/giella-core/blob/master/scripts/gramcheck-test.py
https://github.com/giellalt/giella-core/blob/master/scripts/gramcheck-test.py

The grammar checker makes a list of each error
that consists of the erroneous word, the position of
the error (start and end), a list of suggestions and er-
ror type. The error mark-up is then converted to the
same structure so that manual and grammar checker
mark-up can be compared. For each of these test
sentences, three things are collected: the erroneous
version of the error marked-up sentence, the error
marked-up version of the errors in the sentence and
the errors detected by the sending the erroneous
sentence through the grammar checker. The tester
prints the outcome of each of the tests in a detailed
manner, sentence by sentence and with references
to the particular error types involved. The final re-
port contains the number of total passes, fails, true
and false positives/negatives, precision, recall and
F-score. On exit, the script returns O or 1, 0 mean-
ing all tests succeeded, 1 otherwise.

The test script is fast and light-weight enough to
be part of a CI/CD system, even with processor time
and RAM limitation, e.g. testing 300 sentences on
the developers’ machines takes about 30 seconds.

The error mark-up formalism has earlier been
used to automatize spellchecking for Greenlandic,
Icelandic, North, Lule and South Sami.

The error mark-up follows a number of guide-
lines'* based on earlier corpus mark-up (Moshagen,
2014) and applies eight different general error types,
each of them marked by a different sign: ortho-
graphic, real word, morpho-syntactic, syntactic, lex-
ical, formatting, foreign language, and unclassified
errors. The error is enclosed in curly brackets, fol-
lowed by its correction in another set of curly brack-
ets. The second curly bracket may or may not in-
clude a part of speech, morpho-syntactic criteria
and a subclassification of the error type.

Orthographic errors (marked by $) include non-
words only. They are traditional misspellings con-
fined to single (error) strings, and the traditional
speller should detect them. Real word errors
(marked by ¢) are misspellings that cannot be de-
tected by a traditional speller, they are an analysis
of the surrounding words. Morpho-syntactic errors
(marked by £) are case, agreement, tense, mode er-
rors. They require an analysis of (parts of) the sen-
tence or surrounding words to be detected. Syntactic
errors (marked by ¥) require a partial or full analy-
sis of (parts of) the sentence or surrounding words.
They include word order errors, compound errors,

Ynttps://giellalt.uit.no/proof/spelling/
testdoc/error-markup.html

missing words, and redundant words. Lexical errors
(marked by €) include wrong derivations. Foreign
language (marked by oo) includes words in other
languages that do not require a correction. Format-
ting errors (marked by %o) include spacing errors in
combination with punctuation. Unclassified errors
are marked with §.

In ex. (4), the tokens involved in the error are
nouns, the syntactic error is a missing word and the
correction is adding the subjunction ahte ‘that’.

“4) Ma {jahkken}¥{missing|jahkken ahte}
hardly think.past.1sG
lei duohta.
be.pAsT.3SG true
‘I hardly thought that it was true.’

Regarding the span of an error, we typically mark
as little as possible, even if larger parts of the sen-
tence are responsible for the identification of the er-
ror. This is done to facilitate matching error mark-
up with grammar checker marking of the error, and
it has direct effect on automatic evaluation. Most
of the frameworks we use to process language ma-
terial in context, e.g. Constraint Grammar takes a
token-based approach to language processing, and
therefore marking several words can get cumber-
some and should be avoided if possible.

Ex. (5) shows the mark-up of nested errors.
There is both a morpho-syntactic error, the case
of linja ‘line’ should be accusative instead of nom-
inative, and a compound error, njuolggo and linjjd
should be written as one word.

5) Sérggo {njuolggo
draw.IMPRT.2sG straight
{linja } £{noun,obj,accsg,nomsg,casellinjja} }
line
¥{noun,cmp|njuolggolinjja} din guovtti
(straightline) these two
Cuoggd gaskka.
points between.
‘Draw a straight line between these two

points.’

4 Evaluation

We performed two measurements of the system
quality: firstly we have the well-curated and targeted
regression test suite that is summarized in Table 2.
Secondly, we measure an overview of how the sys-
tem fares for texts in the whole corpora in the wild
in Table 3. The first test suite verifies our system’s
quality in the regression test sense, and the second
test ensures that the system works for open text case.

https://giellalt.uit.no/proof/spelling/testdoc/error-markup.html
https://giellalt.uit.no/proof/spelling/testdoc/error-markup.html

naacl-1 | naacl-2 | naacl-4

baseline
Precision | 70.9% 68.9% | 88.8%
Recall 66.9% 84.0% | 91.0%
Fy-score 68.8 75.7 89.9

Table 2: Evaluation results from the regression tests.

4.1 Quantitative evaluation

In Table 2 we show the results of the regression tests
at the same three stages of the development. We
measure the success percentage in terms of the num-
ber of the tests passed from the overall tests. The re-
gression test corpus we use is a set of tests selected
to have a representative coverage of the various er-
ror types and contexts. With the carefully selected
grammar tests we can control the quality of the over-
all system, the overall aim for these grammar tests
is to keep the correctness at 100 %. The correctness
measure C' here is C' = % where C'S is the corpus
size.

GramDivvun Regression tests

— Precision
~ Recall
- F.1

0.9

0.8

0.7

0.6

T T T T T T
naatl-1 naazl-2 bisgct naatl-3 2028127 naagl-4

Version

Figure 3: Development of GramDivvun precision
and recall in the regression tests

In Table 3, we show the overall performance of
GramDivvun at three stages over the course of ap-
proximately one and a half years of continuous de-
velopment. This means that all grammatical er-
rors are included, also the ones that the grammar
checker does not have any module for yet. The tests
are done on an error marked-up evaluation-corpus
of approx. 26,000 words. The first test is made
with the North Sdmi grammar checker from 2019-

11-21" before the introduction of the Yaml-tests
(naacl-1). The second test uses the version from
2020-11-20'° (naacl-2 - Yaml baseline) from when
we had first introduced the regression tests. The
third test uses the North Sdmi grammar checker
from 2021-03-20"7 (naacl-4) where we have taken
into account results from the regression tests in the
form of general rule changes.

The results show that the overall performance of
the grammar checker on a small error marked-up
corpus improves only slightly. This is due to the
frequency of the errors we worked on. The cor-
pus to test these error types in particular needs to
be substantially bigger to show a change in perfor-
mance. However, especially recall has improved
by 6% showing an increased coverage of the error
types covered in the grammar checker.

Figure 3 shows a number of stages of the perfor-
mance of the grammar checker after developing re-
gression tests. There was a significant drop in pre-
cision (naacl-2) and a number of drops in recall (bi-
sect).’® These coincided with the addition of test
sentences (the regression tests grew from a couple
of sentences to larger corpora of several thousand
sentences), introducing new contexts that required
stricter rules. Stricter rules typically lower recall to
ensure stable precision. New, more specific rules
need to be introduced to get recall up again. This
explains the ups and downs in the graph. After the
introduction of Yaml tests, however, we can see that
precision has steadily been going up, and by that
proves the main objective of regression tests right.

4.2 Qualitative evaluation

One can generally see, that rule types that have been
prioritized in the grammar checker improved after
involving regression testing.

Precision got better in ex. (6), where the nomi-
nalization dovdan ‘feeling’ is confused with the first-
person singular form dovddan ‘I know’, forms that
are distinguished by a change in the consonant cen-
tre only.

6) Buohkat, geaid dovdan, oaivvildit
All, who.acc.pL feeling, think.3pL

Bhttps://github.com/giellalt/lang-sme/
releases/tag/naacl-2021-1
Yhttps://github.com/giellalt/lang-sme/
releases/tag/naacl-2021-2
"https://github.com/giellalt/lang-sme/
releases/tag/naacl-2021-4
Bhttps://github. com/
giellalt/lang-sme/commit/
216d00d37bff6ebbd34a1529eb822b61b50a3£08

https://github.com/giellalt/lang-sme/releases/tag/naacl-2021-1
https://github.com/giellalt/lang-sme/releases/tag/naacl-2021-1
https://github.com/giellalt/lang-sme/releases/tag/naacl-2021-2
https://github.com/giellalt/lang-sme/releases/tag/naacl-2021-2
https://github.com/giellalt/lang-sme/releases/tag/naacl-2021-4
https://github.com/giellalt/lang-sme/releases/tag/naacl-2021-4
https://github.com/giellalt/lang-sme/commit/216d00d37bff6ebbd34a1529eb822b61b50a3f08
https://github.com/giellalt/lang-sme/commit/216d00d37bff6ebbd34a1529eb822b61b50a3f08
https://github.com/giellalt/lang-sme/commit/216d00d37bff6ebbd34a1529eb822b61b50a3f08

naacl-1 | naacl-2 | naacl-4
baseline

Precision | 80.0% 753% | 82.3%
Recall 59.8% 65.9% | 65.1%
Fy-score 68.4 70.2 72.77
TP 391 439 430
FP 98 144 92
FN 263 227 231

Table 3: Performance of GramDivvun over the span
of a year, before and after introducing regression
tests

s€amima:
same
‘Everybody I know thinks the same’

In ex. (7), GramDivvun finds the locative adjec-
tive form oktagearddnis, which by analogy is con-
fused with the nominative form oktagearddn.

@) Skuvllas berrese maiddai leat
school.Loc should.conp.3pL also be
oktageardanis
simple
‘The school should also have simple’

A number of error type rules are causing false
positives in certain contexts such as ex. (8), where
the infinitive oastit ‘buy’ is a correct form. However,
it is homonymous with a second-person plural im-
perative reading of the same verb, and is falsely cor-
rected to the third-person plural reading ostet.

®) Golut oastit darbbaslas girjjiid
expenditure.pL buy necessary book.Acc.PL
cadahit proseavtta.

carry.through project.acc
‘Expenditure to buy necessary books to

carry through the project.’

Some errors that are dealt with in the grammar
checker are not recognized in certain syntactic con-
texts, such as the compound error guovddas doaim-
mat that should be written as one word in ex. (9).

) Movttiidahttin ja bagadeapmi leat
motivation and instruction be.3PL
SOR:a proseakta-jodiheaddji deatala$ ja
SOR.GEN project-leader important and
guovddas doaimmat.
central task.pL
‘Motivation and instruction are important

and central tasks for SOR’s project leader’

In addition, there are error types that the gram-

mar checker does not deal with at all, which is why
they are not recognized, and the result are false nega-
tives. This is the case of the syntactic error ex. (10),
where the subjunction vai ‘so that’ before the finite
verb beassaba ‘get to’ is missing.

(10)

Mangii vahkkui vieZZ4 son vierrobeatnaga
often week.ILL fetch.3sG s/he foreign.dog
beassaba vizzit.

get.to3pu walk

‘Many times a week she fetches the foreign

dog so that they get to walk.’

5 Discussion and future outlook

In this paper we have shown that regression testing
is necessary to provide reliable results (i.e. in partic-
ular a stable precision) for the users of higher level
NLP applications like grammar checkers. A rule-
based approach is successful for applications like
grammar checking which require a high level of sys-
tematicity and reliable results. For low-resourced
languages, where availability of resources such as
expert-curated error-correction corpora are scarce,
the development of rule-based tools is the most ef-
ficient approach. We showed that by using compre-
hensive regression testings we can keep developing
the grammar checking and correction on a day-to-
day basis and provide the end users with the newest
updates without worrying about their quality. In the
future we would like to see if it is possible to gather
enough resources for a neural network based gram-
mar checking and correction. Regression testing of
the kind we described is applicable for neural net-
work approaches as well. However, neural network
systems do not allow for specific adjustments within
the error types, which is rather a weakness of the
system itself. It is therefore natural to apply these
regression tests for neural network models as well,
and we expect that the system will work in conjunc-
tion to neural network without any major changes.

We have started with neural network-approaches
(forthcoming) for the correction of certain error
types from our rule-based grammar checker. These
require a preparation of the data by means of our ex-
isting rule-based tools, both for part-of-speech tag-
ging and marking up error data.

One of the interesting features of a rule-based
system, that has been brought to focus on the NLP
community recently, is the energy-footprint of the
used models. In case of our models, the rules can
be compiled into finite-state automata on an aver-
age consumer desktop within minutes, and the ac-

tual models can be run on low-end mobile devices,
so the energy footprint is trivially multiple orders of
magnitude lower than that of any neural language
models.

Acknowledgements

We thank Ritva Nystad for marking up part of
the evaluation corpus, testing GramDivvun and con-
tributing to critical discussions about grammatical
errors. We also thank Sjur Ngrstebg Moshagen and
Brendan Molloy for the initial test setup.

References

Kenneth R Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI publications.

Miriam Butt and Tracy Holloway King. 2003. Gram-
mar Writing, Testing, and Evaluation, pages 129-179.
CSLI Publications, Stanford.

Daiga Deksne. 2019. Bidirectional Istm tagger for lat-
vian grammatical error detection. In Ekstein K. (eds)
Text, Speech, and Dialogue. TSD 2019. Lecture Notes
in Computer Science, vol 11697. Springer.

Elaine Farrow and Myroslava O. Dzikovska. 2009.
Context-dependent regression testing for natural lan-
guage processing. In Proceedings of the Workshop on
Software Engineering, Testing, and Quality Assurance
for Natural Language Processing (SETQA-NLP 2009),
pages 5—13, Boulder, Colorado. Association for Com-
putational Linguistics.

Bgrre Gaup, Sjur Moshagen, Thomas Omma, Maaren
Palismaa, Tomi Pieski, and Trond Trosterud. 2006.
From Xerox to Aspell: A first prototype of a north
sami speller based on twol technology. In Finite-State
Methods and Natural Language Processing, pages
306-307, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Ralph F Grove. 2009. Web Based Application Develop-
ment. Jones & Bartlett Publishers.

Fred Karlsson. 1990. Constraint grammar as a frame-
work for parsing unrestricted text. In Proceedings of
the 13th International Conference of Computational
Linguistics, volume 3, pages 168—173, Helsinki.

Sjur Moshagen. 2014. Test data and testing of spelling
checkers. Presentation at the NorWEST2014 work-
shop.

Sjur Moshagen, Jack Rueter, Tommi Pirinen, Trond
Trosterud, and Francis M Tyers. 2014. Open-
source infrastructures for collaborative work on under-
resourced languages. In Proceedings of the Ninth Inter-
national Conference on Language Resources and Eval-
uation, LREC, pages 71-77.

Klaus Peter Nickel. 1994. Samisk grammatikk, second
edition. Davvi Girji, K4rd§johka.

Ted Pedersen. 2008. Empiricism is not a matter of faith.
Computational Linguistics, 34:465-470.

Tommi A. Pirinen and Krister Lindén. 2014. State-of-
the-art in weighted finite-state spell-checking. In Pro-
ceedings of the 15th International Conference on Com-
putational Linguistics and Intelligent Text Processing -
Volume 8404, CICLing 2014, pages 519-532, Berlin,
Heidelberg. Springer-Verlag.

Alla Rozovskaya and Dan Roth. 2019. Grammar er-
ror correction in morphologically rich languages: The
case of russian. In Transactions of the Association for
Computational Linguistics, vol. 7, pp. 1-17, 2019.

Gary F. Simons and Charles D. Fennig, editors. 2018.
Ethnologue: Languages of the World, twenty-first edi-
tion. SIL International, Dallas, Texas.

Linda Wiechetek. 2017. When grammar can’t be trusted
— Valency and semantic categories in North Sami syn-
tactic analysis and error detection. PhD thesis, UiT
The Arctic University of Norway.

Linda Wiechetek, Sjur Ngrstebg Moshagen, Bgrre Gaup,
and Thomas Omma. 2019a. Many shades of gram-
mar checking — launching a constraint grammar tool
for north sdmi. In Proceedings of the NoDaLiDa 2019
Workshop on Constraint Grammar - Methods, Tools
and Applications, NEALT Proceedings Series 33:8,
pages 35—44.

Linda Wiechetek, Sjur Ngrstebg Moshagen, Bgrre Gaup,
and Thomas Omma. 2019b. Many shades of gram-
mar checking - Launching a Constraint Grammar tool
for North Sadmi. In Proceedings of the NoDaLiDa
2019 Workshop on Constraint Grammar - Methods,
Tools and Applications (NoDaLiDa 2019), pages 35—
44.

Linda Wiechetek, Tommi A Pirinen, Mika Haméldinen,
and Chiara Argese. 2021. Rules ruling neural net-
works - how can rule-based and neural models benefit
from each other when building a grammar checker?
In forthcoming.

https://doi.org/10.1007/978-3-030-27947-9_5
https://doi.org/10.1007/978-3-030-27947-9_5
https://www.aclweb.org/anthology/W09-1502
https://www.aclweb.org/anthology/W09-1502
https://divvun.no/events/workshops/NorWEST2014/presentations/Moshagen.pdf
https://divvun.no/events/workshops/NorWEST2014/presentations/Moshagen.pdf
https://www.aclweb.org/anthology/Q19-1001.pdf
https://www.aclweb.org/anthology/Q19-1001.pdf
https://www.aclweb.org/anthology/Q19-1001.pdf
http://www.ethnologue.com (Accessed 2018-10-09)
http://www.ep.liu.se/ecp/168/008/ecp19168008.pdf
http://www.ep.liu.se/ecp/168/008/ecp19168008.pdf
http://www.ep.liu.se/ecp/168/008/ecp19168008.pdf

