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Abstract

Biases and artifacts in training data can cause
unwelcome behavior in text classifiers (such
as shallow pattern matching), leading to lack
of generalizability. One solution to this prob-
lem is to include users in the loop and leverage
their feedback to improve models. We propose
a novel explanatory debugging pipeline called
HILDIF, enabling humans to improve deep
text classifiers using influence functions as an
explanation method. We experiment on the
Natural Language Inference (NLI) task, show-
ing that HILDIF can effectively alleviate arti-
fact problems in fine-tuned BERT models and
result in increased model generalizability.

1 Introduction

Given two sentences, a premise and a hypothesis,
Natural Language Inference (NLI) is the task of
determining whether the premise entails the hy-
pothesis, and it has been considered by many as a
sign of language understanding (Condoravdi et al.,
2003; Dagan et al., 2005). Although recent deep
learning models have shown to achieve good perfor-
mances on different NLI datasets, as in other tasks,
they have been shown to learn shallow heuristics.
For example, a model is very likely to predict en-
tailment for all hypotheses constructed from words
in the premise (McCoy et al., 2019). A key chal-
lenge is therefore to understand when and why
state-of-the-art NLI models fail and try to mitigate
the problems accordingly.

In order to bring to light this kind of pathology,
one can use explanation techniques to comprehend
how a black box model makes particular predic-
tions. For instance, feature attribution methods
explain by identifying parts of inputs that mainly
contribute to predictions (Smilkov et al., 2017; Sun-
dararajan et al., 2016; Ribeiro et al., 2016; Lund-
berg and Lee, 2017). Further, example-based meth-
ods, such as influence functions (Koh and Liang,

2017), identify training data points which are the
most important for particular predictions. Existing
works have proposed ways to improve models by
incorporating human feedback, in response to the
explanations, by: adding model constraints by fix-
ing certain parameters (Stumpf et al., 2009; Lertvit-
tayakumjorn et al., 2020), adding training samples
(Teso and Kersting, 2019), and adjusting models’
weights directly (Kulesza et al., 2015).

In this paper, we propose a novel interac-
tive model debugging pipeline called HILDIF –
Human In the Loop Debugging using Influence
Functions. With the NLI task as a target, we use
influence functions as an explanation method to
help users understand the model reasoning via
influential training examples. Then, for each in-
fluential example shown, the users provide feed-
back to create augmented training samples for fine
tuning the model. Using HILDIF, we effectively
mitigate artifact issues of BERT models (Devlin
et al., 2019) trained on the MNLI dataset (Williams
et al., 2018) and tested on the HANS dataset (Mc-
Coy et al., 2019), which is a known pathologi-
cal setting for most deep NLI models working
on English language. Our code can be found at
https://github.com/hugozylberajch/HILDIF.

2 Related Work

Influence Functions. Introduced by Hampel
(1974), influence functions compute how up-
weighting individual examples in the training loss
changes the model parameters. Influential training
examples can also be used to study models (Koh
and Liang, 2017). They are particularly useful
when feature attribution scores are not sufficient to
illustrate how the model reasons. In the NLI task,
for example, single input words may not suffice
to explain a certain prediction, and the overall se-
mantics and structures in the input may be needed.

https://github.com/hugozylberajch/HILDIF
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Recently, Han et al. (2020) showed that influence
functions can capture key fine-grained interactions
among input words and detect the presence of arti-
facts that lead to incorrect NLI predictions.

Although very appealing, influence functions
are computationally expensive. Hence, Koh and
Liang (2017) reduced computational complexity
by using the LInear time Stochastic Second order
Algorithm (LISSA) for calculating approximations.
Guo et al. (2020) proposed FASTIF, which further
speeds up the calculation using the k-nearest neigh-
bors algorithm. They also fine tuned the model
with influential training samples of anchor points
(i.e., some data points in the validation set) to cor-
rect model errors. We will use FASTIF as a tool to
explain BERT model’s predictions on the NLI task
in our experiment.

Explanatory Interactive Debugging, where we
improve a model by leveraging user feedback af-
ter presenting explanations for model predictions,
was first introduced using simple statistical mod-
els such as Naı̈ve Bayes models or Support Vec-
tor Machines with simple explanatory techniques
(Stumpf et al., 2009). Recently, explanatory de-
bugging has been applied to more complex models
using refined interpretability methods. In FIND
(Lertvittayakumjorn et al., 2020), a masking matrix
is added at the end of a CNN text classifier so as
to disable particular CNN filters based on human
feedback in response to LRP-based explanations
(Arras et al., 2016). In CAIPI (Teso and Kersting,
2019), the user investigates and corrects a LIME-
based explanation (Ribeiro et al., 2016) for each
prediction. Then additional training samples, cre-
ated based on the correction, are used to fine tune
the model. For more details on explanatory debug-
ging, we refer interested readers to the survey by
Lertvittayakumjorn and Toni (2021).

As in CAIPI, we will exploit user feedback to
control the generation of augmented samples for
fine tuning the model. However, our explanations
are influential training samples which are more
suitable for explaining NLI predictions. This is an
improvement from Guo et al. (2020) that simply
fine tuned the model on influential samples without
human feedback involved.

3 HILDIF

We propose in Algorithm 1 a new pipeline called
HILDIF (Human In the Loop Debugging with
Influence Functions) for debugging deep text clas-

Algorithm 1: HILDIF. L is a labeled train-
ing set, V is a labeled validation set, T is
the number of iteration, and g is a data aug-
mentation method.
t←− 0
f ←− FIT(L)
while t < T do
X ←− SELECT ANCHORS(f,V)
Ŷ ←− f(X )
Z ←− EXPLAIN(f,X , Ŷ)
S ←− Ø
for xi ∈ X do

for zij ∈ Zi do
Present xi, ŷi, zij to the user;
Obtain a similarity score sij for

the influential example zij ;
S ←− S ∪ g(zij , sij)

f ←− FINE TUNE(f,S)
t←− t+ 1

Return : f

sifiers using influence functions. As far as our
knowledge goes, this is the first interactive ex-
planatory debugging algorithm that makes effec-
tive use of influence functions. To improve a
model f using HILDIF, a set of anchor points X =
(x1, x2, ..., xn) is first selected from the validation
dataset V , and the predictions Ŷ = (ŷ1, ŷ2, ..., ŷn)
are computed using the model f . Then, for each
anchor point xi, we use FASTIF to identify p influ-
ential training samples Zi = (zi1, zi2, ..., zip), and
we define Z as a collection of Zi for all xi ∈ X .
Next, for each pair of (xi, zij), i ∈ {1, ..., n}, j ∈
{1, ..., p}, the user will give a score of similarity sij
that will be used to generate synthetic data using a
data augmentation function g. Finally, the model is
fine tuned on the new generated data samples.

Next, we explain, in detail, each step of HILDIF,
including explanation generation, user feedback
collection, and data augmentation.

Explanation Generation. From the validation
set V , we can either select anchor points randomly
or handpick some that contain particular heuristics
we want to debug. After that, the user is presented
with a list of top-p most negatively influential train-
ing data points for each anchor point. These influ-
ential data points contribute to the decrease of the
model’s loss when upweighted. Hence, fine-tuning
the model using these data points should improve
the model performance as studied by Guo et al.



3

(2020). However, since HILDIF relies on FASTIF
which only approximates influence scores, we hy-
pothesize that we can achieve better performance
by asking humans to assess relevancy of the influ-
ential training samples returned by FASTIF before
fine-tuning.

User Feedback Collection. For each anchor
point xi and corresponding influential sample zij ,
the user is asked the question: The test case and the
presented sample are: (1) Very different; (2) Differ-
ent; (3) Can’t decide; (4) Similar; (5) Very similar;
the user can then answer by selecting a radio button.
Then zij will obtain a similarity score sij from 1 to
5 accordingly based on the user’s answer. Similar
in this context means that both samples share the
same type of heuristics or lexical artifacts.

Data Augmentation. To create an augmented
sample for the NLI task, we have to make sure
that the overall semantics of the premise and
the hypothesis as well as the overall relation
between the two sentences are preserved. We
therefore choose random word replacement with
synonyms as well as back translation for data
augmentation since neither changes the semantic
of the sentences. Moreover, we found empirically
by testing different configurations that generating
10 × sij augmented samples for the influential
sample zij yielded the best results. For instance,
an influential sample with the score 3 leads to 30
augmented samples with the same label as the
original sample.

4 Experimental Setup

Datasets and Models. We evaluate our pipeline
with a pretrained BERT-base cased model. We use
the MNLI dataset (Williams et al., 2018) for train-
ing and validation, and the HANS dataset, which is
known to be a dataset where BERT performs poorly
(McCoy et al., 2019), for testing. For the MNLI
training and validation set, we merge the class neu-
tral and contradiction into a single non-entailment
class, following the HANS dataset’s setting. HANS
targets three heuristics of NLI and includes exam-
ples showcasing these heuristics: Lexical Overlap
where the hypothesis is constructed with words
from the premise, Constituent, where the hypoth-
esis is a subtree of the premise’s parse tree, and
Subsequence, where the hypothesis is a contigu-
ous subsequence of the premise (see Table 1 in

the Appendix for some examples). NLI models
almost always predict entailment for any example
containing these heuristics although sometimes the
correct label is non-entailment. So, our goal is to
make the model better detect non-entailment cases
while maintaining its performance on the entail-
ment cases. For the overall performance, we chose
accuracy as our evaluation metric because HANS is
a balanced dataset (containing, for each subgroup
of heuristics, 5,000 samples of the entailment class
and 5,000 samples of the non-entailment class).

Implementation Details. All our models are im-
plemented using the pytorch library and trained
using the AdamW optimizer. The HANS dataset is
held-out during training and fine-tuning and is only
used for testing. For computing influence func-
tions, we use the FASTIF algorithm and FAISS
library (Johnson et al., 2019) for k-nearest neigh-
bors search. Finally, we ran all our experiment
on a single 12GB NVIDIA Tesla K80 GPU. With
this setting, the computation of influence scores
of 5,000 training points for a corresponding an-
chor point takes approximately seven minutes. The
BERT-base model is trained for two epochs on the
MNLI training dataset.

Regarding user feedback collection, due to hu-
man resources constraints, we did our interactive
experiments with one expert user. Further exper-
iments could be conducted with more users, and
results for the same pair of anchor point and influ-
ential point could be aggregated in order to reduce
human bias.

Comparison. We experimented with T = 1, us-
ing five anchor points with 10 and 20 influential
samples each. We introduce three binary proposi-
tions that will define the debugging pipeline: HS:
Human scoring, DA: Data augmentation, and H:
Handpicked anchor points. Without human scoring
(¬HS), every influential sample receives a score
of 5. Without data augmentation (¬DA), the fine
tuning is done on each influential sample only, and
without handpicked anchor points (¬H), anchor
points are selected randomly. Note that our hand-
picked anchor points were chosen among the vali-
dation samples that contain either the lexical over-
lap or the subsequence heuristic (see Table 2 in
the Appendix). We compared the performance of
eight different configurations of debugging algo-
rithms that stem from these three binary proposi-
tions. For each configuration, we trained and im-
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(a) (b)

Configuration 10 influential points 20 influential points
LO SUB CON LO SUB CON

HS

DA
H (93.99 , 18.16) (98.90 , 12.10) (92.99 , 36.10) (92.70 , 20.76) (99.24 , 18.80) (90.82 , 41.58)
¬H (98.89 , 3.56) (99.66 , 2.74) (97.12 , 12.10) (98.12 , 2.06) (98.51 , 4.20) (97.22 , 19.21)

¬DA
H (95.51 , 6.81) (96.40 , 5.32) (93.71 , 22.28) (98.94 , 8.64) (97.81 , 3.40) (95.01 , 19.32)
¬H (98.81 , 2.16) (98.73 , 2.25) (95.55 , 16.12) (99.09 , 1.91) (98.89 , 2.12) (93.39 , 17.64)

¬HS

DA
H (99.42 , 2.94) (99.65 , 3.15) (96.01 , 32.15) (99.32 , 3.76) (99.20 , 4.01) (94.99 , 32.34)
¬H (99.10 , 1.86) (99.81 , 2.84) (97.67 , 9.66) (98.10 , 2.40) (98.89 , 3.90) (96.20 , 17.01)

¬DA
H (98.13 , 3.10) (99.62 , 2.87) (97.03 , 9.99) (97.21 , 4.01) (99.68 , 2.61) (96.54 , 13.13)
¬H (99.49 , 0.90) (99.32 , 1.67) (97.88 , 6.10) (99.12 , 1.12) (99.01 , 1.29) (97.15 , 5.99)

Baseline LO: (99.56 , 0.98) SUB: (100.00 , 1.30) CON: (99.02 , 5.74)

(c)

Figure 1: HS stands for Human Scoring, DA for Data Augmentation and H for Handpicked anchor points. (a)
Average accuracy on the MNLI test set (b) Accuracies on the HANS evaluation set, which has 3 heuristic categories
and 2 classes. Dashed lines show chance performance. (c) Accuracies on the HANS evaluation set for different
configurations of all the debugging procedures. LO stands for Lexical Overlap, SUB for Subsequence, and CON
for Constituent category of heuristics. For each cell, the first value of the tuple is the accuracy on the entailment
class and the second is the accuracy on the non-entailment class. Best scores for the non-entailment class in bold.

proved three models using different random seeds
and averaged the final performance on the test set.
Note that the (¬HS,¬DA,¬H) configuration is
the algorithm used in Guo et al. (2020) whereas the
(HS,DA,H) and (HS,DA,¬H) configurations
are our HILDIF algorithm.

5 Results

Figure 1b shows the accuracies on the HANS
dataset of the baseline model (i.e., BERT trained
on MNLI), and of four configurations, including
(HS,DA,H) which is displayed as HILDIF in
the figure. We can see that HILDIF consistently
achieved a higher accuracy in all three categories
of heuristics for the non-entailment class and a
slightly lower accuracy for the entailment class.
Actually, we observe the trade-off between the ac-
curacies of both classes in all the four configura-
tions. However, HILDIF still got higher overall
accuracy on the HANS dataset than the baseline

and the other configurations. Moreover, interac-
tive debugging with human scores yielded better
accuracies than debugging without human scores
for the Lexical Overlap and the Subsequence cat-
egories. Meanwhile, on the Constituent category,
handpicking anchor points with targeted heuristic
led to a big jump in accuracy that outperformed
the configuration with human feedback but random
anchor points. Therefore, incorporating human
knowledge since the selecting anchors step is also
helpful when we have prior knowledge about the
model bugs. Note also, in Figure 1a, that the model
accuracies on the MNLI for HILDIF and the other
configurations stay close to the baseline model’s
accuracy, as desired.

The table in Figure 1c shows that fine tuning the
model with augmented data samples, instead of the
influential samples only, gave better results in most
cases. This was likely because data augmentation
could help prevent the model from overfitting the
influential samples. Besides, there was little to no
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improvement in the model performance when we
added user feedback (i.e., human scores) for ran-
dom anchor points but a substantial improvement
for handpicked anchor points. This can be because,
during user feedback collection, most of the data
samples are difficult to compare as they either sat-
isfy several heuristics or no heuristics relevant to
the NLI task. When looking at some influential
samples for handpicked anchor points, most satisfy
the same heuristic and, if not, they can be easily
spotted by human eyes. Although we are still far
from chance performance on the non-entailment
class, HILDIF achieved a substantial increase in
accuracy with just five anchor points.

6 Conclusion

We introduced HILDIF, an interactive explanatory
debugging pipeline for deep text classifiers, and
ran experiments on the NLI task, achieving high
accuracies with MNLI-trained BERT across all cat-
egories of the pathological HANS dataset. Future
work includes enhancement of the data augmenta-
tion part, including the use of a variational auto-
encoder or a GPT-2 based generative model for
synthetic data generation. Also, with more human
resources, experiments can be conducted by fine-
tuning more than one iterations (T > 1) with more
anchor points for each iteration. Finally, it would
be interesting to apply HILDIF to other text classi-
fication tasks, given that, except for the handpicked
anchor points that are chosen with knowledge of the
task, every step of the pipeline is task-independent.
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A Examples and Anchor Points

Table 1 shows an example from the MNLI dataset
(Williams et al., 2018) and three examples from
the HANS dataset (each of which has a different
heuristic type) (McCoy et al., 2019). Besides, Ta-
ble 2 shows the five handpicked anchor points used
in the experiment.

MNLI Dataset
P: News ’ cover says the proliferation of small computer
devices and the ascendance of Web-based applications are
eroding Microsoft’s dominance.
H: Microsoft is a more profitable company than Apple.
Label: non-entailment
HANS Dataset (Lexical Overlap)
P: The professors advised the judge.
H: The judge advised the professors.
Label: non-entailment
HANS Dataset (Subsequence)
P: The professor who introduced the doctors recognized
the secretaries.
H: The doctors recognized the secretaries.
Label: non-entailment
HANS Dataset (Constituent)
P: Certainly the senators recognized the actor.
H: The senators recognized the actor.
Label: entailment

Table 1: Examples of premises and hypotheses from
the MNLI dataset and the HANS dataset. P and H
stand for premise and hypothesis, respectively.

P: Similar conclusions have been reached by state legal
needs ’ studies in a dozen states including Florida , Geor-
gia , Hawaii , Illinois , Indiana , Kentucky , Maryland ,
Massachusetts , Missouri , Nevada , New York , and Vir-
ginia , using a variety of methodologies for estimating the
unmet legal needs of the poor.
H: Similar conclusions have been reached by state legal
needs ’ studies.
Label: entailment
Heuristics: Subsequence
P: From Cockpit Country to St . Ann ’ s Bay.
H: From St . Ann ’ s Bay to Cockpit Country.
Label: non-entailment
Heuristics: Lexical Overlap, Reverse Ordering
P: Shoot only the ones that face us , Jon had told Adrin.
H: Shoot the ones that face us , Adrin told Jon.
Label: non-entailment
Heuristics: Lexical Overlap, Reverse Ordering
P : Just north of the Shalom Tower is the Yemenite Quarter
, its main attractions being the bustling Carmel market and
good Oriental restaurants.
H: The Shalom Tower is north of the Yemenite Quarter.
Label: non-entailment
Heuristics: Lexical Overlap, Reverse Ordering
P : Life , unlike Reich ’ s book , is not a series of morality
fables.
H: Reich ’ s book is a series of morality fables.
Label: entailment
Heuristics: Lexical Overlap, Negation

Table 2: Five handpicked anchor points from the MNLI
validation set, with specific heuristics. P and H stand
for premise and hypothesis, respectively.
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