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Abstract

Nickel and Kiela (2017) present a new method
for embedding tree nodes in the Poincaré ball,
and suggest that these hyperbolic embeddings
are far more effective than Euclidean embed-
dings at embedding nodes in large, hierarchi-
cally structured graphs like the WordNet nouns
hypernymy tree. This is especially true in low
dimensions (Nickel and Kiela, 2017, Table 1).
In this work, we seek to reproduce their exper-
iments on embedding and reconstructing the
WordNet nouns hypernymy graph. Counter
to what they report, we find that Euclidean
embeddings are able to represent this tree at
least as well as Poincaré embeddings, when
allowed at least 50 dimensions. We note that
this does not diminish the significance of their
work given the impressive performance of hy-
perbolic embeddings in very low-dimensional
settings. However, given the wide influence of
their work, our aim here is to present an up-
dated and more accurate comparison between
the Euclidean and hyperbolic embeddings.

1

Nickel and Kiela (2017) introduced a method for learn-
ing embeddings in hyperbolic space for large, hier-
archically structured objects like the WordNet nouns
hypernymy graph. This work convincingly shows
that across a range of embedding dimensions, from
as low as 5 to as high as 200, hyperbolic embed-
dings consistently outperformed their Euclidean coun-
terparts (Nickel and Kiela, 2017, Table 1). Illustrat-
ing the difference in performance at the highest ex-
perimental setting of 200 dimensions, the mean aver-
age precision (MAP) score for hyperbolic embeddings
was shown to be around 5 times that of Euclidean for
embedding nouns in the WordNet hypernymy graph.'
These experiments have been extremely influential,
with the results on embedding the WordNet nouns hy-
pernymy graph baselines often cited in later works on
enhanced hyperbolic embeddings (De Sa et al., 2018;
Ganea et al., 2018; Dhingra et al., 2018; Lopez et al.,
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!"The embeddings were evaluated on a reconstruction task
where a MAP score closer to 1 indicates better performance.
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2019; Balazevic et al., 2019; Feyisetan et al., 2019;
Chami et al., 2020).2

In this work, we reproduce the reconstruction error
experiments on the WordNet noun hypernymy graph
from Nickel and Kiela (2017). Counter to what they
report, we find that Euclidean word embeddings are
as effective at encoding the WordNet nouns graph as
hyperbolic embeddings when given at least 50 dimen-
sions. In fact, Euclidean embeddings with > 100 di-
mensions achieve lower reconstruction error over em-
beddings in the Lorentz model, an improved hyperbolic
embedding method, which was published the following
year (Nickel and Kiela, 2018).

The inability to reproduce the reported Euclidean ex-
periments has been raised in several issues in the asso-
ciated GitHub repository.® This has also been acknowl-
edged by the authors of the original study, who suggest
that the original Euclidean embeddings were regular-
ized in a way that may have hurt performance.* How-
ever, the published manuscript has not been updated to
reflect these problems with reproducing the Euclidean
embedding baselines. As such, we hope that our repro-
duction will serve as a useful reference for those who
are interested in exploring hyperbolic embeddings.

2 Experimental Setup

We use the source code released by the authors to carry
out all experiments in this study, reusing the data pro-
cessing, model training, and evaluation pipelines.

Dataset. Following Nickel and Kiela (2017), we em-
bed the WordNet noun hierarchy (Fellbaum, 1998,
WordNet-Nouns) in both Euclidean and hyperbolic
space. Though the original study also published re-
sults on additional datasets, we restrict our focus to
WordNet-Nouns, which exhibited a considerable gap in
performance between embeddings.

Model training. Other than learning rate, we retain
the default hyperparameters specified in the released
source code, and train embeddings for 1,500 epochs.

2Nickel and Kiela (2017) has been cited over 500 times
(source: www.semanticscholar.org).

*https://github.com/facebookresearch/
poincare—embeddings/issues/35 ;68 ;72

*Author response on GitHub github.com/
facebookresearch/poincare-embeddings/
issues/35#issuecomment-685174866
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Figure 1: MAP of Euclidean, Poincaré, and Lorentz 20-
dimensional embeddings as a function of learning rate. MAP
scores for Poincaré and Lorentz embeddings are very similar
up to a learning rate of 10.0.

The learning rate is tuned in the range 10[~23! inde-

pendently for each class of embeddings (Figure 1) with
dimensionality fixed to 20, and selection based on loss
after 200 epochs. We selected a learning rate of 0.5
for Euclidean and 5.0 for both Poincaré and Lorentz
embeddings. In our initial experiments, we found that
other hyperparameters, such as number of negative
samples, also affected embeddings performance, but
were less influential than learning rate. See Appendix
A for details on the exact version of the codebase used
in our experiments and how it was called. See the origi-
nal study (Nickel and Kiela, 2017) for additional details
on model training and evaluation.

Evaluation. Embeddings are evaluated under the orig-
inal reconstruction error setting. For each hypernym
pair < u,v > in the tree, rank all non-hypernyms along
with v by distance from u in the embedded space. The
fidelity to which a set of embeddings represents the
tree is evaluated according to mean average precision
(MAP) and mean rank (MR) of the positive example,
v, averaged across rankings.

We focus on reconstruction error experiments as they
are meant to highlight the capacity of each embedding
space. The ability to generalize out of sample is an
orthogonal question, however which we don’t address
in this work. This is mostly since the source code to
reproduce these results from Nickel and Kiela (2017)
has not yet been released, and the particular folds of
heldout edges are also not provided. As such, we leave
reproduction of the link prediction evaluation of Eu-
clidean vs. hyperbolic embeddings to future work.’

3 Results

Table 1 shows the MAP and MR results for the
WordNet-Nouns hierarchy reconstruction task. There
are clear differences between the reproduced and re-
ported performance for Euclidean embeddings. In the
50 dimensions setting, the reproduced Euclidean em-
beddings achieve a MAP score of 88.9 compared to 14
in the original study, and an MR score of 1.8 compared
to 1,281. In fact, this MR score for Euclidean embed-

SAt the time of writing, there is an open GitHub
issue to provide more details on the out of sample,
link prediction evaluation https://github.com/
facebookresearch/poincare-embeddings/
issues/10.
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dims 5 10 20 50 100 200
Mean Average Precision % (higher is better):
Euclidean
N&K 24 5.9 8.7 14 162 16.8
ours 2.7 45 112 889 917 922
Poincaré
N&K 828 86.5 855 86  85.7 87
ours 85.6 887 89.1 893 892 893
Lorentz
N&K 923 928 — — — —
ours 874 88.6 895 893 894 894
Mean Rank (lower is better):
Euclidean
N&K 3542 2286 1685 1281 1187 1157
ours 3646 1455 244 1.8 1.5 1.5
Poincaré
N&K 4.9 4.0 3.8 3.9 3.9 3.8
ours 6.8 5.6 5.2 4.9 4.9 4.9
Lorentz
N&K 3.1 2.9 — — — —
ours 6.6 5.5 5 4.9 4.8 4.8

Table 1: Mean average precision and mean rank for recon-
structing the WordNet-Nouns hypernymy graph. N&K refers
to best published results from Nickel and Kiela (2017, 2018).

Embedding MAP MR
Euclidean  89.24+0.33 1.8 +£0.00
Poincaré 89.4+0.09 4.9 +0.01
Lorentz 89.4+0.26 4.9+0.10

Table 2: Mean and standard deviation of MAP and MR for
50-dimensional embeddings across three different random
restarts.

dings at 50 dimensions is better than that achieved by
Poincaré and Lorentz embeddings even with 200 di-
mensions. With greater than 50 dimensions, Euclidean
embeddings outperform both Lorentz and Poincaré em-
beddings according to MR and MAP.

In contrast, the performance of hyperbolic embed-
dings remain stable across dimensionality and are sim-
ilar between reproduced and reported results. The im-
proved reconstruction error of Lorentz embeddings in
prior work is likely due to a more comprehensive hy-
perparameter search.

We also found that performance is robust to random
seed for all methods, with a standard deviation of less
than a point for both MAP and MR score when training
50-dimensional Euclidean, Poincaré, or Lorentz em-
beddings (Table 2).

4 Analysis

In Section 3, we show it is possible to learn Euclidean
embeddings that can reconstruct WordNet-Nouns more
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dims 5 10 20 50 100 200
Mean Average Precision % (higher is better):
N&K 2.4 59 87 140 162 16.8
ours: unit norm 2.4 5.0 76 106 120 125
ours: no norm 2.7 4.5 112 889 917 922
Mean Rank (lower is better):
N&K 3542 2286 1685 1281 1187 1157
ours: unitnorm 3807 2275 1697 1276 1184 1159
ours: no norm 3646 1455 244 1.8 1.5 1.5

Table 3: MAP and MR for reconstructing the WordNet-Nouns hypernymy graph. Results from N&K (Nickel and Kiela, 2017,
2018) and our reproduction with Euclidean embeddings constrained to unit norm are similar.

faithfully than similarly trained hyperbolic embeddings
with at least 50 dimensions. In this section, we dis-
cuss possible reasons for the discrepancy between re-
ported and reproduced Euclidean embeddings perfor-
mance. We first posed this question to the authors
themselves (Nickel and Kiela, 2017) who clarified on
GitHub that the difference in performance for Eu-
clidean embeddings in their published manuscript was
due to a regularization method used at the time. They
further added that in the released code they “disabled
this regularization by default and it turned out to work
better”.® Follow-up questions regarding the details of
this regularization method have yet to be addressed, at
the time of writing.”

Constraining Euclidean Embedding Norm We
speculate that the authors may have normalized the Eu-
clidean embeddings to constrain them to lie within a
unit 2-norm ball, similar to how Poincaré embeddings
are trained (Nickel and Kiela, 2017, Section 3.1). Note
that while projection into the unit ball is necessary to
learn valid Poincaré embeddings, Euclidean embed-
dings require no such constraint.

The released source code actually supports project-
ing Euclidean embeddings into the unit ball after each
iteration, but this is disabled by default, with the argu-
ment max_norm set to None.® To test whether this con-
straint has an effect on embedding quality, we train Eu-
clidean embeddings constrained to the unit ball by set-
ting max_norm to 1. Table 3 shows that reconstruction
scores for Euclidean embeddings constrained to the
unit ball are much closer to those published in Nickel

®Author response regarding difference in Eu-
clidean performance https://github.com/
facebookresearch/poincare-embeddings/
issues/35#issuecomment-685261354

"Question  seeking further information  regard-
ing regularization https://github.com/
facebookresearch/poincare-embeddings/
issues/35#issuecomment-685261354  and
relevant comment in i ssuecomment—-735209781.

812 normalization disabled by default:
https://github.com/facebookresearch/
poincare—embeddings/blob/4c7316b/hype/
manifolds/euclidean.py#L16.

a
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and Kiela (2017, 2018) than unconstrained Euclidean
embeddings.

Varying Norm Constraints To explore the impact of
norm constraints, we conduct further experiments on
training 100 dimensional Euclidean embeddings. We
vary the max_norm setting between 1 and 10, allowing
the Euclidean embeddings to grow larger during train-
ing. As an alternative method for controlling the norm
of the embeddings, we also vary the strength of an L2
penalty as an additional term in the loss. MAP and MR
scores improve as the max_norm setting is increased,
the norm constraint is relaxed (Table 4). In fact, set-
ting max_norm to 5 yields Euclidean embeddings that
achieve similar reconstruction performance as uncon-
strained embeddings.

We found that including an L2 regularization penalty
in the loss has little effect on the final reconstruction
scores. Thus, although we suspect unnecessary renor-
malization of the Euclidean embeddings may have
caused the poor reconstruction performance reported in
prior work, we defer to the authors of the original study
for confirmation.

Constraint MAP MR
None (default) 91.7 1.5
L2 regularization = 0.01 923 1.5
L2 regularization = 1.0 92.3 1.5
L2 regularization = 100.0  92.2 1.5
max norm = 1 11.2  1150.0
max norm = 2 38.3 40.3
max norm = 5 92.3 1.5
max norm = 10 92.3 1.5
N&K 16.2 1187.3

Table 4: MAP and MR for 100 dimensional embeddings. We
include results with no regularization or constraints (row 1)
and with L2 regularization of varying degree. max norm =
k means that embeddings are projected back into a radius k
2-norm ball after each iteration. N&K refers to best published
results from Nickel and Kiela (2017, 2018).
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5 Conclusion

In our reproduction of the experiments in Table 1 of
Nickel and Kiela (2017), we find that Euclidean ac-
tually outperform Poincaré embeddings when allowed
a moderate number of dimensions. This is a realistic
number of dimensions for typical non-contextual word
embeddings, and a far lower dimensionality than sub-
word token embeddings used in pretrained transformer
language models. For example, released GloVe em-
beddings range from 50 to 300 dimensions (Penning-
ton et al., 2014) and BERT base uses 768-dimensional
subword embeddings (Devlin et al., 2019).

Nevertheless, the strong performance of hyperbolic
embeddings in very low dimensions (less than 20)
highlights their main strength: succinctly embedding
nodes in hierarchically structured graphs with tight lim-
itations on embedding size.

However, part of Nickel and Kiela (2017)’s impact
came from the astounding gains from hyperbolic em-
beddings over Euclidean across a wide range of em-
bedding widths. Subsequent application of Poincaré
embeddings often report mixed results when using non-
Euclidean vs. Euclidean embeddings in downstream
tasks (Dhingra et al., 2018; Lépez et al., 2019). We
hope that this reproduction will serve as a valuable ref-
erence for others who are just beginning to explore hy-
perbolic embeddings.

Acknowledgments

We thank Maximilian Nickel and Douwe Kiela for their
helpful feedback while carrying out this study and for
making the source code available. We also thank the
workshop organizers for providing an avenue for such
work to be published and the anonymous reviewers
whose feedback helped us improve this work. Thanks
also to the GitHub users who reported similar issues in
the source code repository, which motivated us to pub-
lish this study.

References

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. Multi-relational poincaré graph embeddings.
In Proc. NeurIPS.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. In Proc. ACL.

Christopher De Sa, Albert Gu, Christopher Ré, and
Frederic Sala. 2018. Representation tradeoffs for hy-
perbolic embeddings. Proc. MLR, 80:4460.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proc. NAACL, pages 4171-4186.

Bhuwan Dhingra, Christopher Shallue, Mohammad
Norouzi, Andrew Dai, and George Dahl. 2018.

52

Embedding text in hyperbolic spaces. In Proc.

(TextGraphs-12).

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database.

Oluwaseyi Feyisetan, Tom Diethe, and Thomas Drake.
2019. Leveraging hierarchical representations for
preserving privacy and utility in text. In Proc.
ICDM.

Octavian Ganea, Gary Bécigneul, and Thomas Hof-
mann. 2018. Hyperbolic neural networks. In Proc.
NeurlPS.

Federico Lépez, Benjamin Heinzerling, and Michael
Strube. 2019. Fine-grained entity typing in hyper-
bolic space. In Proc. (RepL4NLP-2019).

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Proc. NeurIPS.

Maximillian Nickel and Douwe Kiela. 2018. Learning
continuous hierarchies in the lorentz model of hyper-
bolic geometry. In Proc. ICML.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proc. EMNLP, pages 1532-1543.


https://doi.org/10.18653/v1/W18-1708
https://doi.org/10.18653/v1/W19-4319
https://doi.org/10.18653/v1/W19-4319

A Call to Poincaré Embedding Trainer

Sample call to train embeddings and run reconstruction
evaluation:

### Parameters
LR=0.5

DIM=20
MANIFOLD="euclidean”

# Train model

python —m hype.embed \
—checkpoint model. bin
—dset wordnet/noun_closure.csv
—epochs 1500
—negs 50
—burnin 20
—dampening 0.75
—ndproc 4
—eval_each 100 \
—fresh
—sparse
—burnin_multiplier 0.01
—neg_multiplier 0.1
—Ir_type constant
—train_threads 1
—dampening 1.0
—batchsize 50
—manifold ${MANIFOLD}
—dim ${DIM}
—1r ${LR}

python reconstruction.py model.bin.1499

We use the poincare—embeddings

implementation https://github.
com/facebookresearch/
poincare-embeddings at commit

4c7316bl4dce3b89e6a2d0c7994d418dffb42c94.
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