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Abstract

Machine translation systems are vulnerable
to domain mismatch, especially in a low-
resource scenario. Out-of-domain translations
are often of poor quality and prone to halluci-
nations, due to exposure bias and the decoder
acting as a language model. We adopt two
approaches to alleviate this problem: lexical
shortlisting restricted by IBM statistical align-
ments, and hypothesis re-ranking based on
similarity. The methods are computationally
cheap, widely known, but not extensively ex-
perimented on domain adaptation. We demon-
strate success on low-resource out-of-domain
test sets, however, the methods are ineffective
when there is sufficient data or too great do-
main mismatch. This is due to both the IBM
model losing its advantage over the implicitly
learned neural alignment, and issues with sub-
word segmentation of out-of-domain words.

1 Introduction

Neural Machine translation (NMT) has achieved
state-of-the-art performance in a variety of lan-
guage pairs and settings (Bahdanau et al., 2015;
Vaswani et al., 2017), but it is vulnerable to domain
mismatch, where the test set differs significantly
from the training data in terms of vocabulary, genre,
length, etc. This issue is exacerbated in a low-
resource condition (Koehn and Knowles, 2017).

Teacher forcing is used during traditional maxi-
mum likelihood neural network training, leading to
a strong exposure bias, and model confusion when
presented with unexpected sequences. This typi-
cally results in hallucinations in the output (Müller
et al., 2020), because the overly zealous language
model component prefers a fluent translation, as
opposed to an adequate one. A number of methods
have been proposed in order to tackle the issue: ex-
posing the model to its predictions during training
(Ranzato et al., 2015; Shen et al., 2016; Zhang et al.,
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2019; Wang and Sennrich, 2020); tuning directly
towards BLEU (Wiseman and Rush, 2016) or using
minimum Bayes risk decoding (Kumar and Byrne,
2004; Stahlberg et al., 2017). A common weakness
of such methods is that they are computationally
expensive.

In this paper, we adopt and experiment with two
approaches inspired by previous research. We use
lexical shortlisting to interpolate a statistical align-
ment model with NMT; on top of it, we perform
n-best list re-ranking by hypothesis agreement. Our
aim is to constrain the lexical choice of the de-
coder, to prevent hallucinations from being gen-
erated. The methods are computationally simpler,
as they require no change to the model or training.
We analyse the effectiveness of these methods in
different scenarios of domain adaptation. We show
BLEU gains on a variety of out-of-domain datasets
in a low-resource English-German setting. How-
ever, the methods show no improvements once the
datasets are large, or the domains are too distant.

2 Methodology

We purse and analyse two separate strategies for im-
proving neural machine translation’s performance
in low-resource domain mismatched settings: lexi-
cal shortlisting and n-best list re-ranking based on
inter hypothesis agreement.

2.1 Lexical shortlisting

Neural machine translation systems have a vocabu-
lary size of tens of thousands, but for every single
translation, most of the vocabulary items are im-
probable choices. Many researchers attempt to
improve on this to speed up the computation in the
output layer (Schwenk et al., 2007; Le et al., 2012;
Devlin et al., 2014). This is done by preparing a list
of likely word-level translations for each sentence
(commonly known as lexical shortlist), by using
IBM alignment models such as fast-align (Dyer
et al., 2013) and limiting the output layer choices
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to it. This has been implemented in NMT frame-
works for efficient systems (Junczys-Dowmunt
et al., 2018b) and since widely used (Bogoychev
et al., 2020, inter alia).

Recently, Li et al. (2019) showed that even in
a high-resource scenario, the quality of the IBM
alignments can outperform those learned by a neu-
ral model. Therefore, we find it sensible to incorpo-
rate word alignments into neural models, especially
in a low-resource situation. Although shortlists
have a negligible impact on the quality of strong
neural systems, we can successfully limit the out-
put layer to the likely tokens according to an IBM
model trained on a particular domain, and improve
out-of-domain BLEU scores in a low-resource set-
ting. This suggests that the IBM model provides
complementary information to the neural model in
this scenario.

2.2 Hypothesis re-ranking
Fomicheva et al. (2020) estimate the quality of ma-
chine translation by measuring the agreement of the
generated hypotheses for a given source sentence.
The reason is that (higher) similarity between hy-
potheses reflects (higher) model confidence. In our
problem, we assume that a hallucinated hypothesis
will have a low agreement with the rest in the beam.
Thus, we propose to re-rank the n-best list based on
inter-hypothesis similarity and select the top one as
the final translation.

For every source sentence, NMT generates b
hypotheses where b is the beam size. For each
hypothesis, we measure its similarity against others
in the beam, then sort all hypotheses by their final
aggregated similarity scores. The similarity score
scorei for a certain hypothesis hypi is calculated
as Equation 1, where the similarity between hypi
and every other hypj produced by the model is
measured by an automatic metric similarity:

scorei =
b∑

j=0,i 6=j

similarity(hypi, hypj) (1)

3 Experimental setup

For our experiments, we use OPUS English-
German data (Lison and Tiedemann, 2016), with
preprocessing performed as per the work of Müller
et al. (2020). We follow the same data split as Wang
and Sennrich (2020)’s low-resource, domain re-
stricted setting: a model is trained on 1M sentences
pairs from the medical domain, and is evaluated

on medical (in-domain), Koran, IT, subtitles and
law (out-of-domain). We use a joint vocabulary
byte-pair encoding (BPE, Sennrich et al., 2016)
trained on the medical domain with 32k merge op-
erations. In this way, the vocabulary trained on the
medical domain may be sub-optimal for the out-of-
domain test sets. In reality, monolingual data from
unknown domains might be available, which can
reduce the bias of the BPE training towards the in-
domain data. In order to simulate this scenario, we
perform an analogous experiment where the BPE
vocabulary is trained on all domains, except the
subtitles corpus, as it is much larger than other do-
mains and would dominate the vocabulary (reasons
elaborated in Section 5).

For training, we used the Transformer-base pre-
set of the Marian toolkit (Junczys-Dowmunt et al.,
2018a) with transformer preprocessing normalisa-
tion as opposed to postprocessing normalisation,
and additional attention and feed-forward layer
dropout.

We performed ample hyperparameter search,
to ensure that our neural network configuration
achieves the best possible performance on this low-
resource task. Decoding is always done with beam
size 6 and length normalisation 0.6. On top of the
baseline, we tried three different combinations of
methods introduced in Section 2:

• A shortlisting configuration where we use a
lexical shortlist generated by the fast-align
model trained on the medical dataset. We
try various configurations, and we settle on
an optimal value of limiting the output layer
to the 10 most probable unigram translations
according to the IBM model.

• A re-ranking setup where we re-rank the n-
best translation based on inter-hypothesis sim-
ilarity. Like Fomicheva et al., we tested out
a few different metrics to measure similarity:
sentBLEU, ChrF, TER and METEOR. In an
initial experiment on the medical domain, we
found sentBLEU to have the best performance
and stick to it for all experiments. We did not
pick any neural metrics, as they may have a
domain preference and are less interpretable.

• Both: shortlisting followed by re-ranking as
specified above
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Domain
BPE trained on medical only BPE trained on all except subtitles

baseline shortlist re-rank both baseline shortlist re-rank both
medical 60.0 59.5 60.3 59.1 61.4 58.2 57.6 60.4
Koran 0.9 1.0 0.7 1.1 0.8 0.9 0.9 1.0
law 19.6 20.6 16.6 17.8 17.8 19.3 19.8 20.8
IT 15.0 16.3 10.1 11.5 15.7 18.0 15.3 17.8
subtitles 2.8 3.1 1.4 1.9 2.6 2.8 2.4 2.8

Table 1: BLEU results on German-English systems trained on the medical domain, and tested on in-domain and
out-domain datasets. In-domain results are in italics and the best BLEU on each domain dataset are in bold.

Domain System 1- to 4-gram precisions
Brevity
penalty

BLEU (4) METEOR (4)

law

baseline 53.0 27.5 16.9 11.0 0.778 17.8 0.36
shortlist 56.1 29.4 17.9 11.4 0.804 19.3 (+1.5) 0.39 (+0.03)
re-rank 51.4 26.4 16.1 10.5 0.906 19.8 (+2.0) 0.31 (−0.05)

both 53.1 27.6 16.7 10.7 0.919 20.8 (+3.0) 0.35 (−0.01)

IT

baseline 34.6 18.8 13.1 9.5 0.930 15.7 0.16
shortlist 43.9 24.7 17.1 12.1 0.828 18.0 (+2.3) 0.18 (+0.02)
re-rank 33.5 17.2 11.7 8.1 1.000 15.3 (−0.4) 0.12 (−0.04)

both 38.0 20.1 13.6 9.7 1.000 17.8 (+2.1) 0.09 (−0.07)

Table 2: Breakdown of BLEU scores for “BPE on all” experiments in Table 1 for law and IT domains.

4 Results and Analysis

We present in Table 1 our models’ BLEU scores
on in- and out-of-domain test sets, with both BPE
segmentation schemes. When applying the more
restrictive BPE trained on the medical domain, our
shortlisting mechanism always yields a slight in-
crease in BLEU on out-of-domain sets and a small
drop on the in-domain set. The law and IT domains
benefit the most, whereas subtitles and Koran are
largely unaffected. Re-ranking is not helpful in this
BPE setting.

When using the alternative BPE segmentation
trained on all datasets, we see that the baseline
scores are generally lower for the out-of-domain
datasets, despite a stronger in-domain BLEU. This
is potentially because the rare words from out-of-
domain datasets get insufficient exposure during
training (on medical only). However, when using
a lexical shortlist in this setting, we see greater
improvements in terms of BLEU on the law and
IT domains compared to the medical-only BPE
scenario. Re-ranking is also much more effective,
performing similarly to shortlisting. The combina-
tion of re-ranking and shortlisting delivers the best
BLEU scores in nearly all out-of-domain splits.

We see that the shortlisting method is always su-
perior to the baseline method on all out-of-domain

datasets, although the results vary with the data
preprocessing. This is true even more so of re-
ranking, which is much better when the BPE vo-
cabulary is learned on all domains. Combining
both shortlisting and re-ranking always brings in a
slight improvement over just re-ranking on the out-
of-domain datasets, but its effectiveness is again
preprocessing-dependent.

This clearly shows that the IBM model imple-
mented by fast-align can learn information comple-
mentary to NMT, and interpolating them is bene-
ficial for achieving higher BLEU scores in out-of-
domain settings. The lower BLEU scores on in-
domain test sets are related to the aggressive short-
list we used: by increasing the output layer limit
from 10 to 50 most probable tokens, we achieve
identical BLEU scores as the baseline.

4.1 BLEU breakdown

According to BLEU scores reported earlier, short-
listing and re-ranking are beneficial to NMT do-
main adaptation (in a relatively low-resource condi-
tion). We try to understand what contributes to the
increase in BLEU scores by breaking down BLEU
scores into n-gram precisions and length (brevity)
penalty. In Table 2 we list the numbers for law and
IT domains, under the “BPE trained on all” setting
in Table 1, on which we have seen the largest leap
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Domain law medical subtitles† IT Koran
Number of sentences 695k 1M 1M 372k 529k
Avg. original sentence length 22.1 12.5 8.0 7.5 20.4
Avg. BPE sentence length 30.4 14.3 11.1 12.7 24.1
Vocab size, appearing >20 times 34k 36k 30k 15k 20k
Vocab overlap with medical 11.5k 36k 9.0k 5.8k 5.1k
† The subtitles corpus was sampled down from 20M to 1M sentence pairs.

Table 3: Corpus statistics for the different domains.

German English
sein Pilot hat nicht die volle Kontrolle . its p@@ il@@ ot is@@ n’t in control .

und Z@@ eth@@ rid ? nur einen Strei@@ f@@ sch@@ uss . and , Z@@ eth@@ rid , just gr@@ aze it .

Table 4: Two random German-English sentence pairs from the subtitles dataset after BPE.

of BLEU scores. Additionally, we include ME-
TEOR which focuses on n-gram overlap and is not
influenced by the output length.

From the table, shortlisting always significantly
boosts n-gram precisions, whereas re-ranking alone
decreases them. On the other hand, re-ranking “rec-
tifies” the output length, leading to a better brevity
penalty (closer to 1) compared to baseline or short-
listing. When using both together, we see slight
improvement on both n-gram accuracies and length
penalty over baseline. This is expected: shortlisting
provides extra word alignment information which
aids lexical accuracy; re-ranking favours the hy-
pothesis with an average length, since too long or
too short hypotheses will receive a lower similarity
score. This implies that shortlisting and re-ranking
enhance BLEU from different aspects.

On the contrary, according to METEOR, re-
ranking is outperformed even by the baseline, lead-
ing to a negative METEOR change. This suggests
that the bump in BLEU scores by re-ranking is only
due to an improved brevity penalty. While it en-
courages a more desirable length, re-ranking does
not produce better lexical choices. Adequacy wise,
shortlisting is proven to be a more constructive
method.

5 Limitations

Although our methods show promising gains on
the low-resource domains, we found that they have
limited application when the domain mismatch is
too great or there is sufficient resource available.

5.1 Large domain mismatch
In order to better interpret why our methods are
much more helpful on some domains than on others

(e.g. law versus Koran), we gather statistics of our
test sets in different domains in Table 3, to reflect
the distance between domains. We compute vocab-
ulary overlap with the in-domain medical data, for
each cleaned corpus prior to BPE encoding. We
count only words that are seen at least 20 times,
and we sample 5% of the subtitles corpus, since it
is orders of magnitude larger than the rest. After
down-sampling, it has a similar size to the medical
corpora. We also compute the average sentence
length before and after BPE to determine the extent
to which BPE transforms the original sentences.
Both vocabulary overlap and sentence lengths im-
plicitly reflect the degree of domain mismatch.

For our most difficult datasets, subtitles and Ko-
ran, we see the lowest vocabulary overlap with the
medical domain of just 22-25%. When BPE is ap-
plied to these corpora, the sentence length increases
by 20-30%. In practice, extensive and uneven BPE
segmentation on named entities makes it difficult
for the IBM model to produce interpretable and
meaningful alignments to aid a translation model,
as exemplified in Table 4.

This means that lexical shortlisting is useful
when we have a model trained on a relatively
modest amount of data, and the out-of-domain
dataset which we adapt to should share a reason-
able amount of vocabulary. When the vocabulary
overlap is too small, shortlisting drastically loses
its effectiveness as a domain adaptation tool.

We confirm this by experimenting with an-
other domain-distant, and extremely low-resource
Burmese-English scenario. The training data con-
sists 18k sentence pairs from news articles (Ding
et al., 2019), and the out-of-domain test set is a
Bible corpus (Christodouloupoulos and Steedman,
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2015). The English side of the training set has 51k
unique words, while the Bible set has 29k. The
vocabulary overlap between the training and test
sets is just 6k words, equivalent to 21% of the test
vocabulary. After BPE, The average test sentence
length increases from 25 to 38 tokens, seeing a 52%
rise. We adopt the model trained by Aji et al. (2020)
and add shortlisting during decoding. The results
displayed in Table 5 show that out-of-domain per-
formance does not improve with shortlisting, likely
due to the high degree of vocabulary mismatch.

baseline shortlist
news (in-domain) 18.00 15.7
Bible 0.2 0.2

Table 5: Very low-resource Burmese-English results.

5.2 Availability of resources
Our previous German-English experiments are car-
ried out under an artificially resource-constrained
condition. We therefore verify the potential of our
methods in a high-resource setting too, by applying
shortlisting on a WMT19 German-English submis-
sion from Microsoft (Junczys-Dowmunt, 2019),
and evaluating on the same out-of-domain datasets.

Microsoft WMT19 low-resource
baseline shortlist baseline

medical 14.4 14.4 61.4
Koran 0.0 0.0 0.8
law 8.7 8.7 17.8
IT 15.4 15.4 15.7
subtitles 1.0 1.0 2.6

Table 6: High-resource German-English results.

Results in Table 6 show that shortlisting has no
impact on BLEU comparing to the baseline. We
conclude that given a high-resource setting and the
apparent large domain mismatch, the IBM model’s
alignments do not contribute additional informa-
tion to the model. This finding is corroborated
by Li et al. (2019): IBM model alignments are
mostly better at capturing function words, not con-
tent words, compared to a neural model. Further-
more, unnatural and aggressive BPE segmentation
on out-of-domain text (e.g. Table 4) could result
in a lexical shortlist not capturing any meaningful
alignment.

We add our low-resource baseline trained on
medical with BPE on all data (Section 4 Table 1)

to comparison, and find that it surpasses the huge
WMT model on each domain. Two reasons account
for this: a WMT model is heavily biased to the
news domain only; and the BPE scheme learned
from news data is inferior to one learned from the
out-of-domain datasets, when being evaluated on
these domains.

6 Conclusion

We explore computationally cheap methods to im-
prove neural machine translation performance in
out-of-domain settings. We suggest that adding a
lexical shortlist trained on the same data is always
beneficial. While re-ranking also improves BLEU,
it targets the BLEU brevity penalty, and does not
produce better word choices. Although our results
are promising in a low-resource condition, they do
not transfer well to a scenario with very distant do-
mains or sufficient resources. Our analysis shows
that this is due to little vocabulary overlap, and the
limited contribution from the IBM model under
out-of-domain BPE segmentation.
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