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Abstract

Word segmentation, the problem of finding
word boundaries in speech, is of interest for
a range of tasks. Previous papers have sug-
gested that for sequence-to-sequence models
trained on tasks such as speech translation or
speech recognition, attention can be used to
locate and segment the words. We show, how-
ever, that even on monolingual data this ap-
proach is brittle. In our experiments with dif-
ferent input types, data sizes, and segmenta-
tion algorithms, only models trained to predict
phones from words succeed in the task. Mod-
els trained to predict words from either phones
or speech (i.e., the opposite direction needed to
generalize to new data), yield much worse re-
sults, suggesting that attention-based segmen-
tation is only useful in limited scenarios.1

1 Introduction

Word segmentation is the task of finding word
boundaries in speech. The task has a wide range
of applications, including documenting under-
resourced languages (Dunbar et al., 2017) and boot-
strapping speech recognizers (Juang and Rabiner,
1990). It is often the first step to a variety of un-
supervised speech tasks (Chung and Glass, 2018;
Chung et al., 2018; Baevski et al., 2021) and to
the NLP pipeline for languages with no whitespace
between words.

While unsupervised speech segmentation has
been studied (Kamper et al., 2017; Räsänen et al.,
2015), in many cases a parallel data source may
be available, such as transcriptions, translations,
or images. Previous researchers have suggested
that it is possible to extract word segments from
the attention map created by training an end-to-
end sequence-to-sequence model on such paral-
lel data (Palaskar and Metze, 2018; Boito et al.,
2017, 2019, 2020; Godard et al., 2018). However,

1code available in the following link
https://github.com/ramonsanabria/insights_2021

Palaskar and Metze’s evaluation was non-standard2

and the others (which we refer to collectively hence-
forth as BOITOEA) used models with text trans-
lations on the input side—decoding to phones or
phone-like units—which means the trained models
cannot be applied to segment novel (untranslated)
sequences. In addition, the interpretation of atten-
tion as alignments in other areas of NLP has been
questioned (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019).

Prompted by the prior work, we set out to study
word segmentation with attention in sequence-to-
sequence models, aiming to better understand when
and how attention can be interpreted as alignments
and in what settings it can be used to segment
words. Our main experiments follow BOITOEA
in performing and evaluating word segmentation
on the same data used to train the sequence-to-
sequence model. However, instead of training trans-
lation models as in BOITOEA, we train models to
perform speech recognition: a well-studied task
with a simpler (monotonic) alignment structure.
This setting is similar to forced alignment, where
both the speech and the transcription are given, and
the goal is to discover the hidden alignments. Aside
from this potential use case, this setting is useful for
analysis because it abstracts away from the need to
generalize to a novel test set. If the attention is not
able to provide acceptable word boundaries in this
setting, then the approach is unlikely to succeed in
other, more difficult, settings.

We perform experiments on both the low-
resource Mboshi dataset from BOITOEA and a
much larger English dataset, MuST-C (Di Gangi
et al., 2019). We study models trained in both di-
rections with a variety of input-output types (e.g.,
phones, speech frames) and different postprocess-
ing strategies to extract alignments from the atten-

2For their ASR model, they reported mean frame error rela-
tive to a forced alignment. Positive and negative errors cancel,
so a small mean error does not imply correct boundaries.

https://github.com/ramonsanabria/insights_2021
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tion weights. We find that although the particular
configuration used by BOITOEA works well, in
most configurations the word segments extracted
from the attention map are poor, even when using
a larger dataset or model size. In particular, we
did not get good results from any of the configu-
rations that can be applied to a novel test set or to
speech frames (rather than phone-like units). We
conclude that even in the simple monotonic case
studied here, attention typically does not provide
clear word-level alignments.

2 Problem Setting

We consider an n-sample dataset S =
{(x1,y1, z1), . . . , (xn,yn, zn)}, each of which is
a triplet (x,y, z) ∈ X × Y × Z . As an example,
X is the set of sequences of speech frames, Y is
the set of sequences of words, and Z is the set
of sequences of segments, where a segment is a
triplet (s, t, w) that indicates the start time s, the
end time t, and the word w.

The goal is to learn a function f : X × Y →
Z given only S|xy = {(x1,y1), . . . , (xn,yn)},
i.e., discovering the alignments without observing
them. Formally, we aim to find f that minimizes∑n

i=1 `(f(xi,yi), zi) using only S|xy, for some
loss function ` that evaluates the quality of the seg-
mentation. Note that the evaluation of f is on the
set S. We could evaluate f on a test set, but, in gen-
eral, generalization is not involved in this setting.3

The setting is general, subsuming many tasks.
When X is the set of speech utterances and Y is the
empty set, this is the usual unsupervised word seg-
mentation. The set Y can be images or translations,
grounding words from other modalities (Harwath
et al., 2018). In this work, we focus on Y being
transcriptions, i.e., we have a forced alignment task.

3 Word Segmentation with Attention

Our pipeline, due to BOITOEA, consists of two
steps: generating an attention map from a sequence-
to-sequence model, followed by postprocessing to
convert the map into an alignment.

3.1 Sequence-to-Sequence Models

Below is a review of sequence-to-sequence models.
Readers should refer to, for example, Luong et al.
(2015) for a detailed exposition.

3We do report generalization results in the Appendix, for
completeness, though these do not change our main story.

(a) speech

(b) phones

Figure 1: Example attention maps for sequences us-
ing (a) speech or (b) phones as input. Note that for
space reasons, the maps are shown transposed: each
row shows the attention for a single output timestep.

Given a speech utterance x = x1x2 · · ·xT or
simply x1:T and its transcription y = y1:K , a
sequence-to-sequence model learns a function of
X → Y . An encoder Enc and a decoder Dec
take x and y as input and produce their respec-
tive hidden vectors h1:T = Enc(x1:T ) and q2:K =
Dec(y1:K−1).

The attention map

αt,k =

exp
(
Wa

[
ht
qk

])
∑T

i=1 exp
(
Wa

[
hi
qk

]) (1)

is computed with a weight matrixWa. Examples
are illustrated in Figure 1. In the early stages of the
project, we experimented with dot product attention
and the results were similar. Finally, the probability
of the label is computed as

p(yk|y1:k−1, x1:T ) = softmax
(
W

[
ck
qk

])
(2)

where ck =
∑T

t=1 αt,kht. The model is trained to
maximize the probability

p(y1:K |x1:T ) = p(y1|x1:T )
K∏
k=2

p(yk|y1:k−1, x1:T ).

We emphasize that, in our setting, x and y are
always given, also known as teacher forcing (Lamb
et al., 2016), and we are interested in the attention
map α, not how well the model maps x to y. Note
that the assignments to x and y can be swapped
since both are given. For example, we can align
word transcriptions to phonetic transcriptions, or
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vice versa. However, the choice of directionality
has two implications. First, for each output yk,
some parts of x will have high attention weights,
whereas for parts of x, there may be no yk with
high weights. This asymmetry affects the choice of
postprocessing method, as described below. Sec-
ond, typically only one direction will be feasible if
we want to apply the trained model to new (unan-
notated) data. While our experiments here focus on
segmenting the training set, we would ideally like
to find a method that can also work on new data.

3.2 Postprocessing

We explore three types of postprocessing to obtain
the alignments from the attention map α. The first
of these was introduced by Boito et al. (2017); the
others are novel.

Hard Assignment This approach aligns each
output symbol yk to the input that has the high-
est attention weight, i.e., to xtk , where tk =
argmaxt αt,k. Due to the attention map asymme-
try noted above, this approach is only applied when
the transcribed words are on the input side; other-
wise some phones (or speech frames) may not be
aligned to any word. This method hypothesizes a
word boundary between two output symbols if they
are aligned to different words; otherwise they are
considered part of the same word.

BOITOEA mainly use this method to train trans-
lation models (French input words; Mboshi output
phones), but Boito et al. (2020) also present mono-
lingual results (Mboshi input words; Mboshi output
phones), which we compare to below.

Thresholding When the attention weight is
higher than a threshold τonset, then we hypothe-
size a start of a word segment. When the attention
weight is lower than a threshold τoffset, then we hy-
pothesize an end of a word segment. Thresholds
are set by exhaustive search using F-score on the
development set as the search metric. Thresholding
can generate multiple segments for a given output,
which is not desirable for our setting. However, in
an automatic speech translation setup, such behav-
ior can be helpful in some language pairs.

Segmental Assignment Since we know that
word segments are contiguous chunks of speech,
this constraint should be baked into the post-
processing. In particular, we find a sequence
(s1, t1), . . . , (sK , tK) such that the sum of at-
tention weights that each segment covers, i.e.,

∑tk
t=sk

αt,k, is maximized, while respecting the
connectedness constraint, i.e., sk+1 = tk + 1. This
can be achieved by finding the maximum weighted
path in a graph with edges as word segments and
weights of the edges as the attention weights a
segment covers. See a detailed description in Ap-
pendix A.1 and (Tang et al., 2017).

4 Experiments

Most of our experiments are conducted on the
Mboshi dataset. It contains 4616 short read-speech
utterances for training (3 seconds/6 words on aver-
age; 4.5h in total), with a vocabulary of 6638 words,
and 514 utterances for development. Mboshi is
a Bantu Language with no orthography, and the
speech is transcribed at the word level using a pho-
netic orthography designed by linguists. We regard
the basic units in the transcriptions as phones.4 We
do not use the French translations of the utterances.

For experiments with speech, we use Kaldi to ex-
tract speech features, with a 25 ms window shifted
by 10 ms. Each acoustic frame consists of 40-
dimensional log mel features and 3-dimensional
pitch features. The acoustic feature vectors are
used directly, we do no clustering or acoustic unit
discovery.

We use a 1-layer bidirectional LSTM encoder
and a 1-layer unidirectional LSTM decoder,5 with
0.5 dropout on the encoder and a 256-dimensional
hidden layer.6 Further hyperparameter details are
in Appendix A.2.

As noted above, our main questions do not re-
quire testing generalization, so except where oth-
erwise noted (to compare to previous work), we
evaluate all models on the training set. Results on
the development set, which do not change the story,
are reported in Appendix A.3. We report preci-
sion, recall, and F-score of the hypothesized word
boundaries. When transcribing phones to words, a

4We use the term phone rather than phoneme both here and
with reference to the MUST-C data set (below), to avoid mak-
ing any commitments about the underlying cognitive/linguistic
form, which the term phoneme implies. For the Mboshi data
especially, we are not sure if these commitments hold. How-
ever, like phonemic transcriptions, the transcriptions we work
with assume a single pronunciation for each word type (effec-
tively, dictionary lookup of pronunciations).

5Boito et al. (2020) showed that LSTMs worked better
than Transformer or CNN models with their framework.

6The number of layers, dropout, and dimensions were
tuned on the development set. The values we found best are
the same ones Boito et al. (2020) reported, except their hidden
layer size is 64. It is unclear why dropout helps in this setting,
since without generalization, there is no concern of overfitting,
but we did find a small benefit.
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Table 1: Word boundary scores on Mboshi for mod-
els predicting phones from words (w→ p), as in Boito
et al. (2020), using Hard or Segmental assignment.
†Models trained on Train+Dev. ∗Results from Boito
et al. (2020), averaging five attention maps.

P R F OS
w→ p Hard 92.3 83.2 87.5 -9.8
w→ p Seg 93.5 93.5 93.5 0.0
w→ p† Hard 95.5 85.7 90.4 -10.2
w→ p†∗ Hard 92.9 92.1 92.5 -

word boundary must be hypothesized at the exact
place to be counted as correct. In later experiments,
particularly for speech, we follow the The Zero
Resource Speech Challenge (Dunbar et al., 2017)
evaluation and use a 30ms tolerance window, i.e.,
the hypothesized boundary is counted as correct
if it falls withing 30 ms of the correct boundary.
Similar to BOITOEA, we use force alignments ex-
tracted with a Kaldi (Povey et al., 2011) GMM-
HMM model as ground truth word boundaries. We
also report the amount of over-segmentation, de-
fined as (Nh−Nref)/Nref. If the quantity is positive,
the model hypothesizes too many boundaries; if the
quantity is negative, the model hypothesizes too
few boundaries.

4.1 Predicting Phones From Words
We begin by confirming the positive results from
previous work, following BOITOEA in training a
model to predict phones given words.

Results for both Hard Assignment (Hard) and
Segmental Assignment (Seg) are shown in Table 1.
We transpose the attention matrix to run Seg so that
a segment (word) can consist of multiple phones.
As expected, both methods work well, with the
more principled Seg performing slightly better—
though it has a slight advantage, since (due to
teacher forcing) it always generates the right num-
ber of word segments (yielding OS = 0).

However, these methods can only be applied to
the annotated data, which is a significant weakness.

4.2 Words as Targets
Next, we consider the more typical direction of de-
coding, predicting words given phones. We do not
use hard assignment in this setting for the reasons
described in Section 3.2.

Results (Table 2) show that, when using phones,
flipping the model direction from w→ p to p→ w
makes the results much worse. The Thresholding
method is especially bad, so we focus on Seg for

Table 2: Word boundary scores on Mboshi for models
with words as targets, using phones, phone frames, or
acoustic feature frames as input (p → w, f → w, and
a→ w, respectively), with Thresholding or Segmental
assignment. The first row is copied from Table 1. Unsu-
pervised baselines (acoustic input only) are also shown:
R15 (Räsänen et al., 2015); K17 (Kamper et al., 2017).

P R F OS
w→ p Seg 93.5 93.5 93.5 0.0
p→ w Thr 19.2 20.4 19.8 6.3
p→ w Seg 58.0 58.0 58.0 0.0
f→ w Seg 57.6 57.6 57.6 0.0
a→ w Seg 13.4 13.4 13.4 0.0
a R15 21.5 19.8 20.6 -8.1
a K17 32.4 7.4 12.0 -77.1

the rest of the paper. The deterioration by simply
flipping the model is unsatisfying, because the set-
ting is simple enough that the model should be able
to achieve near-perfect results by acting like a lexi-
con, mapping canonical pronunciations to words.

This decoding direction allows us to build mod-
els that take acoustic features as input and produce
words.

However, once we replace phone transcriptions
as input with acoustic features, the result (denoted
a→w in Table 2) is drastically worse—even under-
performing one of the unsupervised baselines (note
the change on attention structure between Figure
1b and Figure 1a) .

To understand what causes the dramatic drop in
performance, we explore an intermediate input rep-
resentation where we replace each acoustic frame
with its phone label. This input format, which we
refer to as phone frames, has the same length as the
acoustic input sequence and reflects the duration of
each phone, while abstracting away from acoustic
variability. Results of this experiment (f → w in
Table 2) show that most of the performance gap
is recovered. This suggests that the model learns
little about the phonetic variability in this experi-
ment. This prompts us to work on a larger dataset,
with the hope that the model is able to capture the
phonetic variability given more data.

4.3 Scaling to Larger Data
We investigate if by exposing a model to more
speech data it would learn to normalize phonetic
variance and close the gap between f → w and
a→ w. For this experiment we use English data
(speech, lexicon phone sequences, and word tran-
scriptions) from the MuST-C dataset (Di Gangi
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Table 3: Word boundary scores on MuST-C using Seg-
mental assignment with a variety of models. The first
three models have 1 hidden layer, while Lg has 5. Unsu-
pervised baselines are also shown: R15 (Räsänen et al.,
2015); K17 (Kamper et al., 2017)

P R F OS
p→ w Seg 44.0 44.0 44.0 0.0
f→ w Seg 42.6 42.6 42.6 0.0
a→ w Seg 21.2 21.2 21.2 0.0
a→ w (Lg) Seg 19.9 19.9 19.9 0.0
a R15 20.0 28.6 23.5 43.7
a K17 23.7 26.1 24.8 10.2

et al., 2019). MuST-C provides translations to other
languages; we don’t use these here but we do limit
our data to the 145k English utterances (257h of
speech) for which translations are available in all
the languages7. Utterances have an average length
of 6.5 seconds/18 words. We use the same speech
feature extraction configuration as in the Mboshi
experiments. Because we are using a larger dataset,
we also try a deeper (5-layer) model for the speech
input. Results are shown in Table 3. The results
on p→ w are lower than for Mboshi, suggesting
that the longer utterances in MuST-C make the task
more challenging. The speech in MuST-C is proba-
bly also harder than in Mboshi (TED talks vs. read
speech); nevertheless, the performance on a→ w
is better on MuST-C than Mboshi, closer to the
MuST-C f→ w results. This suggests that adding
more data does allow the model to learn more about
acoustic variability. However, given the large size
of this data set, all the results are underwhelming,
and the results with speech still do not beat the
unsupervised models.

5 Conclusion

Previous researchers had suggested a connection
between attention weights and word alignments
in both speech recognition and speech transla-
tion. However, we have experimented with several
attention-based segmentation methods and demon-
strated that these only succeed in the scenario
where words are used as the input to the model—
a scenario with limited application. Performance
drops considerably for models with phones as input,
and is no better than unsupervised segmentation
for models using speech as input, even when the
amount of training data is increased by two orders

7Find the list of files in Kaldi format in the following link
https://homepages.inf.ed.ac.uk/s1945848/must_c_insights.zip.

of magnitude. Although in principle the transcrip-
tions provide an additional source of information,
using this to help segment words from speech will
likely require a completely different approach.
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A Appendix

A.1 Segmental Assignment
Given an attention map, the goal of segmental as-
signment is to find a segmentation that maximizes
the amount of attention weights each word covers
while making sure that the word segments are con-
nected. To achieve this, we turn this into a problem
of finding a maximum weighted path on a graph,
where the edges of the graph are segments, the
weights on the edges correspond to the amount at-
tention weights covered, and the graph encodes the
connectedness constraints.

Suppose the attention map is of dimension
T × K. Recall that T is the number of in-
put tokens (such as speech frames) and K is
the number of output tokens (such as words).
We first create a vertex set V = {(t, k) :
for t = 0, . . . , T and k = 0, . . . ,K}, a grid mark-
ing every element in the attention map. An edge is
a pair of vertices (t1, k1) and (t2, k2) while satisfy-
ing t1 < t2 and k2 = k1 + 1. That edge represents
a segment of the k2-th output token that aligns to
t1 to t2 on the input side. This can be realized by
defining the incoming edges

in((t2, k2)) =

{(
(t1, k2 − 1), (t2, k2)

)
:

for t1 = 0, . . . , t2 if k2 > 1

}
. (3)

We assign the sum of attention weights from t1
to t2, i.e.,

∑t2
t=t1+1 αt,k2 to the edge ((t1, k2 −

1), (t2, k2)).
Once the graph is constructed, we find the max-

imum weighted path that starts at (0, 0) and ends
at (T,K). An example is shown in Figure 2. Note
that due to the imposed constraints and in turn due
to how the graph is constructed, segmental assign-
ment only considers monotonic alignments.

A.2 Hyperparameters and Implementation
We use the sequence-to-sequence implementation
of nmtpytorch (Caglayan et al., 2017)8. The model
comprises one-layer encoder and one-layer decoder
with 0.5 dropout, except in the experiment of Sec-
tion 4.3 where we use a five-layer encoder in the
Large (Lg) model. We set a size of 256 to all hid-
den dimensions (i.e., source and target embedding,
encoder, and decoder). We use the Adam optimizer,

8https://github.com/lium-lst/nmtpytorch

https://github.com/lium-lst/nmtpytorch
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(0, 0)

(12, 4)

Figure 2: An example segmental assignment with 12
input tokens and 4 output tokens. Each box represents
an element in the attention map. The darker the shade,
the higher the attention weight. Edges of the maxi-
mum scoring path and the corresponding vertices are
shown in blue. The shade being crossed by an edge is
the amount of attention weights covered by the edge.
The goal is of segmental assignment is to find the max-
imum weighted path from the bottom-left corner to the
top-right corner.

and the scheduler applies a decay factor of 0.5 after
two consecutive epochs where loss does not de-
crease. All models are trained until cross-entropy
loss on training reaches 0. The implementation of
each model has around 3M and 19M of learnable
parameters for the 1 and 5 layers encoder model,
respectively. They are trained with one Nvidia
GEFORCE GTX 1080 Ti. To reduce computation
on Segmental Assignment, we set the maximum
duration of a word to 4 seconds (400 frames for
speech or phone frames representation) for Mboshi
and 10 seconds for MuST-C. We set them by ana-
lyzing their performance on the development set.

Regarding the unsupervised speech baseline
models, we use the unigram public implementation
of Kamper et al. (2017)9 with a minimum word seg-
ment duration of 250 ms. Because its performance
is linked to the syllable segmentation method, we
select the best configuration by fine-tuning Räsä-
nen et al. (2015)’s10 hyperparameter values on the
development set.

A.3 Results without Transcriptions

Finally, we consider a more traditional scenario
where the model is exposed to unseen data. For
this setting our model does not have access to tran-
scriptions and therefore we do not use Teacher-
Forcing. We evaluate the development set from
Mboshi (used in Section 4.1), which has 1147 to-
ken types (where only 710 are observed during

9link to Kamper et al., 2017 Github implementation
10link to Rasanen et al., 2015 Github implementation

Table 4: Results from 1 layer, and 5 layers (Lg) models
for word segmentation of the development (unseen) set
of the Mboshi and MuST-C dataset.

DS Model P R F OS (%)
Mb p→ w 51.9 54.2 53.0 4.4
Mb f→ w 48.5 47.3 47.9 -2.3
Mb a→ w 16.2 14.7 15.4 -8.9
Mb a→ w (Lg) 14.1 14.9 14.5 6.0
MC p→ w 43.8 44.0 43.9 0.5
MC f→ w 30.1 30.1 30.1 0.2
MC a→ w (Lg) 17.9 20.7 19.2 15.8

training). In terms of absolute tokens, it has 2993,
and only 516 out-of-vocabulary. We experiment
with the MuST-C by using 1162 utterances from
MuST-C’s superset unseen during training. In this
case, the set has 3273 token types.

Surprisingly, for p and f→ w, attention still pro-
duces meaningful segments although the model has
not seen or early stopped with a development set. In
that case, we observe a degradation in performance
but not dramatic. The small number of unobserved
absolute tokens do not have a critical effect on the
segmentation performance of the model.

Finally, the small difference in performance be-
tween the train and development sets on a → w
shows an already present weak segmentation signal
not correlated with word in speech models.

https://github.com/kamperh/bucktsong_segmentalist
https://github.com/kamperh/recipe_zs2017_track2/tree/master/syllables/thetaOscillator

