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Abstract

We propose a simple method to generate mul-
tilingual question and answer pairs on a large
scale through the use of a single generative
model. These synthetic samples can be used
to improve the zero-shot performance of mul-
tilingual QA models on target languages. Our
proposed multi-task training of the generative
model only requires labeled training samples
in English, thus removing the need for such
samples in the target languages, making it
applicable to far more languages than those
with labeled data. Human evaluations indi-
cate the majority of such samples are grammat-
ically correct and sensible. Experimental re-
sults show our proposed approach can achieve
large gains on the XQuAD dataset, reducing
the gap between zero-shot and supervised per-
formance of smaller QA models across various
languages.

1 Introduction

Generating question and answers from raw text
has always been a challenging problem in natural
language generation. Recently, there have been
numerous efforts around question generation (Du
et al., 2017; Song et al., 2018; Klein and Nabi,
2019; Wang et al., 2020; Ma et al., 2020; Chen
et al., 2020; Tuan et al., 2019).

Using such synthetic samples to improve the
performance of question answering models has
been explored by Puri et al. (2020), Alberti et al.
(2019), and Shakeri et al. (2020), who show that
reading comprehension (RC) models can be im-
proved by generating large-scale synthetic training
data. These promising results combined with the
recent surge in the development of powerful gener-
ative models such as GPT-3 (Brown et al., 2020),
BART (Lewis et al., 2020a), and T5 (Raffel et al.,
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Figure 1: End-to-End pipeline: 1) Fine-tuning the generative
model using SQuAD English samples and multilingual MLM.
2) Generating synthetic samples from Wikipedia passages
of the target language using the fine-tuned generative model.
3) Training the downstream reading comprehension model
using synthetic samples.

2020) suggest that the need for large manually la-
beled datasets can be reduced.

Although synthetic question-answer (QA) gen-
eration is well explored in English, the efficacy of
such methods in the other languages remains an
open question. Considering the lack of manually
labeled QA datasets in many languages other than
English, QA generation techniques can be applied
to improve RC models in those languages. The
emergence of multilingual generative models such
as mBART (Liu et al., 2020a) and mT5 (Xue et al.,
2021) facilitates such endeavors.

In this work, we propose generating multilin-
gual question answer pairs to improve the perfor-
mance of RC models in languages other than En-
glish. Besides unlabeled articles and questions,
our proposed method only requires labeled training
samples in English, thus completely removing the
need to acquire new labeled datasets. Our approach
can easily be extended to any language, as long as
the multilingual generative model supports the lan-
guage, and unlabeled questions and articles, such
as Wikipedia, books, etc., exist in that language.

To enable zero-shot QA generation, the genera-
tive model should be able to produce non-English
QA samples from non-English inputs when only
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trained on English samples. Inspired by the work
of Artetxe et al. (2020); Gururangan et al. (2020);
Liu et al. (2020b), we propose a multi-task learning
setting, where during the fine-tuning stage, we train
on two tasks in parallel: the target question-answer
generation task, and the multilingual masked lan-
guage modeling (MLM) task that was used in pre-
training the generative model. Our experimental re-
sults show that including the MLM task is crucial in
enabling the zero-shot capability of the fine-tuned
generative model.

We propose fine-tuning a pre-trained multilin-
gual T5 model on the SQuAD 1.1 (Rajpurkar et al.,
2016) training set. The fine-tuned model is then
used to generate a large set of synthetic question-
answer pairs from Wikipedia passages in the target
language. Fig. 1 illustrates the end-to-end pipeline.
We show that such synthetic samples can signifi-
cantly boost RC models trained only on the English
samples, with improvements up to 9 absolute points
on F1. To summarize, our contributions are:

• Improving the zero-shot performance of mul-
tilingual RC models on multilingual QA tasks
through generation of synthetic multilingual
QA pairs.

• Proposing a multi-task fine-tuning of the mul-
tilingual generative model which is crucial for
enabling zero-shot multilingual generation.

• Our approach is entirely zero-shot. No
manually-labeled sample is used in fine-
tuning the generative model on target lan-
guages, making our method applicable to both
high and low resource languages.

• Demonstrating grammatical correctness and
sensibility of generated questions through hu-
man evaluations.

The rest of the paper is organized as follows.
In section 2, we discuss the process designed to
train the generative model and produce synthetic
samples. Section 3 discusses related work in the
area of multilingual question-answer generation. In
section 4, we present experiments to measure the
quality of generated samples. Section 5 focuses on
the application of synthetic question-answer sam-
ples to downstream reading comprehension models.
Finally, we conclude in section 6.

2 End-to-End Question-Answer
Generation and Filtering

2.1 Modeling

We use pre-trained “multilingual T5” (mT5) (Xue
et al., 2021) as our generative model. The mT5
model is based on T5 (Raffel et al., 2020), which is
an encoder-decoder sequence-to-sequence model.

2.2 QA Generation Task

We follow the probability distribution factorization
suggested by Shakeri et al. (2020), where:

p(Q,A|P ) = p(Q|P )× p(A|Q,P )

Sampling from the above factorization is performed
as follows:

q ∼ p(Q|P ), a ∼ p(A|Q,P )

where Q,P,A refer to question, passage, and an-
swer, respectively. During fine-tuning, passage to-
kens are fed as inputs, and the targets are a concate-
nation of the question and answer tokens. During
sampling, candidate passages are passed as inputs
to the fine-tuned generative model, and question-
answer pairs are sampled from the decoder.

Fig. 2 depicts the fine-tuning and sampling pro-
cesses. We prepend “question” to the question
tokens and “answer” to the answer tokens, to help
the model distinguish one from the other.

2.3 Masked Language Modeling Task

The mT5 model is pre-trained on the large multi-
lingual “mC4” dataset (Xue et al., 2021) built from
Common Crawl data, and trained using a Masked
Language Modeling (MLM) task. This task in-
volves replacing contiguous spans of input tokens
with unique sentinel tokens (one per span). The de-
coder is then trained to reconstruct all the masked
spans in the input, using a standard cross-entropy
loss with teacher forcing. We use a variant of this
MLM task, where we remove all “sentinel” tokens
(corresponding to non-masked spans in the input
text) from the target sequence, as we find this im-
proves the quality of generated QAs.

2.4 Multi-Task Fine-Tuning

To perform zero-shot generation, the model needs
not only to learn the QA Generation task, but also
to retain its multilingual generation capabilities
achieved during pre-training. To avoid catastrophic
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Figure 2: Multi-task fine-tuning of the multilingual pre-trained mT5 model. 1) QA generation task, which uses SQuAD English
samples. 2) MLM task on a subset of mC4. 3) MLM on only the questions from the TyDiQA Gold Passage Task. The MLM
variant used does not include sentinel tokens in the decoder output.

forgetting (French, 1999), which could lead to de-
graded generation capability, we propose a multi-
task setting, where a predetermined percentage of
fine-tuning examples come from the QA Genera-
tion task, while the remaining examples (trained
in parallel) are from a mixture of two MLM tasks:
1) MLM on a subset of mC4 which is a continuation
of mT5 pre-training, 2) MLM on only the questions
from TyDiQA Gold Passage dev and training sets.
The MLM task on mC4 helps the fine-tuned model
retain its multilingual generation capabilities, while
the MLM task on TyDiQA questions further im-
proves the question generation capabilities of the
generative model. Note that the only supervised
QA training data is SQuAD 1.1. The MLM task
on TyDiQA questions is not conditioned on the
associated passages of the questions. Experimental
results in section 4 demonstrate the efficacy of our
proposed approach. Fig. 2 illustrates the multi-task
fine-tuning process.

Fig. 3 demonstrates examples of generated sam-
ples in five languages using an mT5-XL (3.7B pa-
rameter) model fine-tuned in the multi-task setting
(§2.4). It can be observed that: 1) the generated
questions are in the same language as the passage
most of the time, 2) the answers are relevant to
the generated questions, 3) the model is capable of
generating long and non-trivial QA pairs.

Fig. 4 illustrates generated QA samples in Span-
ish and Arabic, when only the QA Generation task
(§2.2) is included in the fine-tuning. We observe:
1) questions are primarily in English, not the tar-
get language, 2) outputs contain certain tokens and

entities mentioned in the language of the passage,
and 3) ignoring language issues, the outputs exhibit
semantically well-formed QA correspondence.

2.5 Decoding and Filtering

Since the quality of the generated question answer
pairs is vital in improving the performance of down-
stream models, the generated samples require a
strong filtering technique. Using the F1 score of a
trained RC model to perform filtering, a.k.a. round-
trip filtering, has been previously explored by Puri
et al. (2020) and Alberti et al. (2019). For a gener-
ated QA sample (q, a, p), where q, a, and p indicate
question, answer, and passage, the following steps
are performed: 1) a trained RC model is applied to
(q, p), predicting a′, and 2) the F1 score of a and
a′ is calculated, and if above a certain threshold,
(q, a, p) is kept, otherwise dropped.

3 Related Work

Recent work has explored question-answer gener-
ation (Alberti et al., 2019; Puri et al., 2020; Lee
et al., 2020; Shakeri et al., 2020), but limited in
scope to English. We leverage the modeling and fil-
tering approaches proposed by Shakeri et al. (2020)
due to their simplicity and effectiveness.

Kumar et al. (2019) explores cross lingual ques-
tion generation. In contrast to our work, this only
generates questions, without the corresponding
answers. Additionally, this approach requires a
complicated pre-training process on the target lan-
guages, as well as gold samples to fine-tune the
generative models, so it is not easily extensible to
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Figure 3: Samples of generated QAs in Spanish, Russian, Chinese, Arabic, and German. The generative model is mT5-XL
fine-tuned on the mixture setting of section 2.4. Trans. refers to translations of the QA sample using Google Translate service.

other languages. This is in contrast to our approach,
which does not require any gold QA samples in any
language other than English. Another distinguish-
ing factor is that we demonstrate improved perfor-
mance on downstream QA tasks, while Kumar et al.
(2019) only measure the quality of the generated
samples on automatic metrics such as BLEU, and
human evaluations.

Similarly, Chi et al. (2020) explore cross-lingual
question-only generation using SQuAD English
samples. They propose cross-lingual pre-training
on the source and target languages. Similar to Ku-
mar et al. (2019), their focus is only on the quality
of the generated questions, whereas we validate
our approach directly through improvements on
downstream QA tasks. Moreover, while Chi et al.
(2020) depends on a complex pre-training recipe
and parallel sentences in both source and target
languages, our approach not only does not require
such parallel corpus, but also the MLM task in-
cluded in our fine-tuning setting is widely used and
studied. This leads to our approach being more
easily adaptable to other languages and pre-trained
generative models.

Most closely related to our work is the multi-
lingual synthetic question generation approach of
Riabi et al. (2020). However, there are two im-
portant differences between the two approaches.
Firstly, our work includes both question and answer
generation using a single model, while theirs only
focuses on question generation. We believe gen-
erating the question and answer jointly is a richer
problem that better harnesses the capabilities of
pre-trained language models. Their question gener-
ation is conditioned on the selected answers, which
further limits the generation. Secondly, their pro-
posed method depends on translating SQuAD to
target languages to fine-tune the generative model,
hence limiting the application of their approach to
languages where such translation data exists. Fur-
thermore, even when translated data is available,
the quality of samples generated by a model trained
on such data is highly affected by the quality of
the translations. This could lead to low quality
QA samples in low resource languages. This is in
contrast to our zero-shot approach, which does not
require any training data in the target language.
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Figure 4: Samples of generated QAs in Spanish and Arabic. The mT5-XL model is unable to generate valid questions in the
target language, as in this case it was fine-tuned exclusively on the English QA generation task from section 2.2.

4 Experimental Setup and Results

4.1 Datasets

SQuAD (Rajpurkar et al., 2016) is an English QA
dataset consisting of 100k samples. The passages
are extracted from Wikipedia. We use the train and
dev splits of SQuAD 1.1 in this work.
XQuAD (Artetxe et al., 2020) is a multilingual
QA dataset consisting of 240 paragraphs and 1190
question-answers in Arabic, Chinese, German,
Greek, Hindi, Russian, Spanish, Thai, Turkish and
Vietnamese. These samples have been profession-
ally translated from the SQuAD 1.1 dev set.
MLQA (Lewis et al., 2020b) is a benchmark
dataset for evaluating cross-lingual question an-
swering performance. This dataset contains over
5k QA instances (12k in English) following the
SQuAD format in each of Arabic, Chinese, English,
German, Hindi, Spanish and Vietnamese. We use
the test split in our evaluations.
TyDiQA (Clark et al., 2020) is another multilingual
QA dataset consisting of 200k QA pairs from 11 ty-
pologically diverse languages. There is less lexical
overlap between questions and answers compared
to XQuAD and MLQA. We use the Gold Passage
task, which includes ∼50k samples in the train
split and between 130 and 1,100 samples for each
language in the development set.

XTREME (Hu et al., 2020) is a multilingual
benchmark consisting of nine tasks spanning 40
typologically diverse languages. This dataset in-
cludes machine translated SQuAD 1.1 train and dev
samples, which we employed in our experiments.
We refer to such samples as translate-train.

4.2 Generative Model Fine-Tuning

We used the official mT5-XL model (Xue et al.,
2021) with 3.7 billion parameters as our genera-
tive model. The official pre-trained checkpoint is
fine-tuned using the mixture of tasks described in
section 2.1. We chose the task mixing ratio to be
10:1, meaning for every 10 instances of the QA
Generation task (§2.2), we mix one instance of the
MLM task (§2.3). We experimented with mixing
ratios of 100:1 and 1000:1 as well, both of which
under-performed 10:1. The unsupervised MLM
task covers text from two domains: 1) the subset
of the mC4 corpus (Xue et al., 2021) covering Ara-
bic, Bengali, English, Finnish, Indonesian, Korean,
Russian, Swahili, and Telugu, and 2) questions
from TyDiQA (Clark et al., 2020) train and dev
sets, covering the same set of languages.

It is worth highlighting that we only fine-tune
a single model to generate across all target lan-
guages. We do not apply language code prompts
during fine-tuning or inference. We observe that
by properly designing the fine-tuning mixture, the
model is capable of generating samples that match
the language of the input passage. Human evalua-
tions in section 4.4 further verify this.

All of our models are fine-tuned for 5,000 steps
with a batch size of 131,072 tokens, distributed
over 64 TPU-v3 chips. We use the Adafactor op-
timizer (Shazeer and Stern, 2018) with constant
learning rate of 1e-3. The final checkpoint is used
to perform synthetic data generation.

4.3 Automatic Evaluation Results

To compute automatic metrics such as BLEU
against QA samples of the development set, we
modify the generation task to generate a question

https://github.com/rajpurkar/SQuAD-explorer
https://github.com/deepmind/xquad
https://github.com/facebookresearch/MLQA
https://ai.google.com/research/tydiqa
https://github.com/google-research/xtreme
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Training Task ar de en es hi vi zh
SQuAD en 1.7 3.0 23.4 3.6 3.2 4.4 1.2
Mixture 1 12.2 14.9 25.0 18.4 10.6 13.8 10.0
Mixture 2 13.1 15.2 24.9 18.4 11.1 13.9 9.7
Mixture 3 14.5 14.8 25.0 18.6 10.8 13.5 9.6

Table 1: Comparison of question generation quality (BLEU
score) on the MLQA test set with mT5-XL: The Mixtures
are as follows: SQuAD en: SQuAD en as the training data,
Mixture 1: SQuAD en + MLM on mC4 subset, Mixture 2:
SQuAD en + TyDiQA questions, Mixture 3: SQuAD en +
MLM on mC4 subset + MLM on TyDiQA questions.

Model Size ar de en es hi vi zh
Base (580M) 3.9 5.1 19.0 8.2 3.5 7.4 3.1
Large (1.2B) 10.3 5.7 23.9 5.9 4.3 6.2 3.9
XL (3.7B) 14.5 14.8 25.0 18.6 10.8 13.5 9.6
XXL (13B) 15.8 16.2 24.9 19.3 12.2 15.6 10.2

Table 2: Performance of question generation (mixture setting)
on the MLQA test set for different mT5 model sizes.

given the passage and answer. Conditioning on
the answer is needed, as without it, the generative
model might generate samples that are of high qual-
ity but not related to the answers provided in the
development set for a given passage. This would
lead to difficulty in interpreting metrics such as
BLEU.

Tab. 1 compares BLEU1 performance of two
fine-tuning settings on the MLQA test set. We
report results using the mT5-XL model. As can be
seen, including the MLM tasks has a large impact
on performance, conveying large gains up to +15
absolute BLEU points. This is in line with our
observations from section 2.5, where adding MLM
fine-tuning task enabled the generative model to
produce QA samples in the language of the target
passage.

Interestingly, MLM on either mC4 or TyDiQA
questions results in similar BLEU scores. Further-
more, using a mixture of the two does not yield
additional gains. However, eyeballing the gener-
ated samples indicated that the model fine-tuned
on the mixture of both MLM tasks and the super-
vised English task generates more well-structured
and sensible questions and answers. Human eval-
uations in section 4.4 verify the high quality of
generated samples from a model trained with this
mixture.

To investigate the effect of the generative model
size on the quality of data generation, we perform
experiments using mT5 variants with different num-

1All BLEU scores in this work are calculated using Sacre-
BLEU v1.3.0 (Post, 2018), with “exp” smoothing and “intl”
tokenization.

ber of parameters: Base (580M), Large (1.2B) and
XL (3.7B). We report results of the fine-tuned mod-
els with the mixture setting (§2.4) on the MLQA
dataset in Tab. 2. Model performance improves
dramatically with the size of the pre-trained model.
Based on these results, for the remainder of the
paper, we use the mT5-XL model fine-tuned using
the mixture approach.

4.4 Human Evaluations

To perform manual quality evaluation of the gen-
erated questions, raters were presented with gener-
ated questions, and tasked with rating them accord-
ing to the following criteria:

• Is the question in the target language? Raters
could select yes or no.
• grammatical correctness: Raters could select

a whole number from 1 (lowest) to 4 (highest).
• sensibility: Raters could select a whole num-

ber from 1 (lowest) to 4 (highest).

In total, 400 generated samples from 5 languages
were randomly selected and rated by native speak-
ers of each language. Each rater was assigned 40
samples. Two native speakers of each of the five
languages were asked to perform the task. Tab. 3
shows the evaluation results.

The results show that the multilingual generative
model is nearly perfect at generating samples that
match the language of the input passage. Consider-
ing no language codes are used during fine-tuning,
and only English supervised training data are used,
the results show that our proposed mixture has en-
abled the model to perform zero-shot cross-lingual
generation coherently.

Interestingly, Spanish samples achieve high
scores in all of the categories. Considering the
model is not trained on any Spanish samples, ei-
ther in the MLM tasks or SQuAD 1.1, the model
shows strong transfer learning capabilities. This
implies that including the MLM task as proposed
in our mixture setting not only prevents the gen-
erative model from catastrophic forgetting of its
multilingual capability on the languages included
in the MLM fine-tuning task, but also on those not
included. The same argument partially applies to
Hindi. While there are no Hindi samples in the
fine-tuning mixture, Bengali (a related Indo-Aryan
language) was seen in the MLM task.
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Target Grammatical
Language Correctness Sensibility

Arabic 0.98 3.55 3.35
Chinese 1.00 3.60 3.60
Hindi 1.00 2.93 3.35
Russian 1.00 3.50 3.75
Spanish 1.00 3.10 3.05
Average 1.00 3.34 3.38

Table 3: Human evaluation metrics on the generated samples.
Samples are randomly drawn, and rated by native speakers.
“Target Language” scores are in the range 0–1, while the other
columns range from 1–4.

5 Application of Synthetic Data to
Multilingual Reading Comprehension

In this section, we describe experimental results
that demonstrate the efficacy of using synthetic
samples for improving multilingual reading com-
prehension (RC) models. This refers to the setting
where given a passage and a question, the model
is tasked with finding a span of the passage that
answers the question.

5.1 Synthetic Data Generation

We randomly selected 10k paragraphs from
Wikipedia, for each of Arabic (ar), German (de),
Hindi (hi), Russian (ru) and Spanish (es). The se-
lected paragraphs were restricted to have between
30 and 450 tokens, thereby removing passages that
are too long or too short.

We fine-tune the mT5-XL model according to
the mixture setting discussed in section 2.4 and the
hyper-parameters from section 4.2, and then use
this model to generate 20 questions per passage.
We apply top-k sampling (Holtzman et al., 2020)
with k=10 and temperature of 0.5. The generated
samples are processed to ensure: 1) each consists
of a question followed by an answer, 2) the an-
swer does exist in the passage. This was done to
ensure answers are extractive. Non-extractive or
no-answer QA are outside the scope of this work.

Finally, as discussed in section 2.5, round-trip
filtering is applied to the generated QA samples.
We use an mT5 XL model trained on SQuAD 1.1
(Rajpurkar et al., 2016) as the filtering model. The
overall process results in approximately 10-20k
synthetically generated samples in each target lan-
guage. These generated samples are then used for
training the RC models.

5.2 RC Model Fine-tuning

All of our reading comprehension models are ini-
tialized from the official mT5 (Xue et al., 2021)

and later fine-tuned on the generated samples. We
experimented with Base (580M), Large (1.2B), and
XL (3.7B) parameter variants of mT5. We fine-tune
using the TensorFlow framework. Each model was
trained for 10,000 steps with a learning rate of 1e-3
and a batch size of 131,072 tokens. The models
were trained on 16 TPU-v3 chips. In experiments
where both the SQuAD 1.1 samples and syntheti-
cally generated samples are used to fine-tune the
RC models, the model is trained on a mixture of the
two, with a 1:1 mixing ratio. Adafactor optimizer
(Shazeer and Stern, 2018) with constant learning
rate of 1e-3 is used in all cases.

5.3 Results

Tabs. 4–6 demonstrate the F1 performance of the
RC models trained on SQuAD 1.1 samples as well
as synthetic data generated as described in 5.1 on
mT5 Base, Large, and XL models. “SQuAD en ”
refers to the original SQuAD 1.1 (Rajpurkar et al.,
2016) dataset in English. Our zero-shot baselines
(denoted “ours”) were slightly higher than those
reported in Xue et al. (2021) (denoted “paper”).

We observe that augmenting SQuAD en with
synthetic samples leads to large gains with the Base
model. An improvement of +9 absolute points
is observed for Russian. Furthermore, with the
Base model, all average F1 scores are improved
with the addition of synthetic data, regardless of
which language the synthetic samples come from.
The largest gain is seen when German samples are
added (+2.9).

As the size of the mT5 model increases, the gains
from synthetic augmentation decrease, as shown in
Tabs. 5 and 6. With the Large model, the maximum
improvement in average F1 is +1.2 absolute points.
With the XL model, the average F1 scores are either
the same as the zero-shot baseline or slightly lower.
This is expected as when the model size increases,
the gap between zero-shot and supervised also be-
comes smaller, hence less headroom exists when
adding the synthetic samples. Fig. 5 demonstrates
this scaling effect. Nonetheless, improvements of
+5.1, +2.2, and +3.4 are observed on Russian, Ara-
bic, and Greek, respectively with the mT5 Large
model. Similarly, smaller per-language gains can
be seen with augmentation with the XL model, as
shown in Tab. 6.

A surprising observation is that best per-
language results are not necessarily achieved when
augmenting with the synthetic samples from the
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Dataset en ar de el es hi ru th tr vi zh avg
SQuAD en (paper) 84.6 63.8 73.8 59.6 74.8 60.3 57.8 57.6 67.9 70.7 66.1 67.0
SQuAD en (ours) 85.5 65.7 73.6 62.5 75.0 62.4 61.9 57.6 68.9 71.9 71.1 68.1
SQuAD en + ru 83.7 67.5 73.6 69.3 73.8 66.2 70.3 62.7 67.5 68.8 68.9 70.0
SQuAD en + hi 84.2 68.3 75.0 68.4 75.0 63.7 68.2 64.5 67.2 69.5 68.9 69.9
SQuAD en + de 84.6 69.0 71.8 70.2 75.7 66.2 71.0 63.5 70.0 70.9 71.2 71.0
SQuAD en + ar 84.5 64.0 74.4 69.4 74.4 65.1 65.1 62.5 67.9 70.0 70.2 70.2
SQuAD en + es 84.8 69.1 76.1 68.2 72.8 65.4 68.9 62.7 70.0 71.0 71.0 70.6
Supervised 83.1 72.4 76.9 76.8 79.0 71.4 76.1 67.9 72.5 75.9 76.9 75.3

Table 4: Performance of fine-tuned mT5 Base models on XQuAD. Supervised refers to training on SQuAD en +
translate-train dataset of the target language.

Dataset en ar de el es hi ru th tr vi zh avg
SQuAD en (paper) 88.4 75.2 80.0 77.5 81.8 73.4 74.7 73.4 76.5 79.4 75.9 77.8
SQuAD en (ours) 88.6 75.0 80.4 76.5 81.6 73.9 74.1 73.8 76.2 80.1 76.4 77.4
SQuAD en + ru 88.2 76.6 81.2 79.1 82.6 76.1 77.6 72.1 75.1 78.4 77.4 78.6
SQuAD en + hi 88.9 76.7 81.5 79.4 82.9 73.4 78.7 74.1 75.0 79.1 78.0 78.6
SQuAD en + de 88.0 72.7 79.7 73.0 82.0 73.6 76.4 71.6 74.8 78.7 76.2 76.6
SQuAD en + ar 88.0 73.3 81.2 78.8 82.4 75.1 78.5 71.4 75.6 77.3 78.2 77.8
SQuAD en + es 88.2 77.2 81.8 79.9 81.3 76.4 79.2 72.3 75.8 79.5 77.7 78.7
Supervised 87.3 79.4 82.7 81.8 83.8 78.0 81.9 74.7 80.2 80.4 83.2 81.2

Table 5: Performance of fine-tuned mT5 Large models on XQuAD. Supervised refers to training on SQuAD en +
translate-train dataset of the target language.

Dataset en ar de el es hi ru th tr vi zh avg
SQuAD en (paper) 88.8 77.4 80.4 80.4 82.7 76.1 76.2 74.2 77.7 80.5 80.5 79.5
SQuAD en (ours) 89.7 79.2 80.9 80.9 83.2 78.7 78.4 74.3 78.4 79.5 80.7 80.2
SQuAD en + ru 89.1 78.6 82.1 81.7 82.7 78.6 79.4 74.3 78.7 80.6 79.2 80.2
SQuAD en + hi 89.1 79.1 81.7 80.9 83.4 76.1 79.0 74.6 77.6 81.0 80.4 79.9
SQuAD en + de 88.8 78.2 81.2 81.7 82.8 78.1 79.6 74.0 77.7 81.2 79.7 80.1
SQuAD en + ar 89.0 75.0 81.3 81.5 82.8 78.4 79.3 73.5 78.4 80.2 80.4 79.6
SQuAD en + es 88.8 79.0 82.2 81.3 82.6 78.7 78.8 73.8 78.3 81.1 80.5 80.2
Supervised 88.5 80.9 83.4 83.6 84.9 79.6 82.7 78.5 82.4 82.4 83.2 82.7

Table 6: Performance of fine-tuned mT5 XL models on XQuAD. Supervised refers to training on SQuAD en +
translate-train dataset of the target language.

same target language. Our hypothesis is that strong
multilingual models such as mT5 have already de-
veloped rich per-language representations. Adding
non-English synthetic data enables the model to
generalize well to non-English RC tasks by not
overfitting to English RC samples.

Comparing the Supervised metrics vs. SQuAD
en + 〈lang〉 indicates that with Base and Large,
using synthetic samples reduces the gap between
the zero-shot and supervised performance of the
trained RC models. This gap is reduced from 7.2 to
4.2 absolute points with the Base model. However,
there still exists a sizeable gap, which could likely
be further reduced through the use of higher quality
synthetic samples.

6 Conclusion

In this work, we presented a simple yet effective
approach to generate large-scale synthetic multi-
lingual question-answer pair data, which can be
used to improve the zero-shot performance of mul-

Figure 5: Scaling effect on augmentation using synthetic
samples.

tilingual reading comprehension (RC) models. Our
experimental results showed large improvements
in the performance of RC models trained on our
synthetic multilingual datasets as compared to stan-
dard zero-shot baselines. Moreover, our zero-shot
generation approach proved to be easily applied to
any language, as long as the language is supported
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by the pre-trained multilingual generative model.
While our results showed that using synthetic

samples alongside English training data can sig-
nificantly narrow the gap between zero-shot and
supervised performance of RC models, the gap still
remains. We are optimistic that future work can re-
duce this gap further through improved generation
quality.

7 Ethical Considerations

Since the synthetic QA samples are generated by
a generative model, it is possible that generated
questions could include hallucinations and counter-
factual information. We have employed the follow-
ing safeguards: 1) The generative model is trained
on the SQuAD dataset to learn question-answer
generation. SQuAD is a well-studied and meticu-
lously curated dataset. 2) The passages from which
question-answer pairs are generated are selected
from Wikipedia. 3) We apply round-trip filter on
the generated question-answer pairs using the RC
model. This approach ensures the questions are
relevant to the passages. We believe these steps
drastically reduce the chances of hallucinated and
counterfactual samples. Nevertheless, there still
exists the possibility that such bad samples could
be generated. Future research efforts can explore
such potential issues.
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