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Abstract

We present our Charles-UPF submission for
the Shared Task on Evaluating Accuracy in
Generated Texts at INLG 2021. Our system
can detect the errors automatically using a
combination of a rule-based natural language
generation (NLG) system and pretrained lan-
guage models (LMs). We first utilize a rule-
based NLG system to generate sentences with
facts that can be derived from the input. For
each sentence we evaluate, we select a sub-
set of facts which are relevant by measuring
semantic similarity to the sentence in ques-
tion. Finally, we finetune a pretrained lan-
guage model on annotated data along with the
relevant facts for fine-grained error detection.
On the test set, we achieve 69% recall and 75%
precision with a model trained on a mixture of
human-annotated and synthetic data.

1 Introduction

Recent neural NLG systems can easily generate
fluent texts from linearized structured data (Zhao
et al., 2020; Kale and Rastogi, 2020; Castro Fer-
reira et al., 2020). However, the systems cannot
guarantee that the output is properly grounded in
the input — hallucination (outputs not supported by
input data) is a notorious problem in neural NLG
(Tian et al., 2019; Harkous et al., 2020; Filippova,
2020; Rebuffel et al., 2021). Neural systems are
particularly unreliable on complex datasets such as
Rotowire (Wiseman et al., 2017), where the task
is to generate basketball match summaries from
tabular data. Rotowire poses multiple challenges
for neural systems: it requires content selection and
production of longer texts, and its human-written
training texts are themselves not always grounded
in data, which makes neural models more suscepti-
ble to hallucination.

On the other hand, rule-based systems used in
recent data-to-text tasks (Lapalme, 2020; Tran and

259

Nguyen, 2020; Mille et al., 2019) all achieve high
scores in terms of accuracy of the generated con-
tents with respect to the input structures (DusSek
et al., 2020; Castro Ferreira et al., 2020). This,
however, comes with the cost of lower fluency.

Detecting NLG errors automatically is a hard
problem. For word-overlap-based metrics, such as
BLEU (Papineni et al., 2002) or METEOR (Lavie
and Agarwal, 2007), reliability on content check-
ing is known to be poor (Novikova et al., 2017;
Dhingra et al., 2019). Most neural metrics (Zhang
et al., 2020; Sellam et al., 2020) have not been eval-
uated for content preservation. Dusek and Kasner
(2020)’s metric based on natural language infer-
ence (NLI) specifically targets content preservation,
but, same as all previously mentioned ones, is not
able to provide fine-grained error tagging beyond
sentence level. Specific content-checking metrics
mostly remain a domain of handcrafted pattern
matching (Wen et al., 2015; Dusek et al., 2019),
which does not scale well to new domains. While
human evaluation provides a more reliable alterna-
tive, it is costly and difficult to set up (van der Lee
et al., 2019; Santhanam and Shaikh, 2019; Belz
et al., 2020; Thomson and Reiter, 2020a).

The INLG 2021 accuracy evaluation shared task
(Reiter and Thomson, 2020; Thomson and Reiter,
2021) aims to improve this situation. Reiter and
Thomson (2020) carefully annotated 60 outputs of
various neural systems trained on Rotowire with 6
error types (see Table 1) defined in Thomson and
Reiter (2020b). The objective of the shared task is
then to either implement an automatic metric for
creating the same type of annotations automatically,
or to develop a human evaluation scenario capable
of producing the same annotations while requiring
less resources.

Our submission for the shared task falls into the
first category: we developed an automatic metric
for token-level error annotation which combines a
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NUMBER Incorrect number.

NAME Incorrect named entity.

WORD Any other incorrect word.
CONTEXT A phrase inappropriate for the context.

NOT_CHECKABLE A statement which cannot be checked.
OTHER Any other type of mistake.

Table 1: Error categories for the Rotowire dataset.

rule-based generation system with a neural retrieval
model and a pretrained neural LM used for error
tagging. We evaluated our approach in a cross-
validation scenario to select the best configuration
for the shared task. Overall, our system is able to
reach 65% error detection F1 score and ranked first
out of four automatic submissions in the shared
task. The code for our experiments is freely avail-
able on Github.!

2 Our System

Our system is composed of 3 steps: A rule-based
generator for fact descriptions (see Figure 1 and
Section 2.1), a retrieval system for selecting facts
relevant for a given sentence (Section 2.2), and a
token-level error tagger based on the RoBERTa pre-
trained LM (Section 2.3). The latter two steps are
summarized in Figure 2. The LM tagger is trained
on examples provided by shared task organizers,
as well as on synthetic data based on the Rotowire
training set (Section 2.4).

2.1 Rule-based Fact Descriptions

We use rule-based systems to generate natural lan-
guage descriptions of facts from the input tables,
relating to all players and both teams. The facts
are later supplied to the error-checking model for
grounding the evaluated sentence (see Section 2.3).
We experiment with both simple descriptions cre-
ated by filling in sentence templates, and compact
descriptions generated using a grammar-based sys-
tem. The simple system produces about 569 fact-
s/sentences for each game. The compact system
generates about 112 sentences per game, i.e., 5
times less; the game descriptions contain the same
amount of information but the individual sentences
are more syntactically complex.

Facts generated For each game, we first gener-
ate every fact in the input table, i.e., 44 facts about
the game (hosting team, visiting team, date con-
verted to weekday) and so-called line-score objects

"https://github. com/kasnerz/
accuracySharedTask_CUNI-UPF

(team name and statistics) and box-score objects
(player name, player team, player starting position
and their personal statistics).

Subsequently, we generate 85 further facts that
can be inferred from the input table. These are
based on reading the first 20 human-written sum-
maries in the training data and finding frequently
mentioned facts that can easily be derived from
input, such as which team won and by how much,
comparisons between the team and player raw data
(e.g., Team A dominated the defensive rebounding,
Team A and Team B commiitted the same number
of fouls; Player X was the (second) best scorer of
the game/his team), complex statistics (e.g., Team
A totaled X steals; Player X (almost) recorded a
double-double), or an interpretation of some num-
bers (e.g., Team A came back in the 4th quarter;
Team A was efficient/bad at shooting).>

Simple descriptions are produced by a template-
based system, with one template per fact. We hand-
crafted 129 sentence templates to cover all the facts
described above. A sentence template looks like
the following: “[PLAYER NAME] scored [PTS]
points.”, where square brackets indicate variables
that are instantiated with the corresponding input
values (see Figure 1 for sample sentences).

Compact descriptions are produced by the
FORGe system (Mille et al., 2019), which allows
for the generation of more compact sentences by in-
stantiating abstract (predicate-argument) templates
instead of full sentences for each fact. For in-
stance, the template for the points scored would
be: [PLAYER_NAME] <Al provide A2— point
NonCore—[PTS], where Al and A2 denote the
first and second arguments respectively, and Non-
Core a non-argumental relation. FORGe receives
a series of instantiated templates and performs sur-
face realization in several steps, by first aggregat-
ing the templates based on predicate and/or ar-
gument identity, and then structuring, linearizing
and inflecting components of the sentences. The
FORGe grammars were used off-the-shelf,® with
cross-sentence referring expression generation de-
activated so that each generated sentence can be
used on its own. We manually crafted 98 abstract
templates and added a description of the included

2 A number of mentioned facts could not be obtained from
the Rotowire data, as for instance the player stats per quarter,
a career high points total, whether a player is an all-star or not,
or if a player scored the winning shot.

$Minor debugging was needed to cover some new contexts.
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Team Win | Loss | Ps Toronto Rapt the first half
IR RN
by 8 points (94-86).
Player AS RB PT « Pairick Pafterson scored 14 points.
Patrick Patterson | 1 5 14
Delon Wright 4 3 8

simple (hand-crafted templates)

« Toronto Raptors beat Dallas Mavericks

« Patrick Patterson provided 5 rebounds.

« Patrick Patterson provided 3 defensive rebounds.
« Patrick Patterson provided 2 offensive rebounds.
« Patrick Patterson provided I assists.

compact (FORGe system)

» The Toronto Raptors, which were leading
at halftime by 10 points (54-44), defeated
the Dallas Mavericks by 8 points (94-86).

» Patrick Patterson provided 14 points
on 5/6 shooting, 5 rebounds, 3 defensive
rebounds, 2 offensive rebounds and I assist.

Figure 1: Rule-based NLG which we use to generate facts from the input data. The facts are used as an input to
the error checking model (see Figure 2). We experiment with (a) simple hand-crafted templates and (b) compact

sentences generated by the FORGe system.

Dallas Mavericks hosted Toronto Raptors on Saturday.
Toronto was the favorite in this game.
Toronto Raptors won the first half by 10 points (54-44).

Patrick Patterson provided 1 assist. ©
Patrick Patterson scored 14 poinfs. 10)
Patrick Patterson provided 5 rebounds. @
Patrick Patterson commited 2 fouls.
Patrick Patterson provided 0 steals. [ 9
DeMarre Carroll did not play. 0]

2 Rule-based NLG

—

¢ facts
selected

—> O Semantic similarity

s (evaluated sentence)

DeMarre Carroll chipped )

in 14 points, five rebounds,

DeMarre Carroll chipped

one assist and one steal.

in 14 points, five rebounds,

Patrick Patferson scored
14 points. Patrick Patterson
provided 5 rebounds. (...)

C (context)

one assist and ‘lone steal.

NUMBER

—> & Token classification

Figure 2: An overview of our system. First, we generate the facts from the input table with a rule-based NLG
system (see Figure 1). For each evaluated sentence s, we select ¢ facts with the highest semantic similarity, getting
a context C. The pair (C, s) is given as an input to a pretrained LM for token-level error classification.

lexical units into the FORGe lexicon. For instance,
the five simple sentences shown at the bottom of
the yellow column in Figure 1 are covered by a
single compact sentence shown at the bottom of
the orange column.

2.2 Context Retrieval

Since the maximum length of the input sequence
for our error-checking model (see Section 2.3) is
512 tokens (about 10% of the total length of the
generated sentences (G), we need to select only a
subset of (G, which we refer to as context C'. We
want to put the relevant sentences into C' and filter
out the rest to make the error tagging easier. This
problem is hard in general, as any string matching
(e.g. using numbers or names mentioned in the
sentence) will fail on lexical variations.

Our solution is based on selecting sentences with
the highest semantic similarity. For each gener-
ated sentence g; € (G, we measure semantic similar-
ity between g; and the evaluated sentence s using
Sentence Transformers (Reimers and Gurevych,
2019).* In particular, we embed the sentence to-
kens by applying mean pooling on the output of

*https://www.sbert.net/
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paraphrase-distilroberta-base-v2, getting
the embedding vectors e; and e,4,. Then we com-
pute the cosine similarity between the embeddings.
For the context C, we select the top ¢ sentences
from G that have the highest cosine similarity to s.

2.3 LM-based Error Tagger

We use a RoBERTa LM (Liu et al., 2019) with
a token-level classification head as our error-
checking model. Unlike unsupervised approaches
based on examining attention values (Thorne et al.,
2019; Li et al., 2020) or input perturbations (Kim
et al., 2020), we train the model directly to predict
error categories using annotated data, similarly to
Yoosuf and Yang (2019).

The model receives an input X = (C, s), com-
posed of the context C, i.e., relevant background
facts selected by context retrieval in Section 2.2,
and the generated sentence s to be tagged. The
inputs are separated by the delimiter </s>. The
model is trained to annotate each token in s either
with an OK label, or with a label corresponding to
one of the error categories.

We experiment with two data sources for train-
ing the model: (1) gold-standard annotated data


https://www.sbert.net/

Generator Data c EMR = 0.25 EMR = 0.5 EMR = 0.75
R P F1 R P F1 R P F1
5 0.123  0.723 0.210 0.165 0.512 0.250 0.310 0.323 0.316
synth 10 0.138 0.737 0.232 0.181 0.549 0.272 0.328 0400 0.360
20 0.137 0.741 0.231 0.179 0.559 0.271 0.327 0433 0.373
Simple - ______40 0165 0712 0268 __ 019 0560 029 0296 0436 0353
5 0422 0.617 0.501 0.414 0.594 0.488 0.401 0.583 0475
synth + human 10 0.467 0.551 0.506 0.438 0.638 0.519 0.428 0.665 0.521
20 0.518 0.640 0.573 0.544 0575 0.559 0.509 0.595 0.549
40 0.584 0.644 0.613 0.595 0.612 0.603 0.519 0.639 0.573
5 0.151  0.696 0.248 0.170 0.617 0.267 0.336 0427 0.376
synth 10 0.176  0.663 0.278 0.195 0.624 0.297 0.295 0486 0.367
20 0.196 0.672 0.303 0.205 0.635 0.310 0.278 0.552 0.370
Compact -~ —— ——___ 40 __0166 0643 0264 __0.197 0595 0296 0306 0530 0388
5 0.600 0.641 0.620 0.552 0.635 0.591 0.588 0.600 0.594
synth + human 10 0.583 0.662 0.620 0.629 0.606 0.617 0.656 0.606 0.630
20 0.622 0.647 0.634 0.597 0.688 0.639 0.600 0.660 0.629
40 0.614 0.690 0.650* 0.609 0.630 0.619 0.611 0.630 0.620

Table 2: Recall (R), precision (P) and F1 scores on development data. c indicates the number of sentences in the
context provided to the tagger, EMR stands for entity modification rate. Best recall, precision and F1 scores for
both generators (simple and compact) are shown in bold, the submitted model is identified by an asterisk (*).

from the shared task (which contains all error
types), (2) synthetic data created by perturbing the
human-written summaries from Rotowire (which
contains only NAME and NUMBER errors; see Sec-
tion 2.4 for details).

2.4 Synthetic Data

The gold-standard data contains only 60 games, as
opposed to 3,395 games in the Rotowire training
set. This led us to an idea of using the training set
as a source of synthetic data for our model.

We create the synthetic data by introducing er-
rors into human-written descriptions. We focus
only on the NAME and NUMBER errors—the cat-
egories which are the most represented and also
easiest to generate. In each sentence, we identify
named entities in the text using spaCy.> We mod-
ify only certain portion of entities according to the
entity modification rate, which we treat as a hyper-
parameter. We introduce the NAME errors by:

(1) swapping the names of teams with opponent
teams,
(2) swapping the names of players with other
players in the game,
(3) swapping the names of cities with other cities
in the Rotowire dataset,
(4) modifying the days of the week.
For NUMBER errors, we take an integer n identi-
fied in the text, sample a number from a normal
distribution with 4 = n and ¢ = 3, and truncate

*https://spacy.io

it to get the integer. We re-sample if the output
equals the original number, or for negative outputs.
If the number is spelled out, we use text2num®
and num2words’ to convert to digits and back.

3 Experiments

We train a PyTorch version of RoOBERTa from the
Huggingface Transfomers repository (Wolf et al.,
2019) using the AdamW optimizer (Loshchilov and
Hutter, 2019), learning rate 5 x 107> and linear
warmup. We finetune the model for 10 epochs and
select the model with the highest validation score.
We experiment with several hyperparameters:

(a) simple vs. compact sentences in G,

(b) number of sentences retrieved for the context:
c=5,10, 20 or 40;

(¢c) entity modification rate (EMR): proportion of
entities which are modified in the synthetic
data: 0.25, 0.5, or 0.75.

We evaluate the model using a script provided
by the organizers, which computes recall and pre-
cision of the model output with respect to the
human-annotated data. Since we use the human-
annotated data for training, we perform 6-fold
cross-validation: in each run, we use 45 games
for training, 5 games for validation, and 10 games
for evaluation.

The results of our model on the development
data are listed in Table 2.8 For our final submission,

*https://pypi.org/project/text2num/

"https://pypi.org/project/num2words/
8Due to space constraints, we do not list the results of
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Error Type Mistake Token

yp R p R p
NAME 0.750 0.846 0.759 0.862
NUMBER 0.777  0.750 0.759 0.752
WORD 0.514 0483 0465 0.529
CONTEXT 0.000 - 0000 -
NOT_CHECKABLE 0.000 -  0.000 -
OTHER 0.000 - 0000 -
Overall 0.691 0.756 0.550 0.769

Table 3: Results of our system on test data: recall (R)
and precision (P) are shown for individual error types.

we selected the model with the best F1-score over-
all, which is 0.65 (61% recall and 69% precision).
The model uses 40 compact sentences in context,
0.25 EMR and was trained on both synthetic and
human-annotated data. However, note that the hy-
perparameters of the best models are quite varied.
Although compact texts are generally helpful, there
are also some well-performing models using sim-
ple templates only. A higher number of sentences
in context may help to achieve better F1-score, but
not always (the longer context is also sometimes
cropped to fit the input). Using a higher EMR then
generally leads to higher recall, suggesting that the
model adapts to the base rate of errors.

4 Results of our Charles-UPF submission

Table 3 shows the results of our model on the of-
ficial test data of the task, broken down by error
types. The overall scores are higher than on the
development set — test set recall is 0.691 (vs. 0.614
on the development set) and precision is 0.756
(vs. 0.690). The fact that we used the whole avail-
able human annotated data for training the final
model may have contributed to the difference, but
it is also possible that the test data was somewhat
less challenging. We note that our model was able
to identify only three types of errors (NAME, NUM-
BER, WORD), having better results for the NAME
and NUMBER errors. We believe the explanation is
two-fold: the names and numbers are often found
verbatim in the input data (and in our generated
facts), which makes them easy to detect, and also
the corresponding error types were the most rep-
resented in the training data. In contrast, the three
error types which were not detected are much less
represented in the training data and hard to detect
in our setup.

model trained only on annotated data. The results were overall

in the 0.3-0.5 range for both recall and precision, and no model
was the best-performing one in terms of any metric.

5 Discussion

Our Charles-UPF submission achieved the best re-
sults in the automatic metrics category, but there
is still a gap with what humans can achieve, as
shown by the Laval University submission’s (Gar-
neau and Lamontagne, 2021) overall 0.841 recall
and 0.879 precision. One way to improve our sys-
tem would be to enrich the reference fact descrip-
tions, by either inferring more information from
the raw data, or by extracting additional data from
external databases.” Another option would be to
add surrounding sentences to the context — this
could help to resolve coreferences (e.g., if a player
is referred to as "He") and to detect the CONTEXT
erTors.

We also note that our approach requires the real
system outputs manually annotated with errors in
order to work well — using only synthetic data re-
sults in low recall (see Table 2). However, we
believe that more sophisticated techniques for cre-
ating the synthetic data could help to achieve same
results with less human-annotated data. We also
believe that our system is in general applicable to
new games or seasons. The rule-based generator
does not need any adapting, the vocabulary of both
neural parts (context selector and error tagger) is
based on subwords and thus also able to handle un-
seen player/team/city names. The model effectively
learns to compare entities from the context and the
evaluated sentence, the absolute values are thus less
important than their agreements and differences.

6 Conclusion

We presented our system for detecting errors in gen-
erated descriptions of basketball matches. Our sys-
tem can automatically classify the errors on token
level, using a pretrained language model and tex-
tual description of data generated by a rule-based
NLG system. Our system reached 0.691 recall and
0.756 precision on the test data, finishing first out
of four automatic metric submissions in the INLG
2021 Accuracy Evaluation shared task.
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