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Abstract

Recent developments in natural language gen-
eration (NLG) have bolstered arguments in fa-
vor of re-introducing explicit coding of dis-
course relations in the input to neural mod-
els. In the Methodius corpus, a meaning rep-
resentation (MR) is hierarchically structured
and includes discourse relations. Meanwhile
pre-trained language models have been shown
to implicitly encode rich linguistic knowledge
which provides an excellent resource for NLG.
By virtue of synthesizing these lines of re-
search, we conduct extensive experiments on
the benefits of using pre-trained models and
discourse relation information in MRs, focus-
ing on the improvement of discourse coher-
ence and correctness. We redesign the Method-
ius corpus; we also construct another Method-
ius corpus in which MRs are not hierarchically
structured but flat. We report experiments on
different versions of the corpora, which probe
when, where, and how pre-trained models ben-
efit from MRs with discourse relation informa-
tion in them. We conclude that discourse rela-
tions significantly improve NLG when data is
limited.

1 Introduction

The success of neural methods in numerous sub-
fields of NLP lead to recent development of neural
‘end-to-end’ (e2e) architectures in natural language
generation (NLG) (Dušek et al., 2020), where a di-
rect mapping from meaning representations (MRs)
to text is learned. While recent neural approaches
mostly map flat inputs to texts without representing
discourse level information explicitly within MRs,
Balakrishnan et al. (2019) argues that discourse
relations should be reintroduced into neural gener-
ation, echoing what has been long argued in more
traditional approaches to natural language process-
ing where discourse relations play one of the cen-
tral roles in natural language text understanding

and generation (Mann and Thompson, 1988; Reiter
and Dale, 2000; Lascarides and Asher, 2007).

To study whether discourse relations are benefi-
cial for neural NLG, Stevens-Guille et al. (2020)
proposed the Methodius corpus, which was devel-
oped as an experiment in recreating the classic rule-
based NLG system Methodius (Isard, 2016) using
a neural generator. In their corpus, the meaning
representation (MR) of a text is a tree that encodes
the overall discourse structure of the texts plus facts
related by discourse relations therein. They were
concerned with whether explicit encoding of dis-
course relations improves the quality of generated
texts by LSTM recurrent neural networks (Hochre-
iter and Schmidhuber, 1997). However, they left
open the question whether discourse relations are
helpful for pre-trained transformer-based (Vaswani
et al., 2017) language models (Lewis et al., 2020;
Raffel et al., 2019), which have recently shown
remarkable performance on NLG tasks. In this
work, we address that question using the T5-Large
implementation of Wolf et al. (2019).

A particularly attractive quality of pre-trained
models is their ability to generalize from limited
data. For example, Peng et al. (2020) proposed
to fine-tune a model pre-trained on a large NLG
corpus using a small amount of labeled data from
a specific domain to adapt the model to generate
texts in that domain. In a similar vein, when the
labeled data is limited, Arun et al. (2020) suggest
to use a large pre-trained model with self-training
and knowledge distillation to smaller, faster mod-
els. Kale and Rastogi (2020) argue that pre-trained
language models make it possible to transform a
sequence of semantically correct, but (possibly)
ungrammatical template-based texts into a natural
sounding, felicitous text of English. They find that
template-based textual input is beneficial to use
with pre-trained language models when the model
needs to generalize from relatively few examples.
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Given these considerations, we cannot answer
the question whether it is helpful to include dis-
course relations in the input to a pre-trained model
for NLG without considering the form of the input,
the size of the training data, and the extent to which
the test data goes beyond what has been seen in
training. As such, we conduct experiments using
several versions of the Methodius corpus, where
these versions possess one or more of the following
properties: (a) discourse relations included in the
MR; (b) discourse relations excluded from the MR;
(c) tree-structured MR (a hierarchically structured
representation of the meaning); (d) flat, textual MR
(i.e., non hierarchically structured). We are further-
more concerned with how the linguistic knowledge
encoded in pre-trained language models interacts
with the different versions of the corpus. We want
to be able to scrutinize the structure of the outputs,
i.e., texts, too since our intention is to check the
models’ capabilities in realizing particular phenom-
ena. For these purposes, we conduct experiments
using the following setup: (1) Use various portions
of the labeled data. (2) Train zero-shot models
(with respect to certain discourse-related phenom-
ena) together with various few-shot models (with
respect to the same phenomena). (3) Test vari-
ous aspects of generated texts, both with respect
to discourse structure congruence and correctness
(factual information).

2 Re-lexicalized & Flat Versions of
Methodius

The Methodius system (Isard, 2016) uses discrete
rules to generate texts containing predefined sub-
texts, such as descriptions of exhibits and historical
facts about certain periods. To avoid data sparsity
and long sequences, Stevens-Guille et al. (2020)
delexicalize texts as they substitute certain parts
of text by tokens, which they dub special termi-
nals. We want to take advantage of pre-trained
language models, which are not exposed to these
tokens. Tokens should be substituted by text wher-
ever possible to ensure the input is consistent with
the texts the pre-trained models were trained on.
However, using some predefined morpho-syntactic
constructions and lexical items makes it more man-
ageable to check whether a model performs well
with respect to automatic checks. Moreover, if the
model experiences problems on such data, it sug-
gests the model would have problems with even
less homogeneous data.

Instead of training the models directly on the
Methodius corpus or texts harvested through crowd-
sourcing, we modify the Methodius corpus (i.e.,
MRs paired with texts) by substituting custom ho-
mogeneous texts for the Methodius corpus’s spe-
cial terminals. We substitute some predetermined
names for named entities in the Methodius corpus
to further homogenize the inputs. This procedure
deterministically rewrites the texts in the corpus of
Stevens-Guille et al. (2020) into pure English texts
and thus maintains the homogeneity of the Method-
ius corpus. The corresponding MRs are also rewrit-
ten into their lexicalized versions.1 Moreover, we
transform Rhetorical structure theory (Mann and
Thompson, 1988) style hierarchically structured
meaning representations of Methodius texts into a
flat, textual input by translating every fact and ev-
ery discourse relation into a sequence of sentences.
Figure 1 shows an MR from the Methodius corpus,
the corresponding text from the Methodius corpus,
and the new MR that we have substituted for the
Methodius corpus MR.

3 Models: RSTSTRUCT, FACTSTRUCT,
RSTT2T, and FACTT2T

We fine-tune T5-large (Raffel et al., 2019) on the
following types of labeled data:

• Input MRs from the Methodius corpus mod-
ified by the procedure described in the fore-
going (see Figure 1b). It contains discourse
relations. We dub the result RSTSTRUCT.

• Input MRs obtained by erasing discourse in-
formation from the inputs of RSTSTRUCT.
This amounts to deleting discourse relation
markers (SIMILARITY and CONTRAST) in the
inputs of RSTSTRUCT. We dub the result
FACTSTRUCT.

• Input MRs obtained by transforming the MRs
of RSTSTRUCT into flat, purely textual repre-
sentations (see Figure 1c).2 We dub the result
RSTT2T.

• Input MRs obtained by removing discourse in-
formation from RSTT2T MRs. This amounts
to deleting discourse relation markers (‘how-
ever’ and ‘likewise’) in the inputs of RSTT2T.
We dub the result FACTT2T.

1The code can be found at https://github.com/
aleksadre/methodiusNeuralINLG2021.

2We have defined a set of rules that transform hierarchi-
cally structured MRs into texts.

https://github.com/aleksadre/methodiusNeuralINLG2021
https://github.com/aleksadre/methodiusNeuralINLG2021


14

Figure 1: A Methodius MR, the re-lexicalized MR, and its flat, textual version, together with the surface realization

(a) Delexicalized meaning representation from Methodius corpus

[__content_plan
[__rst_elaboration
[__fact_type [__arg1 entity0 ] [__arg2 statue ] ]
[__rst_joint [__fact_made_of [__arg1 entity0 ] [__arg2 material_0 ] ]

[__fact_exhibit_portrays [__arg1 entity0 ] [__arg2 god_0 ] ] ] ]
[__rst_contrast
[__fact_creation_period compare_additive [__arg1 entity1 ]

[__arg2 historical_period_0 ] ]
[__fact_creation_period [__arg1 entity0 ] [__arg2 historical_period_1 ] ] ]

[__optional_type [__arg1 entity1 ] [__arg2 vessel ] ] ]

(b) Lexicalized meaning representation of the foregoing (we treat
tokens of the form ‘[ xyz’ and ‘]’ as indivisible tokens in our
experiments)

[__content_plan
[__rst_elaboration
[__fact_type [__arg1 entity0 ] [__arg2 statue ] ]
[__rst_joint [__fact_made_of [__arg1 entity0 ] [__arg2 bronze ] ]

[__fact_exhibit_portrays [__arg1 entity0 ] [__arg2 apollo ] ] ] ]
[__rst_contrast
[__fact_creation_period compare_additive [__arg1 entity1 ]

[__arg2 classical period ] ]
[__fact_creation_period [__arg1 entity0 ] [__arg2 hellenistic period ] ] ]

[__optional_type [__arg1 entity1 ] [__arg2 vessel ] ] ]

(c) Flat, textual meaning representation

this statue is a statue. this statue is made of bronze. this statue portrays apollo.
the previously seen vessel was created in the classical period.
however this statue was created in the hellenistic period.

Text: This is a statue; it is made of bronze and it portrays Apollo. Unlike the vessel you recently saw, which was created during the classical period, this
statue was created during the hellenistic period.

Figure 2: Instances of constructions starting with SIMILARITY and CONTRAST, which are not included in zero-shot
data

(a) The Like Construction and the corresponding text

[__content_plan
[__rst_similarity

[__fact_original_location [__arg1 entity1 ] [__arg2 attica ] ]
[__fact_original_location [__arg1 entity0 ] [__arg2 attica ] ] ]

[__fact_exhibit_story [__arg1 entity0 ] [__arg2 it was part of a collection dedicated to athena ] ]
[__fact_current_location [__arg1 entity0 ] [__arg2 the national archaeological museum ] ]
[__fact_exhibit_depicts [__arg1 entity0 ] [__arg2 the goddess athena ] ]
[__optional_type [__arg1 entity0 ] [__arg2 lekythos ] ]
[__optional_type [__arg1 entity1 ] [__arg2 kylix ] ] ]

Text: Like the kylix you recently saw, this lekythos originates from Attica. It was part of a collection dedicated to Athena. This lekythos is located in
The National Archaeological Museum. It depicts the goddess Athena.

(b) The Unlike Construction and the corresponding text

[__content_plan
[__rst_contrast [__fact_original_location [__arg1 entityplural ] [__arg2 attica ] ]
[__fact_original_location [__arg1 entity0 ] [__arg2 macedonia ] ] ]

[__fact_exhibit_story [__arg1 entity0 ] [__arg2 it was part of a collection dedicated to athena ] ]
[__fact_current_location [__arg1 entity0 ] [__arg2 the national archaeological museum ] ]
[__fact_exhibit_depicts [__arg1 entity0 ] [__arg2 the goddess athena ] ]
[__optional_type [__arg1 entityplural ] [__arg2 vessel ] ]
[__optional_type [__arg1 entity0 ] [__arg2 tetradrachm ] ] ]

Text: Unlike the vessels you recently saw, which were originally from Attica, this tetradrachm originates from Macedonia. It was part of a collection
dedicated to Athena. Now this tetradrachm is exhibited in The National Archaeological Museum. It shows the goddess Athena.
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We refer to models by the name of the data type
they are fine-tuned on.

Name Size 100% Tok. Av. SIM. CONTRA.
Training 4222 180 2892 777
Validation 417 181 290 76
Challenge Test 237 96 80 80
Standard Test 799 134 495 166

Table 1: Size of training, validation and test sets; aver-
age tokens per pair (MR,text); numbers of SIMILARITY
and CONTRAST relations in data sets.

In addition to using the whole dataset for train-
ing, we conduct experiments on (randomly se-
lected) 1%, 3%, 5%, 10%, 20%, and 50% portions
of the data. With 100% percent data, we train each
model three times, while for the sub portions of the
data set, we train the models five times each (each
time we select random dataset of that portion). This
lets us get an idea of the variance between different
runs of the same model.

We distinguish three further subtypes of data,
calling them zero-, few- and ten-shot data (which
we also denote by prefixes Z-, F-, and D-, respec-
tively). In zero-shot data, none of the MRs be-
ginning with SIMILARITY or CONTRAST, the sur-
face realization of which would start with ‘Like’ or
‘Unlike,’ are included in the training data. These
constructions are exemplified in Figure 2. When
constructing the few-shot data, the foregoing re-
striction on the form of the MRs is removed. But
in each portion of the few-shot training data, we
include only three examples of each construction.
When constructing the ten-shot data, ten instances
of each of the constructions that were introduced in
the few-shot data are included. Tying the number
of these constructions to the size of the dataset lets
us more effectively compare a model behavior with
and without these constructions.

4 Evaluation Methods

We adopt the double test set style from Stevens-
Guille et al. (2020). One test set is called Standard
and the other is called Challenge (see Table 1).
There are several differences between them. The
Standard test set examples are independently se-
lected, while the Challenge test set examples are
not. In the Challenge test, around 12% of the test
items have structure not observed in the training
set for zero-shot models.

4.1 Types of Errors

Discourse Relation Errors We are interested in
observing the performance of the models with re-
spect to generating coherent discourse relations.
While there are several discourse relations in the
Methodius corpus, we focus on CONTRAST and
SIMILARITY for several reasons. First, they are
interesting in terms of their meaning—they require
identifying whether properties or entities are co-
extensive or distinct, but can be inferred from the
facts alone. Second, there is a consistent method of
expressing them in the Methodius corpus outputs:
SIMILARITY is realized by like and CONTRAST is
realized by unlike.

Repetitions, Hallucinations, and Omissions
(RHOs) Given the way the revised Methodius
corpus is constructed, its texts follow certain pre-
determined lexical and morpho-syntactic patterns.
We use this property of the texts to measure the
performance of models with respect to the follow-
ing errors: hallucination of content; omission of
content; and repetitions of content. To be more
precise, for every test item we compare the model
output and the reference text by determining their
difference with respect to the special terminals, i.e.,
the content that is obtained by relexicalizing the
delexicalized content).

Lexical Hallucinations Since Methodius is de-
signed purposely to be homogeneous, it is useful to
measure how many novel strings pre-trained mod-
els come up with when fine-tuned on data that does
not contain these strings. For that, we count per test
set the lexical hallucinations, i.e., items produced
by the model which are not observed in the corpus.

Mistaken Role Identity (mistID) We some-
times observe a mismatch between the exhibit type
in the input and its realization in the output. For
instance, in Example (1), ‘imperial portrait’ and
‘vessel’ are swapped, i.e, their roles are misidenti-
fied. We consider this kind of error distinct from
the previous error types and refer to it by mistID.

(1) Ref: This is a vessel; it was created between 500 and 480
B.C. Unlike the imperial portraits you recently saw,
which were originally from Attica, this vessel was
originally from Acropolis.

Gen: This imperial portrait was created between 500 and
480 B.C. Unlike the vessels you recently saw, which
originate from Attica, this imperial portrait was
originally from Acropolis.
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4.2 Statistical Significance: Stratified
Approximate Randomization

To compare various models, we use stratified
approximate randomization (AR; Noreen 1989),
which is a powerful and generic method of es-
tablishing significant differences between models.
One advantage of AR over more traditional paired
tests for NLP tasks is that it does not require in-
dependence of samples, which is usually violated
when we consider various runs of the same model
on the same test set (as the same test item gets
tested several times by the same model) (Clark
et al., 2011). In the present work, we rely on strat-
ified AR to identify whether differences between
the performance of various models over several
runs is significant. (The description of the strati-
fied AR algorithm is provided in Section A.1 of
Appendix A.)

5 Results

Below, we report results on the data portions 1%,
3%, 5%, 10%, 20%, and 50% of the few-shot mod-
els (results on the corresponding zero-shot data
models are provided in Appendix A.4). For 100%
data usage, we report results of zero-, few-, and
ten-shot models.

5.1 Data portions: 1%, 3%, and 5%

Discourse Relations: As Figure 3 indicates,
there are fewer errors in discourse relation real-
ization for T2T (RSTT2T and FACTT2T) models
compared to structure models (RSTSTRUCT and
FACTSTRUCT).

RHOs: Figure 4 shows the number of RHO mis-
takes the models make. T2T models make less
RHO mistakes compared to structure models. Also,
each of the models produces a large number of lexi-
cal hallucinations, but T2T are less prone to lexical
hallucinations compared to structured models as
RSTSTRUCT and FACTSTRUCT each produce on
average 100 lexical hallucinations at 1% and 50
lexical hallucinations at 3% and 5% data portion,
whereas T2T make only third of those lexical hallu-
cinations on each of the data portion (for full details
on various runs see Figure 9 in Appendix A). We
note that at the 1% portion of the data, the quality
of generated texts is unsatisfactory, even by T2T
models. This can be seen by automatic metrics, as
well as by eyeballing the generated texts. On 3%
and 5%, the quality gets slightly better for struc-

tured models and we see more rapid improvements
for T2T models.

Summary: RST vs. FACT The question
whether models with discourse relations (RST-
STRUCT and RSTT2T) perform better than ones
without discourse relations (FACTSTRUCT and
FACTT2T respectively) can be answered positively.
As for T2T models, we declare with high confi-
dence that RSTT2T outperforms FACTT2T in ev-
ery collected statistics. We are not however able
to say that for structured models, even though in
more than half of the comparisons RSTSTRUCT is
at least as good as FACTSTRUCT.

5.2 Data portions: 10%, 20%, and 50%

By using data portions 10%, 20%, and 50%, we see
many improvements in quality of texts compared
to 1%, 3%, and 5%. Also in this case (i.e. on the
data 10%, 20%, and 50%), T2T models show better
performance compared to structure models.

Discourse Relations: Figure 5 illustrates that
RSTT2T does better or at least as good as
FACTT2T. The same can be said about RST-
STRUCT and FACTSTRUCT, with the only excep-
tion of the case of the 10% data on the Challenge
set as FACTSTRUCT shows better results than RST-
STRUCT.

RHOs: In terms of RHO errors, RSTT2T to-
gether with FACTT2T are winners on either test
sets, as it is indicated by the results on Figure 6. In
addition, by measuring lexical hallucinations, we
conclude that the both RSTT2T and FACTT2T are
the least hallucinating models (the detailed statis-
tics is given on Figure 9 in Appendix A).

Summary: RST vs. FACT Again, RSTT2T
comes out as the winner among all models (vs.
RSTSTRUCT, FACTSTRUCT, and FACTT2T) by all
the evaluation metrics involved. It must be noted
though that as we reach 50%, we do not see signifi-
cant differences between RSTT2T and FACTT2T.
Also, RSTSTRUCT does better or at least as good
as FACTSTRUCT, except for one case.

5.3 100%: Zero, Few, and Ten shot

In 100% data, we see less difference among perfor-
mance of models as structured models show visible
improvement, catching up with T2T models. Be-
low, we compare models trained on zero-, few- and
ten-shot data.
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Figure 3: Few Shot Models: Discourse relation realization on the Challenge and Standard tests (A ∗> B or B ∗<
A indicate that the model A has significantly more errors than the model B, where the significance level is set to
0.05; we use this convention in all figures)
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Figure 4: Few Shot Models: RHOs on the Challenge and Standard tests

Discourse Relations: Few-shot models realize
discourse connectives on average better than zero-
shot models, even when deploying 100% of the
training data, which we see in Figure 2. On the
Challenge set, which contains the constructions
whose lookalikes are not contained at all in the zero-
shot training data, it is not unexpected that few-shot
models perform better. But, even on the Standard
test set, we see that few-shot models are better than
zero-shot. That being said, we can see that on one
of the runs a zero-shot model achieves one of the
best scores. We can say that few-shot models are
more consistent than zero-shot models; moreover,
they are beneficial when training models on small
data sets where models may not have enough data
to generalize over every possible phenomenon.

RHOs: In Figure 8, we see that RHOs are lower
than in cases of 50% data usage. But nevertheless,
they are present. Here as well, the best performing

Model Name Z-100 F-100 D-100 F-50 F-5
FACTSTRUCT 2 2 1 4 12
RSTSTRUCT 4 10 3 8 8
FACTT2T 3 0 0 7 0
RSTT2T 3 0 0 0 3

Table 2: Maximum of mistID errors of models on the
Challenge test set

models are T2T models. On the Challenge set,
few-shot and ten-shot models make less mistakes
than zero-shot models. This indeed is correlated
with the fact that few-shot and ten-shot models
perform better in terms of discourse relations: By
realizing discourse structure correctly, the model
needs to repeat or omit less information than by
making a mistake and then either repeating the
same information again or omitting it because it
does not fit into the structure it has been building.

We also found that 100% models make very few
lexical hallucinations (usually 0). However, we see
mistID errors in 100% models almost as many as
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Figure 5: Few Shot Models: Discourse relation realization on the Challenge and Standard tests
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Figure 6: Few Shot Models: RHOs on the Challenge and Standard tests

we see in models trained on small portions of data.
Table 2 shows that RSTSTRUCT models trained
on Z-100 and F-100 data do not have significant
improvements over the models trained on smaller
portions of data. It may also seem that a zero-shot
RSTSTRUCT model does better than a few-shot one.
We have closely examined those cases. The mistID
errors arise in those cases whose lookalikes have
not been seen by zero-shot models, i.e., the ones
similar to the cases shown in Figure 2b and Fig-
ure 2a. Zero-shot models either skip some of the
comparisons or do it differently—as shown in Ex-
ample (2), Z.a makes the comparison differently
from Ref, whereas Z.b skips it entirely. This is ap-
parently why zero-shot models do not produce as
many mistID errors. By contrast, few-shot models
are able to recognize those constructions (as they
have seen three of each in training) and try to real-
ize them, which they do quite successfully but in
so doing they may commit mistID errors, as shown
in Example (2), F.

(2) Ref: Like the kylix you recently saw, this lekythos origi-
nates from Attica. It was part of a collection dedi-
cated to Athena. Now this lekythos is exhibited in
The National Archaeological Museum. It shows the
goddess Athena.

F: Like the lekythos you recently saw, this kylix was
originally from Attica. It was part of a collection
dedicated to Athena. Now this kylix is exhibited in
The National Archaeological Museum. It shows the
goddess Athena.

Z.a: This lekythos originates from Attica. Like the kylix,
this lekythos was originally from Attica. It was part
of a collection dedicated to Athena. This lekythos is
currently in The National Archaeological Museum.
It depicts the goddess Athena.

Z.b: This is a lekythos and it was originally from Attica.
It was part of a collection dedicated to Athena. This
lekythos is currently in The National Archaeologi-
cal Museum. It depicts the goddess Athena.

This hypothesis can be checked by looking at ten-
shot model performance: They have fewer mistID
errors than few-shot models, presumably because
they are more comfortable with those constructions,
as they see them more than few-shot models. If we
look at F-50% models (see Table 2), they do not
do worse on mistIDs than F-100% models. That
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Figure 7: 100% models, Zero-, Few-, and 10-Shot: Discourse relation realization on the Challenge and Standard
tests
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Figure 8: 100% models, Zero-, Few-, and 10-Shot: RHOs on the Challenge and Standard tests

could perhaps be explained by the fact that with
F-50% models and D-100% models, both have the
same relative number of constructions of interest,
which means that 50% models have twice as high
concentration of those examples compared to the
corresponding 100% few-shot models.

Summary: RST vs. FACT At 100% data, all
models show more or less the same performance
according to the metrics we use. In terms of hal-
lucinations, we detected that only on Z-100 data,
FACTSTRUCT model was prone to hallucinating
‘large vessel.’ We also found that in D-100 data,
FACTSTRUCT has high variance, both in lexical
hallucinations and RHOs.

6 Discussion and Conclusion

The development of neural NLG led to an un-
derstandable focus on simpler phenomena; the
networks in currency at the time seemed to per-
form best on short, entity-focused texts. While

new methods frequently make progress by work-
ing on simple domains, we echo the conclusions
of Stevens-Guille et al. (2020) that neural methods
can and should address more complex, rhetorically
structured text, which they must if they are to pro-
duce genuinely coherent discourses (Prasad et al.,
2008). Our results here bolster those conclusions
and provide further evidence for the usefulness
of explicit discourse coding in the input to neural
systems, especially when data is limited in size.
In line with the contemporary wisdom concerning
pre-trained models, our results suggest that fine-
tuning such models when labeled data for specific
domains is limited improves the felicity of gener-
ated texts. While increases in available data do
always improve the quality of generated texts in
terms of grammatically and correctness, we see fast
and dramatic improvements when using text inputs,
with only more gradual increases in quality in the
case of structured input. But we stress that dis-
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course relations are enormously helpful when the
dataset for the domain is limited: at lower levels of
data usage, RSTT2T consistently significantly out-
performs FACTT2T on every metric we use. Given
the benefits of explicitly encoding discourse rela-
tions in the input to the models reported here, we
conclude by recommending the continued develop-
ment of NLG corpora in which discourse relations
are present in the meaning representations.

For today, even though various corpora have
been designed for natural language generation pur-
poses, corpora with discourse structure information
are not available. Given our results showing the
benefits of having discourse information in the in-
put, we hope that more corpora will be designed
where discourse information is provided with the
help of discourse relations.
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Language Resources Association (ELRA).

Mihir Kale and Abhinav Rastogi. 2020. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520, Online. Association for Computa-
tional Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alex Lascarides and Nicholas Asher. 2007. Segmented
discourse representation theory: Dynamic semantics
with discourse structure. In H. Bunt and R. Muskens,
editors, Computing Meaning: Volume 3, pages 87–
124. Kluwer Academic Publishers.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text & Talk, 8(3):243 – 281.

Eric W. Noreen. 1989. Computer-intensive methods for
testing hypotheses : an introduction. Wiley, New
York.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for
task-oriented dialog.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The penn discourse treebank
2.0. In LREC. Citeseer.

https://doi.org/10.18653/v1/2020.coling-industry.7
https://doi.org/10.18653/v1/2020.coling-industry.7
https://doi.org/10.18653/v1/2020.coling-industry.7
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/L16-1273
https://www.aclweb.org/anthology/L16-1273
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/https://doi.org/10.1515/text.1.1988.8.3.243
https://doi.org/https://doi.org/10.1515/text.1.1988.8.3.243
http://arxiv.org/abs/2002.12328
http://arxiv.org/abs/2002.12328


21

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge university
press.

Symon Stevens-Guille, Aleksandre Maskharashvili,
Amy Isard, Xintong Li, and Michael White. 2020.
Neural NLG for methodius: From RST meaning rep-
resentations to texts. In Proceedings of the 13th In-
ternational Conference on Natural Language Gener-
ation, pages 306–315, Dublin, Ireland. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

A Appendix 0

A.1 Stratified Approximated Randomization
(AR)

The principle behind of Stratified Approximated
Randomization (AR) test can be explained as fol-
lows: Given that model A output on strata of
size n > 0 (e.g. a test item can be a stratum)
are a1 . . . an and model B outputs on the same n
strata are b1 . . . bn, the performance of the models
A and B can be considered significantly differ-
ent if by swapping ai with bi with probability 0.5
would result in a sequence a

′
1 . . . a

′
n (i.e., for every

i ∈ {1..n}, a′
i is ai with probability 0.5 or bi with

probability 0.5) and a sequence b
′
1 . . . b

′
n (where,

for every i ∈ {1..n}, b′i is ai with probability 0.5
or bi with probability 0.5) usually differ less from
each other than the original sequences a1 . . . an
and b1 . . . bn differ from each other.

One may take in the role of ai (where i ∈
{1..n}), not just single output of a model, but a
set of outputs obtained by several different runs
of the same model. That is, we can have ai =
{r11, r2i , . . . , rki } where k ≥ 2 and rli is the output
of the l-th run of the model A on the stratum i. Be-
low, we assume that each rli has a numerical value.
This allows us to compare two models A and B,
each run k times with their respective outputs.

We first compute the expectation (mean) of the
sample a1 . . . an by taking mean of each set ai =
{r11, r2i , . . . , rki } and then calculating their mean.
We denote it bymA. We do the same for the sample
b1 . . . bn and denote their mean by mB . Let dm =
|mA −mB|.

Now we define the following procedure: Con-
struct a

′
1 . . . a

′
n and b

′
1 . . . b

′
n by swapping ai =

{r11, r2i , . . . , rki } with bi = {r11, f2i , . . . , fki }.
Calculate the mean of a

′
1 . . . a

′
n and the mean of

b
′
1 . . . b

′
n, denote them by m

′
A and m

′
B respectively.

Compute d
′
m = |m′

A −m
′
B|. We perform this pro-

cedure multiple times, sayN . If out ofN cases, for
p-percent (usually p is 5) or less cases we find that
d
′
m ≥ dm, we say that model A and B are signif-

icantly different with significance at p%. (Below,
in our experiments we take N = 1000 and p = 5,
which is usually considered to be a sufficient mar-
gin of significance.)

A.2 Lexical Hallucinations
Figure 9 shows numbers of lexical hallucinations
various models make.

A.3 mistID Statistics
Figure 10, Figure 11, and Figure 12 show mistID er-
rors on various runs and models trained on various
data portions.

A.4 Zero-shot Results on Discourse Relation
Realization

We report performance of the zero-shot models in
terms of generating discourse relations relations on
Figures 13, Figures 14, Figures 15, and Figures 16.

B Reproducibility Details

We use the pretrained T5-Large HuggingFace trans-
former model (Wolf et al., 2019). There are total
737683456 trainable parameters in this model. The
T5 models are fine-tuned using cross entropy loss
without label smoothing. The learning rate is con-
stantly 2 × 10−5 and the batch size is 8 samples.
The optimizer is Adam (Kingma and Ba, 2014)
where β1 = 0.9, β2 = 0.999, ε = 1 × 10−8, and
the weight decay is 0. The best checkpoint is se-
lected by validation with patience of 10 training
epochs. For every experiment, the computing in-
frastructure we used is an NVIDIA V100 GPU
and an Intel(R) Xeon(R) Platinum 8268 CPU @
2.90GHz CPU.
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Figure 9: Few Shot Models: Lexical hallucinations combined on the Challenge and Standard tests (no significance
tests were performed on lexical hallucinations as they were counted per test set, not per example)
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Figure 10: Few Shot Models: mistID errors on the
Challange set
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Figure 11: Few Shot Models: mistID errors on the
Challenge set
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Figure 12: 100% Models: mistID errors on the Chal-
lenge test
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Figure 13: Zero-shot Models: Discourse relation real-
ization on the Challenge test set
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Figure 14: Zero-shot Models: Discourse relation real-
ization on the Standard test set

10% 20% 50%
0

20

40

Data portions 10%, 20%, and 50%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns

FACTSTRUCT RSTSTRUCT

FACTT2TRSTT2T

Figure 15: Zero-shot Models: Discourse relation real-
ization on the Challenge test set
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Figure 16: Zero-shot Models: Discourse relation real-
ization on the Standard test set


