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Abstract

The knowledge of scripts, common chains of
events in stereotypical scenarios, is a valu-
able asset for task-oriented natural language
understanding systems. We propose the Goal-
Oriented Script Construction task, where a
model produces a sequence of steps to accom-
plish a given goal. We pilot our task on the first
multilingual script learning dataset supporting
18 languages collected from wikiHow, a web-
site containing half a million how-to articles.
For baselines, we consider both a generation-
based approach using a language model and
a retrieval-based approach by first retrieving
the relevant steps from a large candidate pool
and then ordering them. We show that our
task is practical, feasible but challenging for
state-of-the-art Transformer models, and that
our methods can be readily deployed for var-
ious other datasets and domains with decent
zero-shot performance1.

1 Introduction

A script is a standardized sequence of events about
stereotypical activities (Feigenbaum et al., 1981).
For example, “go to a restaurant” typically in-
volves “order food”, “eat”, “pay the bill”, etc.
Such script knowledge has long been proposed as a
way to enhance AI systems (Abelson and Schank,
1977). Specifically, task-oriented dialog agents
may greatly benefit from the understanding of goal-
oriented scripts2. However, the evaluation of script
knowledge remains an open question (Chambers,
2017). Moreover, it is unclear whether current mod-
els can generate complete scripts. Such an ability
is in high demand for recent efforts to reason about

∗ Equal contribution.
1Our models and data are be available at https://

github.com/veronica320/wikihow-GOSC.
2https://developer.amazon.com/

alexaprize

Figure 1: An example script constructed by our Step-
Inference-Ordering pipeline in a zero-shot manner. The
input is a goal, and the output is an ordered list of steps.

complex events (Li et al., 2020; Wen et al., 2021)3.
We propose the task of Goal-Oriented Script

Construction (GOSC) to holistically evaluate a
model’s understanding of scripts. Given a goal
(or the name of a script), we ask the model to con-
struct the sequence of steps (or events in a script)
to achieve the goal. This task targets a model’s
ability to narrate an entire script, subsuming most
existing evaluation tasks. Our rationale is that a
model that understands some scripts (e.g. how to
“travel abroad” and “go to college”) should be able
to produce new ones (e.g. how to “study abroad”)
using the absorbed knowledge, close to how hu-
mans learn.

While almost all prior script learning work has
focused on English, we introduce a novel multilin-
gual corpus. Our corpus is collected from wikiHow
(wikihow.com), a website of how-to articles in 18
languages. The articles span a wide range of do-
mains, from commonplace activities like going to
a restaurant to more specific ones like protecting

3www.darpa.mil/program/knowledge-
directed-artificial-intelligence-reasoning
-over-schemas

https://github.com/veronica320/wikihow-GOSC
https://github.com/veronica320/wikihow-GOSC
https://developer.amazon.com/alexaprize
https://developer.amazon.com/alexaprize
wikihow.com
https://tinyurl.com/yxwztj3j
https://tinyurl.com/yxwztj3j
https://tinyurl.com/yxwztj3j
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oneself from the coronavirus.
We train and evaluate several baseline systems

on our GOSC task. First, we consider a generation-
based approach where a pretrained language model,
multilingual T5, is finetuned to produce scripts
from scratch. As an alternative, observing that
most desired steps can be drawn from the train-
ing scripts due to their magnitude and high cover-
age, we also propose a retrieval-based approach.
Concretely, we develop a Step-Inference-Ordering
pipeline using existing models to retrieve relevant
steps and order them. We also improve the pipeline
with techniques such as multitask learning. From
the experiments, the GOSC task proves challeng-
ing but feasible for state-of-the-art Transformers.
Furthermore, we show that our pipeline trained
on wikiHow can generalize to other datasets and
domains (see an example in Figure 1). On three
classic script corpora, OMICS, SMILE, and De-
Script, it achieves strong zero-shot performance. It
can also be directly deployed to construct scripts in
distant domains (e.g. military/political).

In this paper, we make several contributions:
1) We propose the GOSC task targeting the com-
prehensive understanding of scripts.
2) We introduce the first multilingual script learn-
ing dataset available in 18 languages.
3) We compare generation-based and retrieval-
based approaches using both automatic and human
judgments, which demonstrate the feasibility but
also the difficulty of GOSC.
4) We show that our approach can be readily ap-
plied to other datasets or other domains.

2 Related Work

The notion of scripts (Abelson and Schank, 1977),
or schemas (Rumelhart, 1975), encodes the knowl-
edge of standardized event sequences. We dissect
previous work on script learning into two lines,
narrative and procedural.

One line of work focuses on narrative scripts,
where declarative, or descriptive knowledge is dis-
tilled from narrative texts like news or stories (Mu-
jtaba and Mahapatra, 2019). Such scripts are not
goal-oriented, but descriptions of sequential events
(e.g. a traffic accident involves a collision, injuries,
police intervention, etc.). Chambers and Jurafsky
(2008) introduced the classic Narrative Cloze Test,
where a model is asked to fill in the blank given
a script with one missing event. Following the
task, a few papers made extensions on representa-

tion (Chambers and Jurafsky, 2009; Pichotta and
Mooney, 2014) or modeling (Jans et al., 2012; Pi-
chotta and Mooney, 2016a,c,b), achieving better
performance on Narrative Cloze. Meanwhile, other
work re-formalized Narrative Cloze as language
modeling (LM) (Rudinger et al., 2015) or multiple-
choice (Granroth-Wilding and Clark, 2016) tasks.
However, the evolving evaluation datasets contain
more spurious scripts, with many uninformative
events such as “say” or “be”, and the LMs tend to
capture such cues (Chambers, 2017).

The other line of work focuses on procedural
scripts, where events happen in a scenario, usu-
ally in order to achieve a goal. For example, to
“visit a doctor”, one should “make an appointment”,
“go to the hospital”, etc. To obtain data, Event Se-
quence Descriptions (ESD) are collected usually by
crowdsourcing, and are cleaned to produce scripts.
Thus, most such datasets are small-scale, includ-
ing OMICS (Singh et al., 2002), SMILE (Regneri
et al., 2010), the Li et al. (2012) corpus, and De-
Script (Wanzare et al., 2016). The evaluation tasks
are diverse, ranging from event clustering, event
ordering (Regneri et al., 2010), text-script align-
ment (Ostermann et al., 2017) and next event pre-
diction (Nguyen et al., 2017). There are also ef-
forts on domain extensions (Yagcioglu et al., 2018;
Berant et al., 2014) and modeling improvements
(Frermann et al., 2014; Modi and Titov, 2014).

In both lines, it still remains an open problem
what kind of automatic task most accurately evalu-
ates a system’s understanding of scripts. Most prior
work has designed tasks focusing on various frag-
mented pieces of such understanding. For example,
Narrative Cloze assesses a model’s knowledge for
completing a close-to-finished script. The ESD line
of work, on the other hand, evaluates script learning
systems with the aforementioned variety of tasks,
each touching upon a specific piece of script knowl-
edge nonetheless. Recent work has also brought
forth generation-based tasks, but mostly within an
open-ended/specialized domain like story or recipe
generation (Fan et al., 2018; Xu et al., 2020).

Regarding data source, wikiHow has been used
in multiple NLP efforts, including knowledge base
construction (Jung et al., 2010; Chu et al., 2017),
household activity prediction (Nguyen et al., 2017),
summarization (Koupaee and Wang, 2018; Ladhak
et al., 2020), event relation classification (Park and
Motahari Nezhad, 2018), and next passage com-
pletion (Zellers et al., 2019). A few recent papers
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(Zhou et al., 2019; Zhang et al., 2020b) explored a
set of separate goal-step inference tasks, mostly in
binary-classification/multiple-choice formats, with
few negative candidates. Our task is more holistic
and realistic, simulating an open-ended scenario
with retrieval/generation settings. We combine two
of our existing modules from Zhang et al. (2020b)
into a baseline, but a successful GOSC system can
certainly include other functionalities (e.g. para-
phrase detection). Also similar is Zhang et al.
(2020a), which doesn’t include an extrinsic evalua-
tion on other datasets/domains though.

In summary, our work has the following impor-
tant differences with previous papers:
1) Existing tasks mostly evaluate fragmented pieces
of script knowledge, while GOSC is higher-level,
targeting the ability to invent new, complete scripts.
2) We are the first to study multilingual script learn-
ing. We evaluate several baselines and make im-
provements with techniques like multitask learning.
3) Our dataset improves upon the previous ones in
multiple ways, with higher quality than the mined
narrative scripts, lower cost and larger scale than
the crowdsourced ESDs.
4) The knowledge learned from our dataset
allows models to construct scripts in other
datasets/domains without training.

3 Goal Oriented Script Construction

We propose the Goal-Oriented Script Construction
(GOSC) task. Given a goal g, a system constructs
a complete script as an ordered list of steps S, with
a ground-truth reference T . As a hint of the desired
level of granularity, we also provide an expected
number of steps (or length of the script), l, as input.
Depending on whether the set of possible candidate
steps are given in advance, GOSC can happen in
two settings: Generation or Retrieval.

In the Generation setting, the model must gen-
erate the entire script from scratch.

In the Retrieval setting, a large set of candidate
steps C is given. The model must predict a subset
of steps S from C, and provide their ordering.

4 Multilingual WikiHow Corpus

Our previously wikiHow corpus (Zhang et al.,
2020b) is a collection of how-to articles in En-
glish (en). We extend this corpus by crawling
wikiHow in 17 other languages, including Spanish
(es), Portuguese (pt), Chinese (zh), German (de),
French (fr), Russian (ru), Italian (it), Indonesian

{
"title": "Eat at a Sit Down Restaurant",
"category": "FOOD AND ENTERTAINING",
"ordered": True,
"sections": [ ...
{
"section": "Ordering Out",
"steps": [ ...
"Order drinks first.",
"Ask about daily specials.",
"Look over the menu and place your
food order.", ...

],
}, ... ]}

Figure 2: An abridged example script extracted from
the English wikiHow article “How to Eat at a Sit Down
Restaurant”.

(id), Dutch (nl), Arabic (ar), Vietnamese (vn), Thai
(th), Japanese (jp), Korean (ko), Czech (cz), Hindi
(hi), and Turkish (tr). The resulting multilingual
wikiHow corpus may be used in various tasks in
NLP and other fields.

For script learning, we extract from each wiki-
How article the following critical components to
form a goal-oriented script.
Goal: the title stripped of “How to”;
Section: the header of a “method” or a “part”
which contains multiple steps;4

Steps: the headlines of step paragraphs;
Category: the top-level wikiHow category.
An example wikiHow script is shown in Figure 2.

Our previous corpus provides labels of whether
each English article is ordered, predicted by a high-
precision classifier. We project these labels to other
languages using the cross-language links in each
wikiHow article. For articles without a match to
English, it defaults to unordered. In our task setup,
we only require the model to order the steps if an
article is ordered.

For all experiments below, we randomly hold out
10% articles in each language as the test set, and use
the remaining 90% for training and development.5

We use the corpus to construct a dataset for mul-
tilingual GOSC. For the Retrieval setting, the set
of candidate steps C are all the steps present in
the test set. However, we observe that not only the
large number of steps may render the evaluation
intractable, but most steps are also evidently distant
from the given goal. To conserve computing power,
we restrict C as all the steps from articles within

4We ignore this hierarchical relation and flatten all steps
in all Sections as the Steps of the script.

5See Appendix A for our corpus statistics.
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Figure 3: Our Step-Inference-Ordering pipeline for the GOSC Retrieval task. An example ordered script is shown
with example steps in the input and output. Those that appear in the ground-truth script is in bold.

the same wikiHow category for each script.

5 Models

We develop two systems based on state-of-the-art
Transformers for the GOSC task.6

5.1 Generation Approach: Multilingual T5
For the Generation setting, we finetune mT5 (Xue
et al., 2021), a pretrained generation model that is
not only state-of-the-art on many tasks but also the
only available massively multilingual one to date.

During finetuning, we provide the goal of each
article in the training set as a prompt, and train
the model to generate the sequence of all the steps
conditioned on the goal. Therefore, the model’s
behavior is similar to completing the task of infer-
ring relevant steps and sorting them at once. At
inference time, the model generates a list of steps
given a goal in the test set.

5.2 Retrieval Approach:
Step-Inference-Ordering Pipeline

We then implement a Step-Inference-Ordering
pipeline for the Retrieval setting. Our pipeline con-
tains a Step Inference model to first gather the set
of desired steps, and a Step Ordering model to or-
der the steps in the set. These models are based on
our previous work (Zhang et al., 2020b). Under the
hood, the models are pretrained XLM-RoBERTa
(Conneau et al., 2020) or mBERT (Devlin et al.,
2019) for binary classification, both state-of-the-art
multilingual representations.

Our Step Inference model takes a goal and a
candidate step as input, and outputs whether the

6Reproducibility details can be found in Appendix C.

candidate is indeed a step toward the goal with a
confidence score. During training, for every script,
its goal forms a positive example along with each of
its steps. We then randomly sample 50 steps from
other scripts within the same wikiHow category
and pair them with the goal as negative examples.
The model predicts a label for each goal-step pair
with a cross-entropy loss. During evaluation, for
each script in the test set, every candidate step is
paired with the given goal as the model input. We
then rank all candidate steps based on the model
confidence scores decreasingly. Finally, the top l
steps are retained, where l is the required length.

Our Step Ordering model takes a goal and two
steps as input, and outputs which step happens first.
During training, we sample every pair of steps in
each ordered script as input to the model with a
cross-entropy loss. During evaluation, we give ev-
ery pair of retrieved steps as input, and count the
total number of times that a step is ranked before
others. We then sort all steps by this count to ap-
proximate their complete ordering.

An illustration of our Step-Inference-Ordering
pipeline is shown in Figure 3. We also consider
two additional variations.
Multitask Learning (MTL): The Step Inference
and the Step Ordering models share the encoder
layer, but have separate classifier layers. During
training, the MTL system is then presented with a
batch of examples from each task in an alternating
fashion. During evaluation, the corresponding clas-
sifier is used.
Cross-Lingual Zero-Shot Transfer (C0): While
there are abundant English training scripts, data
in some other languages are scarce. Hence, we
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Figure 4: Detailed performance on each language from Table 2.

Lang. en es pt de fr ru

Perp. 17 11 24 97 46 79
Bert. .823 .702 .682 .677 .718 .682

Lang. it id zh nl ar vn

Perp. 116 269 13,249 955 746 97
Bert. .653 .692 .667 .690 .701 .695

Lang. th jp ko cz hi tr

Perp. 29,538 73,952 2,357 1,823 2,033 36,848
Bert. .701 .679 .692 .682 .704 .665

Table 1: Auto evaluation results for the Generation set-
ting (Perplexity and BERTScore F1 measure). The per-
formance of multilingual T5 is reported.

also attempt to directly evaluate the English-trained
models on non-English data.

6 In-Domain Evaluation

To demonstrate the performance of models on the
GOSC task, we evaluate them on our multilingual
wikiHow dataset using both automatic metrics and
human judgments. The ultimate utility for this
task is the extent to which a human can follow
the constructed steps to accomplish the given goal.
As direct user studies might be costly and hard
to standardize, we carefully choose measures that
adhere to this utility. By default, all models are
trained and evaluated on the same language.

7Multitask XLM-R and cross-lingual zero-shot mBERT
are found to perform a lot worse and thus omitted.

Model English only Avg. all lang.s
Acc. Kendall’s τ Acc. Kendall’s τ

mBERT .256 .369 .286 .198
mBERT MTL .253 .371 .283 .226
XLM-R .258 .372 .317 .075
XLM-R C0 - - .291 .264

Table 2: Auto evaluation results for the Retrieval set-
ting (Accuracy and Kendall’s Tau). The performance
of mBERT and XLM-RoBERTa, along with their mul-
titask (MTL) and crosslingual zero-shot transfer (C0)
variations, are reported 7.

6.1 Auto Evaluation for Generation Setting

To automatically evaluate models in the Genera-
tion Setting, we report perplexity and BERTScore
(Zhang et al., 2019), as two frequently used metrics
for evaluating text generation.

The mean perplexity of mT5 on the test set of
each language is shown in Table 1. The results
show a large range of variation. To see if perplexity
correlates with the data size, we conduct a Spear-
man’s rank correlation two-tailed test. We find a
Spearman’s ρ of−0.856 and a p-value of 1e−5 be-
tween the perplexity and the number of articles in
each language in our dataset; we find a Spearman’s
ρ of −0.669 and a p-value of 2e − 4 between the
perplexity and the number of tokens in each lan-
guage in the mC4 corpus where mT5 is pretrained
on. These statistics suggest a significant correla-
tion between perplexity and data size, while other
typological factors are open to investigation.

Table 1 also shows the BERTScore F1 measure



189

of the generated scripts compared against the gold
scripts. Except for English (.82), the performance
across different languages varies within a relatively
small margin (.65 - .72). However, we notice that
as a metric based on the token-level pairwise sim-
ilarity, BERTScore may not be the most suitable
metric to evaluate scripts. It is best designed for
aligned texts (e.g. a machine-translated sentence
and a human-translated one), whereas in scripts,
certain candidate steps might not have aligned ref-
erence steps. Moreover, BERTScore does not mea-
sure whether the ordering among steps is correct.
To address these flaws, we further perform human
evaluation in Section 6.3.

6.2 Auto Evaluation for Retrieval Setting

To automatically evaluate models in the Retrieval
Setting, we first calculate accuracy, i.e. the per-
centage of predicted steps that exist in the ground-
truth steps. To account for the ordering of steps, we
also compute Kendall’s τ between the overlapping
steps in the prediction and the ground-truth.

The performance of our Step Inference-Ordering
pipeline using mBERT and XLM-RoBERTa8 on
all 18 languages are shown in Figure 4. Complete
results can be found in Appendix D. Across lan-
guages, the results are generally similar with a
large room for improvement. On average, our best
system constructs scripts with around 30% accu-
racy and around 0.2 Kendall’s τ compared to the
ground-truth. Compared to the baseline, our multi-
task and cross-lingual zero-shot variations demon-
strate significant improvement on ordering. This is
especially notable in low-resource languages. For
example, MTL on Korean and C0 on Thai both
outperform their baseline by 0.17 on Kendall’s τ .

6.3 Human Evaluation

To complement automatic evaluation, we ask 6 an-
notators9 to each edit 30 output scripts by the Step-
Inference-Ordering pipeline and mT5 in English,
French, Chinese, Japanese, Korean and Hindi, re-
spectively. The edit process consists of a sequence
of two possible actions: either 1) delete a generated
step entirely if it is irrelevant, nonsensical or not
a reasonable step of the given goal, or 2) move a
step somewhere else, if the order is incorrect. Then,

8XLM-RoBERTa is not able to converge on the training
data for Step Ordering for all but 3 languages using a large set
of hyperparameter combinations.

9The annotators are graduate students and native or profi-
cient speakers of the language assigned.

Retrieval: Step-Inference-Ordering pipeline

Language en fr zh jp ko hi
Correctness .70 .39 .50 .49 .45 .82
Completeness .70 .39 .50 .49 .45 .82
Orderliness .45 .38 .16 .12 .10 .75

Generation: mT5

Language en fr zh jp ko hi
Correctness .39 .51 .46 .40 .37 .49
Completeness .35 .40 .46 .30 .36 .41
Orderliness .82 .46 .60 .81 .69 .88

Table 3: Human judgments of correctness, complete-
ness and orderliness of the output of the Step-Inference-
Order pipeline and the mT5 model for the same set of
30 gold scripts, in six languages.

the generated script is evaluated against the edited
script in 3 aspects:
Correctness, approximated by the length (number
of steps) of the edited script over that of the origi-
nally constructed script (c.f. precision);
Completeness, approximated by the length of the
edited script over that of the ground-truth script (c.f.
recall);
Orderliness, approximated by Kendall’s τ be-
tween overlapping steps in the edited script and
the generated script.10

The results are shown in Table 3. While the con-
structed scripts in the Retrieval setting contain more
correct steps, their ordering is significantly worse
than those in the Generation setting. This suggests
that the generation model is better at producing flu-
ent texts, but can easily suffer from hallucination.

6.4 Qualitative Examples

To understand models’ behavior, we present two
representative scripts produced by the mBERT Re-
trieval model and the mT5 Generation model side
by side, accompanied by the ground-truth script,
shown in Figure 5.

The retrieved “Draw Santa Claus” script has a
high step accuracy (85%), with a reasonable or-
dering of drawing first the outline and then details.
The generation output is more off-track, hallucinat-
ing irrelevant details like “singing” and “scorpion”,
despite being on the general topic of drawing. It
also generates more repetitive steps (e.g. the head
is drawn twice), most of which are abridged.

As for “Make a Quotebook”, the retrieved script
10In this formulation, the correctness and completeness

of a retrieval-based model are equal, since the length of its
constructed script is equal to that of the ground truth script by
definition.
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Figure 5: Two example scripts constructed by our Retrieval and Generation approaches.

has a 50% step accuracy. The third step, though
not in the gold reference, is similar enough to “find
some quotes”, suggesting that our exact match eval-
uation isn’t perfect. In the generated script, all
steps are also generally plausible, but some essen-
tial steps are missing (e.g. find a book, find quotes).
This suggests that the generation model dwells too
much on the details, ignoring the big picture.

These patterns in the two scripts are common
in the model outputs, a larger sample of which is
included in the Supplementary Materials.

7 Zero-shot Transfer Learning

To show the potential of our model for transfer
learning, we use the retrieval-based Step-Inference-
Ordering pipeline finetuned on wikiHow to con-
struct scripts for other datasets and domains. We
quantitatively evaluate our model on 4 other script
learning corpora, and qualitatively analyze some
constructed scripts in a case study.

7.1 Quantitative Evaluation
Since no multilingual script data are available yet,
we perform transfer learning experiments on 4
other English script corpora, OMICS (Singh et al.,
2002), SMILE (Regneri et al., 2010), DeScript
(Wanzare et al., 2016) 11, and the KAIROS Schema
Learning Corpus (LDC2020E25). The first 3 per-
tain to human activities, while the last is in the
military and political domain. They are all in the

11The above 3 corpora are all obtained from http://www.
coli.uni-saarland.de/projects/smile/

Corpus Corpus Stats. Results
Scenarios ESDs Acc. Kendall’s τ

SMILE 22 386 .435 .391
OMICS 175 9044 .346 .443
DeScript 40 4000 .414 .418
KAIROS 28 28 .589 .381

Table 4: The zero-shot GOSC Retrieval performance
of XLM-RoBERTa finetuned on wikiHow on 4 target
corpora.

format of different scenarios (e.g. “eat in a restau-
rant”, similar to our goal) each with a number of
event sequence descriptions (ESDs, similar to our
steps). Statistics for each corpus are in Table 4.

For each dataset, we select the ESD with the
most steps for every scenario as a representative
script to avoid duplication, thus converting the
dataset to a GOSC evaluation set under the Re-
trieval setting. We then use the XLM-RoBERTa-
based Step-Inference-Ordering pipeline trained on
our English wikiHow dataset to directly construct
scripts on each target set, and report its zero-shot
performance in Table 4. We see that 30% − 60%
steps are accurately retrieved, and around 40% are
correctly ordered. This is close to or even better
than the in-domain results on our English test set.
As a comparison, a random baseline would have
only 0.013 Accuracy and 0.004 τ on average. Both
facts indicate that the script knowledge learned
from our dataset is clearly non-trivial.

http://www.coli.uni-saarland.de/projects/smile/
http://www.coli.uni-saarland.de/projects/smile/
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7.2 Case Study: The Bombing Attack Scripts

To explore if the knowledge about procedural
scripts learned from our data can also facilitate the
zero-shot learning of narrative scripts, we present
a case study in the context of the DARPA KAIROS
program12. One objective of KAIROS is to auto-
matically induce scripts from large-scale narrative
texts, especially in the military and political do-
main. We show that models trained on our data
of commonplace events can effectively transfer to
vastly different domains.

With the retrieval-based script construction
model finetuned on wikiHow, we construct five
scripts with different granularity levels under the
Improvised Explosive Device (IED) attack scenario:
“Roadside IED attack”, “Backpack IED attack”,
“Drone-brone IED attack”, “Car bombing IED at-
tack”, “IED attack”. We take the name of each
script as the input goal, and a collection of related
documents retrieved from Wikipedia and Voice of
America news as data sources for extracting step
candidates.

Our script construction approach has two compo-
nents. First, we extract all events according to the
KAIROS Event Ontology from the documents us-
ing OneIE (Lin et al., 2020). The ontology defines
68 event primitives, each represented by an event
type and multiple argument types, e.g. a Damage-
type event has arguments including Damager, Arti-
fact, Place, etc. OneIE extracts all event instances
of the predefined primitives from our source docu-
ments. Each event instance contains a trigger and
several arguments (e.g. Trigger: “destroy”, Dam-
ager: “a bomber”, Artifact: “the building”, ... ). All
event instances form the candidate pool of steps for
our target script.

Since the events are represented as trigger-
arguments tuples, a conversion to the raw textual
form is needed before inputting them into our
model. This is done by automatically instantiat-
ing the corresponding event type template in the
ontology with the extracted arguments. If an ar-
gument is present in the extracted instance, we
directly fill it in the template; else, we fill in a
placeholder word (e.g.“some”, “someone”, depend-
ing on the argument type). For example, the tem-
plate of Damage-type events is “〈arg1〉 damaged
〈arg2〉 using 〈arg3〉 instrument”, which can be

12www.darpa.mil/program/knowledge-
directed-artificial-intelligence-reasoning
-over-schemas

Figure 6: An example narrative script produced by
our retrieval-based pipeline trained on wikiHow. Each
event is represented by its Event Type and an example
sentence.

instantiated as “A bomber damaged the building
using some instrument”). Next, we run the Step
Inference-Ordering Pipeline in Section 5.2 on the
candidate pool given the “goal”. The only mod-
ification is that since we don’t have a gold refer-
ence script length in this case, all retrieved steps
with a confidence score higher than a threshold
(default=0.95) are retained in the final script.

We manually evaluate the constructed scripts
with the metrics defined in Section 6.3, except Com-
pleteness as we don’t have gold references. The 5
constructed scripts have an average Correctness of
0.735 and Orderliness of 0.404. Despite the drastic
domain shift from wikiHow to KAIROS, our model
can still exploit its script knowledge to construct
scripts decently. An example script, “Roadside
IED attack”, is shown in Figure 6. All the steps
retrieved are sensible, and most are ordered with
a few exceptions (e.g. the ManufactureAssemble
event should precede all others).13

8 Limitations

Event representation: Our representation of
goals and steps as natural language sentences,
though containing richer information, brings the
extra difficulty in handling steps with similar mean-
ings. For example, “change strings frequently” and
“put on new strings regularly” have nearly identical
meanings and both are correct steps for the goal
“maintain a guitar”. Hence, both could be included
by a retrieval-based model, which is not desired.

13More details on the format of the script, all five con-
structed scripts, the event ontology, and a list of news docu-
ments used can be found in the Supplementary Materials.

https://tinyurl.com/yxwztj3j
https://tinyurl.com/yxwztj3j
https://tinyurl.com/yxwztj3j
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Modeling: Since GOSC is a new task, there is no
previously established SOTA to compare with. We
build a strong baseline for each setting, but they are
clearly not the necessary or sufficient means to do
the task. For example, our Step-Inference-Ordering
pipeline would benefit from a paraphrasing mod-
ule that eliminates semantic duplicates in retrieved
steps. It also currently suffers from long run-time
especially with a large pool of candidates, since
it requires pairwise goal-step inference. An alter-
native is to filter out most irrelevant steps using
similarity-based heuristics in advance.
Evaluation: Under the retrieval-based setting, our
automatic evaluation metrics do not give credit
to inexact matches as discussed above, which
can also be addressed by a paraphrasing mod-
ule. Meanwhile, for the generation-based setting,
BERTScore, or other comparison-based metrics
like BLEU (Papineni et al., 2002) and METEOR
(Denkowski and Lavie, 2014), may not be the most
suitable metric to evaluate scripts. They are best de-
signed for aligned texts like translation pairs, and
do not measure whether the ordering among steps
is correct. While we complement it with manual
evaluation, only one human annotator is recruited
for each language, resulting in potential subjectiv-
ity. Alternatively, crowdsourcing-based evaluation
is costly and hard to standardize. Due to the com-
plexity of the GOSC task and its evaluation, we
suggest that future work investigate better means
of evaluation.

9 Conclusion and Future Work

We propose the first multilingual script learning
dataset and the first task to evaluate the holistic
understanding of scripts. By comprehensively eval-
uating model performances automatically and man-
ually, we show that state-of-the-art models can pro-
duce complete scripts both in- and out-of-domain,
with a large room for improvement. Future work
should investigate additional aspects of scripts,
such as usefulness, granularity, etc., as well as their
utility for downstream tasks that require automated
reasoning.
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Language en es pt de fr ru it id zh

Num. articles 112,111 64,725 34,194 31,541 26,309 26,222 22,553 21,014 14,725
Num. ordered articles 54,852 26,620 7,408 10,681 6,834 5,335 4,308 5,536 4,784
Avg. num. of sections / article 2.5 2.6 3.1 2.7 2.9 3.1 3.1 2.9 2.8
Avg. num. of steps / article 13.7 14.4 16.1 15.1 15.7 16.4 16.2 16.0 15.4
Num. of articles for train/dev 100,900 58,253 30,775 28,387 23,679 23,600 20,298 18,913 13,253
Num. of articles for test 11,211 6,472 3,419 3,154 2,630 2,622 2,255 2,101 1,472

Language nl ar vn th jp ko cz hi tr

Num. articles 13,343 12,157 6,949 5,821 5,567 5,179 5,043 3,104 1,434
Num. ordered articles 2,113 2,567 1,157 1,244 1,209 917 920 888 520
Avg. num. of sections / article 3.1 3.0 3.2 3.1 3.1 3.2 3.1 3.0 3.2
Avg. num. of steps / article 16.2 16.4 17.1 17.7 16.8 17.5 16.4 16.8 19.2
Num. of articles for train/dev 12,009 10,942 6,255 5,239 5,011 4,662 4,539 2,794 1,291
Num. of articles for test 1,334 1,215 694 582 556 517 504 310 143

Table 5: Statistics of our multilingual wikiHow corpus by language, ordered by the number of articles in each
language. Each article is converted to a script, including all steps from all sections.

B Evaluation Details

In Section 3, we formalize the Goal-Oriented Script
Construction (GOSC) task as follows: Given a goal
g, the model is asked to construct a complete script
as an ordered list of steps S, with a ground-truth
reference T . As a hint of the desired level of granu-
larity, we also provide an expected number of steps
(or length of the script), l, as input.

In the Retrieval setting, a set of candidate steps
C is also available. We evaluate an output script
from two angles: content and ordering.

First, we calculate the accuracy, namely the per-
centage of predicted steps that exist in the ground-
truth. Denote si as the i-th step in S.

acc = (
l∑
i

[si ∈ T ])/l

If the gold script is ordered, we further evaluate the
ordering of the constructed script by calculating
Kendall’s τ between the intersection of the pre-
dicted steps and the ground-truth steps.

τ =
NC(S ∩ T, T ∩ S)−ND(S ∩ T, T ∩ S)(

l
2

)
where NC is the number of concordant pairs, ND
the number of discordant pairs; A ∩B is used as a
special notation for the intersection of ordered lists,
denoting elements that appear in both A and B, in
the order of A.

It is likely that a model includes two modules: a
retrieval module and an ordering module. In this
case, it is sensible to separately evaluate these two
modules.

To evaluate the retrieval module independently,
assume that the model retrieves a large set of steps
R ranked by their relevance to the goal g. Denote
ri as the i-th step in R. We calculate recall and nor-
malized discounted cumulative gain14 at position
k. Assume k > l.

recallk = (
k∑
i

[ri ∈ T ])/k

NDCGk =

∑k
i=1

2[ri∈T ]−1
log2(i+1)∑l

i=1
21−1

log2(i+1) +
∑k

i=l+1
20−1

log2(i+1)

To evaluate the ordering module independently,
we directly give the model the set of ground-truth
steps to predict an ordering. We again use Kendall’s
τ to evaluate the ordered steps.

τ =
NC(T ′, T )−ND(T ′, T )(

l
2

)
where T ′ is the set ground-truth steps ordered by
the model.

In the Generation setting, a model is evaluated
using perplexity on the test set, following standard
practice.

perplexity(S) = exp (− L(S)

count of tokens in S
)

where L(S) is the log-likelihood of the sequence
of steps assigned by the model.

When evaluating a model on multiple scripts, all
aforementioned metrics are averaged.

14We set the true relevance of each predicted step as 1 if it
exists in the ground-truth steps, and 0 otherwise.
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C Modeling Details

All our models are implemented using the Hugging-
Face Transformer service15. For all experiments,
we hold out 5% of the training data for develop-
ment.

The pretrained models we use include: the
bert-base-multilingual-uncased check-
point (168M parameters) for mBERT, the
xlm-roberta-base checkpoint (270M param-
eters) for XLM-RoBERTa, the roberta-base

checkpoint (125M parameters) for RoBERTa16,
and the mT5-Large checkpoint (1B parameters) for
mT517.

For mBERT, XLM-RoBERTa and RoBERTa, we
finetune the pretrained models on our dataset using
the standard SequenceClassification pipeline
on HuggingFace18. For mT5, we refer to the offi-
cial finetuning scripts19 from the project’s Github
repository.

For each in-domain evaluation experiment, we
perform grid search on learning rate from 1e− 5 to
5e−8, batch size from 16 to 128 whenever possible,
and the number of epochs from 3 to 10. As mBERT
and XLM-RoBERTa have a large number of hyper-
parameters, most of which remain default, we do
not list them here. Instead, the hyperparameter
values and pretrained models will be available pub-
licly via HuggingFace model sharing. We choose
the model with the highest validation performance
to be evaluated on the test set. For the Retrieval set-
ting, we consider the accuracy of contracted scripts;
for the Generation setting, we consider perplexity.

We run our experiments on an NVIDIA GeForce
RTX 2080 Ti GPU, with half-precision floating
point format (FP16) with O1 optimization. The
experiments in the Retrieval setting take 3 hours
to 5 days in the worst case for all languages. The
experiments in the Generation setting take 2 hours
to 1 day in the worst case for all languages.

15https://github.com/huggingface/
transformers

16The above 3 models are available at https://
huggingface.co/transformers/pretrained_
models.html

17https://github.com/google-research/
multilingual-t5

18https://huggingface.co/transformers/
model_doc/auto.html?highlight=
sequence%20classification#transformers.
AutoModelForSequenceClassification

19https://colab.research.google.
com/github/google-research/
text-to-text-transfer-transformer/blob/
master/notebooks/t5-trivia.ipynb

Lang. en es pt de fr ru

Acc. .253 .220 .248 .266 .248 .275
τ .371 .313 .225 .249 .269 .244

Lang. it id zh nl ar vn

Acc. .261 .293 .322 .288 .276 .311
τ .208 .195 .237 .184 .164 .183

Lang. th jp ko cz hi tr

Acc. .100 .325 .325 .310 .349 .415
τ .124 .220 .227 .293 .215 .148

Table 6: The GOSC Retrieval performance of multitask
learning mBERT. Results higher than those produced
by the single-task mBERT are in bold.

D Additional Results

Our complete in-domain evaluation results can be
found in Table 6, 7, and 8.

E More Qualitative Examples

Aside from the examples shown in Section 6.4, we
show 2 more example scripts constructed by the
mBERT baseline under the Retrieval setting in Sec-
tion 5.2 vs. those by the mT5 baseline under the
Generation setting in Section 5.1. For each script
name, the Retrieval output and the Generation out-
put are shown side by side. Please see Figure 7 and
8 for English examples, and Figure 9 and 10 for
Chinese ones.

For more examples, please see the Supplemen-
tary Materials. We include 20 examples for each
language for the in-domain evaluation, and all 5
examples for the out-of-domain case study on the
Bombing Attack scenario.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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https://github.com/google-research/multilingual-t5
https://github.com/google-research/multilingual-t5
https://huggingface.co/transformers/model_doc/auto.html?highlight=sequence%20classification#transformers.AutoModelForSequenceClassification
https://huggingface.co/transformers/model_doc/auto.html?highlight=sequence%20classification#transformers.AutoModelForSequenceClassification
https://huggingface.co/transformers/model_doc/auto.html?highlight=sequence%20classification#transformers.AutoModelForSequenceClassification
https://huggingface.co/transformers/model_doc/auto.html?highlight=sequence%20classification#transformers.AutoModelForSequenceClassification
https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/master/notebooks/t5-trivia.ipynb
https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/master/notebooks/t5-trivia.ipynb
https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/master/notebooks/t5-trivia.ipynb
https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/master/notebooks/t5-trivia.ipynb
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Lang.
Step Retrieval Ordering Script Construction

Recall@25 Recall@50 NDCG@25 NDCG@50 Kendall’s τ Accuracy Kendall’s τ

en .337 / .342 .424 / .429 .660 / .660 .648 / .648 .368 / .375 .256 / .258 .369 / .372
es .319 / .397 .403 / .786 .653 / .532 .642 / .571 .321 / .022 .246 / .216 .295 / .022
pt .313 / .319 .401 / .412 .679 / .672 .664 / .659 .207 / .212 .251 / .254 .186 / .202
de .337 / .350 .421 / .438 .687 / .707 .676 / .692 .260 / .026 .268 / .280 .276 / .048
fr .315 / .320 .405 / .411 .673 / .672 .661 / .659 .244 / .020 .248 / .250 .206 / .043
ru .336 / .353 .423 / .446 .701 / .715 .688 / .701 .181 / .042 .271 / .285 .207 / .006
it .332 / .333 .424 / .431 .700 / .705 .686 / .687 .184 / .035 .264 / .267 .218 / .081
id .351 / .383 .435 / .480 .712 / .744 .699 / .725 .190 / .011 .284 / .312 .182 / .026
zh .401 / .429 .498 / .536 .750 / .753 .732 / .737 .260 / .027 .319 / .340 .203 / .030
nl .354 / .382 .447 / .758 .721 / .546 .708 / .597 .179 / .011 .287 / .243 .156 / .075
ar .351 / .381 .447 / .485 .710 / .735 .694 / .717 .161 / .055 .288 / .311 .175 / .067
vn .381 / .436 .464 / .544 .769 / .784 .753 / .766 .170 / .171 .322 / .358 .206 / .152
th .146 / .448 .273 / .566 .330 / .784 .369 / .764 .106 / .056 .104 / .362 .149 / .048
jp .383 / .447 .487 / .579 .754 / .766 .732 / .751 .170 / .107 .308 / .356 .179 / .097
ko .381 / .435 .474 / .553 .762 / .780 .744 / .766 .154 / .044 .318 / .361 .056 / .068
cz .416 / .456 .532 / .582 .772 / .776 .751 / .758 .211 / -.007 .337 / .367 .190 / -.028
hi .421 / .484 .530 / .610 .782 / .814 .763 / .798 .156 / .029 .354 / .410 .138 / -.004
tr .509 / .577 .676 / .718 .859 / .881 .829 / .854 .154 / .014 .415 / .477 .176 / .047

Mean .355 / .404 .454 / .542 .704 / .724 .691 / .714 .204 / .069 .286 / .317 .198 / .075

Table 7: The GOSC Retrieval performance of mBERT and XLM-RoBERTa, divided by a slash in each cell. Both
the performance of individual modules and that of script construction are reported.

Lang.
Step Retrieval Ordering Script Construction

Recall@25 Recall@50 NDCG@25 NDCG@50 Kendall’s τ Accuracy Kendall’s τ

es 0.270 0.338 0.567 0.564 0.360 0.203 0.353
pt 0.265 0.339 0.595 0.590 0.276 0.212 0.310
de 0.271 0.346 0.556 0.558 0.264 0.206 0.285
fr 0.253 0.319 0.585 0.580 0.283 0.202 0.268
ru 0.313 0.390 0.672 0.661 0.252 0.258 0.284
it 0.264 0.338 0.575 0.574 0.268 0.210 0.317
id 0.338 0.424 0.681 0.670 0.321 0.277 0.293
zh 0.379 0.471 0.718 0.706 0.318 0.310 0.295
nl 0.340 0.424 0.684 0.673 0.280 0.280 0.263
ar 0.319 0.400 0.643 0.635 0.235 0.260 0.211
vn 0.392 0.480 0.748 0.733 0.249 0.333 0.255
th 0.418 0.520 0.771 0.753 0.307 0.356 0.320
jp 0.403 0.512 0.751 0.733 0.232 0.338 0.238
ko 0.391 0.485 0.767 0.749 0.182 0.336 0.218
cz 0.406 0.519 0.749 0.732 0.300 0.342 0.285
hi 0.449 0.557 0.770 0.754 0.205 0.384 0.187
tr 0.505 0.646 0.805 0.787 0.167 0.434 0.099

Mean 0.357 0.448 0.692 0.681 0.259 0.296 0.258

Table 8: The GOSC Retrieval performance of XLM-RoBERTa using cross-lingual zero-shot transfer trained on the
English data. Both the performance of individual modules and that of script construction are reported.
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Figure 7: The “Ice an injured Ankle” script.

Figure 8: The “Solve a Simple Linear Inequality” script.
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Figure 9: The “Run for the US President” script.
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Figure 10: The “Play the Piano” script.


