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Abstract

Mask-predict CMLM (Ghazvininejad et al.,
2019) has achieved stunning performance
among non-autoregressive NMT models, but
we find that the mechanism of predicting all
of the target words only depending on the hid-
den state of [MASK] is not effective and effi-
cient in initial iterations of refinement, result-
ing in ungrammatical repetitions and slow con-
vergence. In this work, we mitigate this prob-
lem by combining copied source with embed-
dings of [MASK] in decoder. Notably. it’s
not a straightforward copying that is shown
to be useless, but a novel heuristic hybrid
strategy — fence-mask. Experimental results
show that it gains consistent boosts on both
WMT14 En↔De and WMT16 En↔Ro corpus
by 0.5 BLEU on average, and 1 BLEU for less-
informative short sentences. This reveals that
incorporating additional information by proper
strategies is beneficial to improve CMLM, par-
ticularly translation quality of short texts and
speeding up early-stage convergence.

1 Introduction

In neural machine translation (NMT), autoregres-
sive models decode tokens one-by-one: p(Y |X) =∏T

i p(yi|y≤i|X), which ensures the robustness of
intrinsic language models but slows down the in-
ference. Non-autoregressive models break the de-
pendency between adjacent tokens: p(Y |X) =∏T

i p(yi|X), enabling to generate all outputs in
parallel.

Recent years have witnessed impressive ad-
vances in non-autoregressive models, such as fully-
NAT and its variants (Gu et al., 2018; Guo et al.,
2019; Wang et al., 2019), insertion-based models
(Stern et al., 2019; Gu et al., 2019) and iterative
refinement models (Lee et al., 2018; Ghazvininejad
et al., 2019). Mask-predict CMLM (CMLM) stands
out of them owing to both significantly-fast infer-
ence and remarkable performance (Ghazvininejad

et al., 2019). It extends the masked language model
(Devlin et al., 2019) and enables it to solving gen-
eration tasks with iterative refinement. In each
step, the model decodes target conditioned on m
well-predicted tokens with high confidence and
(L−m)×[MASK], where L is the length of target
(see Section 2 for details). This mechanism leads
to the issue that it’s liable to generate repeated to-
kens and slow down the convergence in early-stage
iterations. We speculate this is because the pro-
portion of useful tokens, i.e. m→ 0, is too small
to provide enough information for the next step
prediction. Intuitively, the model tends to predict
similar or even identical tokens when observing
[MASK] only and constantly.

To alleviate this problem, we ameliorate CMLM
by incorporating additional information from
source embedding into the decoder input (HI-
CMLM in short). Experimental results show that it
gains consistent boosts on both WMT14 En↔De
and WMT16 En↔Ro corpus by 0.5 BLEU on av-
erage, and 1 BLEU for less-informative short sen-
tences. This reveals that incorporating additional
information by proper strategies is beneficial to im-
proving CMLM, particularly translation quality of
short texts and speeding up the convergence of the
first four iterations, compared with CMLM.

2 Conditional Masked Language Models

2.1 Model

The architecture of CMLM is a standard encoder-
decoder Transformer (Vaswani et al., 2017) without
the decoder self-attention mask because the depen-
dency on left tokens has been removed. Formally,
given source/target pair (X,Y ), the model first pre-
dicts the target length based on X before decoding,
with objective function:

LLEN = logP (L|X; θ). (1)
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In token prediction at step t, the model refines
unobserved tokens Y (t)

mask by minimizing MLM loss:

LMLM =
∑

yi∈Y
(t)

mask

logP (yi|X,Y (t)
obs ; θ). (2)

based on a sequence consisting of observed tokens
Y

(t)
obs and masked tokens Y (t)

mask. The total loss func-
tion is the sum of length loss and MLM loss:

L = LMLM + LLEN. (3)

2.2 Mask-predict Decoding
The decoder runs a mask operation, followed by
predict for T iterations. In each iteration t, it masks
the k tokens with the lowest probability scores,
where k is determined by a linear decay function
of t: k = L × T−t

T . Observed tokens Y (t+1)
obs and

masked tokens Y (t+1)
mask are updated by:

Y
(t+1)

mask = arg min(p
(t)
i , k) (4)

Y
(t+1)

obs = Y (t) \ Y (t+1)
mask , (5)

where p(t)i is the probability score when the model
predicts token yi at step t:

y
(t)
i = arg maxP (yi = w|X,Y (t)

obs ) (6)

p
(t)
i = maxP (yi = w|X,Y (t)

obs ), (7)

2.3 Training Strategy
To simulate the decoding process in each step, the
ground truth target is corrupted by randomly replac-
ing several tokens with [MASK]. The number and
the position of the [MASK] follows the uniform
distribution so that every token has equal chance
to be masked. Then, the model has to recover the
corrupted sequence.

2.4 Rethinking Effectiveness of Mask
In mask-predict, what should be highlighted is that
for the first iteration: t = 0 → k = L, the model
masks all the tokens, thus it predicts entire target
sequence merely depending on a full sequence of
[MASK] of length L. This leads to the fact that
the decoder always requires more than 5 refinement
iterations to converge, which is significantly against
the original intention to be faster.

We speculate this may result from following rea-
sons: 1) The proportion of Yobs is too small to
support the masked language model generating flu-
ency sentences and 2) The representation of Ymask

is less informative and distinguishable, and the con-
secutive [MASK] padding form exacerbates the
situation because of lacking useful information in-
ferred from surrounding tokens. We hypothesize
that proper initialization of Y (t)

obs (t ≤ 3) may be
beneficial to speeding up refinement, and improv-
ing the final performance. But the question is what
initialization would be helpful? Put differently,
how to incorporate additional information to Ymask
to ameliorate prediction in initial steps.

3 Method

In this section, we propose three hybrid approaches
to incorporate source embeddings and describe
modifications on training strategy accordingly.

3.1 Copy of Source Embedding

The most straightforward method is to mix mask
tokens with the source embedding. To address the
inconsistency of length, we follow the prior work
by uniform copy or soft copy (Gu et al., 2018; Lee
et al., 2018; Guo et al., 2019; Wang et al., 2019) but
with a modified copy function which copies tokens
according to their relative position instead of the
absolute position. We denote the copy function as
zi = Φ(e):

dij = −| i
LY
− j

LX
| (8)

αij =
exp(dij)/τ∑LX
j exp(dij)/τ

(9)

zi =

LX∑
j

αij · ej , (10)

where dij is the distance between the target token yi
and source token xj normalized by specific length,
αij represents the weight and ej is the embedding
of source xj . τ is the temperature of the softmax
function set as 0.2 in our experiment.

3.2 Hybrid Strategy

We compare three strategies to mix copied source
embeddings with masks (denoted as Z and M
for simplicity) with the baseline (All mask) —
All copied, Weighted Sum and our heuristically-
proposed Fence Replace, as shown in Figure 1.

All Mask: It’s exactly same as CMLM, served
as baseline.
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(b) All Copied

(d) Fence Replace

(a) All Mask
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Figure 1: The hybrid strategy.

All Copied: We replace all embeddings of mask
with copied source embedding added with position
embedding, which is equivalent to entirely using
the information from source.

Weighted Sum: It mixes the information by
adding M and Z elementwise with a certain
weight. We test 4 combinations ranging from 0.2
to 0.8 for M and Z with the stride set as 0.2, i.e.
(0.2, 0.4, 0.6, 0.8)M + (0.8, 0.6, 0.4, 0.2)Z and re-
port the best result where the weights are 0.6 and
0.4 for M and Z, respectively.

Fence Replace: During experiments, we find it’s
important to dynamically change the volume of in-
formation added to the decoder input with addition
of Yobs. Concretely, Z may become noise instead
of useful signals when Yobs has been fully capable
to support MLM independently.

Therefore, we propose to replace the masked
tokens at odd positions with half of Z exploited,
avoiding the decoder input to incorporate too much
information and ultimately act as noise. More for-
mally, we first define a mask (0, 1, 0, 1, ..., 0, 1)
like a fence with length of L and apply it to stagger
the M and Z into a mixed embedding Z ′, where
odd positions are filled with Z and even positions
are filled with M . Finally, we replace the embed-
ding of Ymask with the mixed embedding of specific
positions.

3.3 Training
To fit the proposed method and meanwhile take
full advantage of the masked language model, we
modify the training strategy by randomly replacing
the subset of the original masked token with the
copied source embedding, so that the proportion
of corrupted tokens can be unchanged. We apply
this method to train the model under all hybrid

strategies, including All Mask, for convenient com-
parison, so it differs from the original CMLM in
training.

4 Experiments

4.1 Experimental Setup

We evaluate HI-CMLMs with the proposed hybrid
strategies on standard machine translation bench-
marks including WMT14 En↔De and WMT16
En↔Ro in both directions.

Datasets The sizes of the dataset are 4.5M and
610k for En↔De and En↔Ro respectively. We
create the knowledge distilled data as suggested
in (Gu et al., 2018; Zhou et al., 2020) with same
configurations. BPE (Sennrich et al., 2016) is used
for tokenization with the vocabulary size set to 42k
and 40k for En↔De and En↔Ro.

Model Configurations We apply the same
weight initialization method and configurations
on hyperparameters as prior work: nlayers =
12, nheads = 8, dhidden = 512, dFFN = 2048
(Ghazvininejad et al., 2019; Vaswani et al., 2017).
Our model is trained on 4 Tesla V100 GPUs with
the max batch size of 8k tokens per card. Adam
(Kingma and Ba, 2015) is used for optimization.
The learning rate warms-up for 20k steps to 5e-4
and decays with the inversed-sqrt schedular. We
implement models in the experiment with fairseq
(Ott et al., 2019).

4.2 Results and Analysis

Table 1 shows the performance of the proposed
HI-CMLM with the BLEU score (Papineni et al.,
2002). For each language pair, the model obtains
consistent improvements with the Fence Replace,
but no gains with another two.
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Model En-De De-En En-Ro Ro-En

Transformer (Vaswani et al., 2017) 27.30 - - -
Transformer (Our Implementation) 27.72 32.04 34.03 33.93

CMLM (Ghazvininejad et al., 2019) 27.03 30.53 33.08 33.31
CMLM (Our Implementation) 26.89 30.71 32.94 33.07

HI-CMLM + All Mask 27.01 30.74 32.89 33.03
HI-CMLM + All Copied 26.76 30.82 32.74 32.95
HI-CMLM + Weighted Sum 26.81 30.79 32.80 33.14
HI-CMLM + Fence Replace 27.42 (+0.53) 31.32 (+0.61) 33.36 (+0.42) 33.51 (+0.44)

Table 1: The performance of the AT teacher, the baseline CMLM, and the HI-CMLM with different hybrid strate-
gies.

Length CMLM HI-CMLM (Fence Replace)

Overall 26.89 27.42 (+0.53)
[0,10) 22.24 23.27 (+1.03)
[10,23) 26.46 26.98 (+0.52)
[23,+∞) 27.61 27.81 (+0.20)

Table 2: BLEU scores of target sentences with different
lengths at the 10-th step.
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Figure 2: BLEU scores of every step with max iter=10
for all hybrid strategies as well as the baseline.

To further investigate why Fence Replace stands
out, we draw outputs of each step for four strate-
gies in Figure 2 with max iter=10. It shows from
step 4, the model with All Copied and Weighted
Sum strategy start to fall back to the All Mask level,
which means for the later steps, the added infor-
mation turns into noise, but can be appropriately
controlled by the Fence Replace. We empirically
explain how it controls below.

Results on different length targets We evalu-
ate performance of Fence Replace over three bins
based on the length of targets: [0, 10), [10, 23), and
[23,∞). Table 2 shows more gains are obtained on
short sentences. Intuitively, we guess the benefits
result from the enhanced condition of p(yi|X), by
complementing sparse X of short sentences with
informative mix(Z,M) in early steps. But if so,
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Figure 3: The proportion of copied source embedding
within the masked area for sentences with different
length when applying the Fence Replace strategy.

why All Copied and Weighted Sum do not work?
We show it’s not the whole story. In Figure 3,

the proportion of Z actually used for replacement
has been reduced from step 6 for all length bins due
to the sparsity of re-masked tokens, particularly for
shorter sentences, it’s much less than 50% that is
pre-determined by fence and dropped faster. So the
outstanding performance of Fence Replace is not
only attributed to incorporated source embedding
but the significantly-reduced proportion of Z in
later steps as well, effectively avoiding Z from
acting as noise.

This comprehensively reveals that the Fence Re-
place can flexibly balance the information feed to
decoder inputs, more signals in early-stage refine-
ment and less information in later steps.

5 Conclusion

We present HI-CMLM, an extension of CMLM by
mixing source embedding with a hybrid strategy
— Fence Replace, which can appropriately balance
the information applied to the model. It achieves
consistent improvements on two benchmarks in
both directions, particularly short sentences.
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