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Abstract 

We present several novel approaches to answer Chinese elementary school social 

studies multiple choice questions. Although BERT shows excellent performance on 

various reading comprehension tasks, it handles some kinds of questions poorly, in 

particular negation, all-of-the-above, and none-of-the-above questions. We thus 

propose a novel framework to cascade BERT with preprocessor and 

answer-picker/selector modules to address these cases. Experimental results show 

the proposed approaches effectively improve the performance of BERT, and thus 

demonstrate the feasibility of supplementing BERT with additional modules. 

Keywords: Natural Language Inference, Machine Reading Comprehension, 
Multiple Choice Question, Question and Answering. 

1. Introduction 

Machine reading comprehension (MRC) is a challenge for AI research, and is frequently 

adopted to seek desired information from knowledge sources such as company document 

collections, Wikipedia or the Web for a given question. To evaluate the capability of a MRC 

system, different test forms have been adopted in the literature (Qiu et al., 2019; Liu et al., 

2019) such as binary choice, multiple choice (MC), multiple selection (MS), and cloze. Which 

test form to adopt usually depends on the format of the given benchmark/dataset. In this paper,  
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Table 1. Example social studies MC question. 

Passage 三代同堂家庭是子女和父母、祖父母或外

祖父母同住。 

Question 「我和爸爸、媽媽、爺爺、奶奶住在一起。」

是屬於哪一種類型的家庭？ 

Options (1) 三代同堂家庭 

(2) 單親家庭 

(3) 隔代教養家庭 

(4) 寄養家庭 

Answer (1) 三代同堂家庭 

 

we solve MC questions about traditional Chinese primary school social studies. In this 

Chinese Social Studies MC (CSSMC) QA task, the system selects the correct answer from 

several candidate options based on a given question and its associated lesson manually 

constructed by Taiwan book publishers. Table 1 shows an example of CSSMC, where the 

passage is the corresponding supporting evidence (SE). 

Previous work on answering MC questions can be divided into statistics-based 

approaches (Kouylekov & Magnini, 2005; Heilman & Smith, 2010) and neural-network-based 

approaches (Parikh et al., 2016; Chen et al., 2017). Recent pre-trained language models such 

as BERT (Devlin et al., 2019), XLNET (Yang et al., 2019), RoBERTa (Liu et al., 2019), and 

ALBERT (Lan et al., 2019) show excellent performance on different RC MC tasks. As BERT 

shows excellent performance on various English datasets (e.g., SQuAD 1.1 (Rajpurkar et al., 

2016), GLUE (Wang et al., 2018), etc.), it is adopted as our baseline. Table 6 shows its 

performance given the gold SE. 

After analyzing error cases, we observed that BERT handles the following question types 

poorly: (1) Negation questions, that is, questions with negation phrases such as 不可能 

(unlikely). For this type of question, BERT selects the same answer for “小敏的媽媽目前在

郵局服務，請問小敏的媽媽可能會為居民提供什麼服務？ (Xiaomin's mother serves at the 

post office. What kind of services could Xiaomin's mother provide to the residents?)” and “小

敏的媽媽目前在郵局服務，請問小敏的媽媽不可能會為居民提供什麼服務？ (Xiaomin's 

mother serves at the post office. What kind of service could not Xiaomin's mother provide to 

the residents?)” (which differ only in the negation word 不 (not)). BERT evidently pays no 

special attention to negative words; however, any one of them would change the desired 

answer; (2) All-of-the-above (以上皆是) and none-of-the-above (以上皆非) questions, 

choices for which include either All of the above or None of the above. In both cases, the 

answer cannot be handled by simply by selecting the most likely choice without preprocessing  
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Table 2. Question types in CSSMC corpus. 

Problem type Questions 

Negation Question: 浩浩跟家人到臺東縣關山鎮遊玩，他不可能在當地看

到什麼？ 

Options:  (1)阿美族豐年祭 (2)環鎮自行車道 (3)油桐花婚禮 
(4)親水公園 

All of the  
above 

Question: 在高齡化的社會裡，我們應該如何因應高齡化社會的

到來？ 

Options: (1)制定老人福利政策 (2)提供良好的安養照顧  (3)
建立健全的醫療體系 (4)以上皆是 

None of the  
above 

Question: 都市有公共設施完善、工作機會多等優點，常吸引鄉

村地區哪一種年齡層的居民前往？ 

Options: (1)老人 (2)小孩 (3)青壯年  (4)以上皆非 

 

the given choices. Table 2 shows an example of these question types. 

The above phenomenon was also observed by Wu & Su (2020), who reported that BERT 

achieves superior results mainly by utilizing surface features, and that its performance 

degrades significantly when the dataset involves negation words. Moreover, it is difficult for 

BERT to learn the semantic meaning of all-of-the-above and none-of-the-above questions, 

which suggests that the listed candidate options are all correct or all incorrect, with a small 

amount of data. 

However, it is difficult to pinpoint the sources of the problem and then find 

corresponding remedies within BERT, due to its complicated architecture (even its basic 

version includes 12 heads and 12 stacked layers). We thus prefer to keep its implementation 

untouched if the problem can be fixed by coupling BERT with external modules. Accordingly, 

we here propose a framework that cascades BERT with a preprocessor module and an 

answer-picker/selector module. The preprocessor module revises the choices for 

all-of-the-above and none-of-the-above questions, and the answer-picker/selector module (a 

postprocessor) determines the appropriate choices under the cases mentioned above. The 

above approach is inspired by Lin & Su (2021), who demonstrate that BERT learns natural 

language inference inefficiently, even for simple binary prediction; however, they also point 

out that task-related features and domain knowledge significantly help to improve BERT’s 

learning efficiency. 

For negation-type questions, instead of picking the highest-scoring choice as usual, the 

answer-picker/selector module selects the candidate with the lowest score. On the other hand, 

for all-of-the-above or none-of-the-above questions, we use a decision tree to select the 
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answer, as illustrated in Figure 2. In these cases, the preprocessor module first replaces the 

original “all of the above” or “none of the above” choices with a new choice generated by 

concatenating all other choices together (before those candidates are sent to BERT). Take for 

example the second last row in Table 2: we replace “以上皆是 (all of the above)”, the 

original last choice, with “制定老人福利政策^提供良好的安養照顧^建立健全的醫療體系 

(Make welfare policies for elderly people^ Provide good nursing care^ Establish a sound 

medical system)”. 

We evaluate the proposed framework on a CSSMC dataset. The experimental results 

show the proposed approaches outperform the pure BERT model. This thus constitutes a new 

way to supplement BERT with additional modules. We believe the same strategy could be 

applied to other DNN models, which — despite good overall performance — are too 

complicated to customize for specific problems. 

In summary, in this paper we make the following contributions: (1) We propose several 

novel approaches to supplement BERT to solve negation, all-of-the-above, and 

none-of-the-above questions. (2) Experimental results show that the proposed approach 

effectively improves performance, and thus demonstrate the feasibility of supplementing 

BERT with additional modules to fix given problems. (3) We construct and release a new 

Traditional Chinese Machine Reading Question and Answering dataset to assess the 

performance of RC MC models. 

In comparison with our previous conference version (Lee et al., 2020), this article 

describes additional “Separately Judge then Select” and “Separately Judge Concatenation 

then Select” experiments, which adopt a BERT entailment prediction model to handle each 

candidate option separately (details are provided in Sections 2.2.1 and 2.2.2) instead of jointly 

processing all candidate options together. We have also added Section 3 to describe the 

construction of the CSSMC dataset, which we adopt to compare different approaches. 

2. Proposed Approaches 

2.1 Problem Formulation 

Given a social studies problem Q and its corresponding supporting evidence SE, our goal is to 

find the most likely answer from the given candidate set A = {A1, A2, … An}, where n is the 

total number of available choices or candidates, and Ai denotes the i-th answer candidate. This 

task is formulated as follows, where Â  is the answer to be chosen. 

 

1,...,

ˆ arg m ax (A | , , )i
i n

A P Q SE A


                        (1) 
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Figure 1. Architecture of proposed SJS approach. 

2.2 Proposed Models 

Three different approaches are proposed in which we use entailment prediction (Dagan et al., 

2005) to determine whether the candidate option is the correct answer to the question: 

(1) Separately judge then select (SJS), which considers each individual candidate option 

separately and then selects the final answer based on their output scores; (2) Separately judge 

with concatenation then select (SJCS), which adopts the framework of the first approach but 

first replaces the all-of-the-above (以上皆是) and none-of-the-above (以上皆非) answer 

choices with the concatenation of all the other remaining candidate options before entailment 

judgment; (3) Jointly judge then select (JJS), which jointly considers all candidate options to 

make the final decision. Details are provided below. 

2.2.1 Separately Judge then Select (SJS) 

Figure 1 shows the architecture of the proposed SJS approach, which consists of two main 

components: (1) the YN-BERT module, a fine-tuned BERT entailment prediction model 

(where YN denotes its output is a yes-no binary entailment judgment), and (2) the 

answer-picker module, which determines the final answer given the entailment judgment 

scores from four different YN-BERT modules. The input sequence is the concatenation of the 

associated supporting evidence, a given question, and a specific individual answer 

candidate/option. For each answer candidate, YN-BERT outputs an entailment judgment score 
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     Figure 2. Decision tree for SJS approach. Each “act-xxx” is a specific         

action to be taken. 

used to select either Entail or Not-entail (i.e., the judgment is Entail if the score exceeds 0.5, 

and Not-entail otherwise). Entail implies that the given answer candidate is entailed by the 

combination of the question and its associated supporting evidence. The answer-picker 

module considers the entailment judgment scores of the various choices and selects the most 

appropriate one based on the decision tree shown in Figure 2. Note that this decision tree is 

used only by the answer picker to make the final decision and is not involved in BERT’s 

fine-tuning process. 

A given question is classified as negative-type if it includes a negation word within a 

pre-specified negation word list, which is obtained from the CSSMC training data, and 

currently consists of {“不會 (will not)”, “不能 (cannot)”, “不得 (not allow)”, “不是 (is 

not)”, “不應該 (should not)”, “不可能 (unlikely)”, “不需 (do not need)”, “不必 (do not 

need)”, “不用 (do not need)”, “沒有 (without)”}. Since the proposed approaches aim to 

supplement BERT, these negation words are manually picked from the error cases in the 

training data-set, on which BERT model make mistakes. Figure 3 shows the examples under 

two different inference mechanisms: (1) for a negation-type question (left figure), and (2) a 

question with all of the above option (right figure). 
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         Figure 3. Two inference mechanisms under SJS framework. 

2.2.2 Separately Judge with Concatenation then Select (SJCS) 

Another approach adopts the framework of the first approach but first recasts “以上皆是 (all 

of the above)” and “以上皆非 (none of the above)’ answer candidates as the concatenation of 

all of the other options. Take for example the last row in Table 2: we replace “以上皆非”, the 

original last choice, with “老人^小孩^青壯年 (elderly people^children^young people)”. 

Afterwards, the answer-picker module selects the most appropriate choice based on the 

following rule: For negation questions, we select the answer candidate with the lowest 

entailment score; otherwise, we select that with the highest entailment score. 

2.2.3 Jointly Judge then Select (JJS) 

Shown in Figure 4, the system architecture of the JJS approach consists of three main 

components: (1) the preprocessor, which recasts “以上皆是 (all of the above)” and “以上皆

非  (none of the above)” answer candidates as the concatenation of the other options 

(associated with the same question), as shown above, before inputting the 

question-choice-evidence combination into the BERT model; (2) the BERT-MC model, a 

typical fine-tuned BERT multiple-choice prediction model (Xu et al., 2019) described in 

Section 4.1; and (3) the answer selector, a candidate re-selector which for negation-type 

questions picks that answer candidate with the lowest score as opposed to that with the highest 

score (as for other question types). 
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Figure 4. System architecture of proposed “Jointly Judge then Select” framework. 

3. Chinese Social Studies MRQA Dataset Construction 

To evaluate the proposed approaches, we constructed a Chinese Social Studies Machine 

Reading and Question Answering (CSSMRQA) dataset, which is a superset of the CSSMC 

dataset mentioned above, to assess the capability of different Q&A systems (not just MC 

questions). This dataset consists of three question types: (1) yes/no questions, which ask 

whether the given question is a correct statement judged from the supporting evidence; (2) 

multiple-choice (MC) questions, which include four answer choices from which the correct 

one is to be chosen (here, this is the CSSMC dataset adopted in this paper); and (3) 

multiple-selection (MS) questions, which are similar to the multiple-choice questions but can 

contain more than one correct answer. Below we describe how they are constructed. 

3.1 Corpus Collection 

We first collected lessons for grades 3 to 6 from elementary-school social studies textbooks 

published in Taiwan. For each lesson, we collected relevant questions from leading publishing 

houses in Taiwan. We thus obtained 14,103 yes/no questions, 5347 MC questions, and 340 

MS questions from a total of 255 lessons. We then annotated the supporting evidence to 

indicate what information is needed to answer each question. This is described in detail below. 
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3.2 Supporting Evidence (SE) Annotation 

We hired two annotators to annotate the supporting evidence for each question. Supporting 

evidence is the content in the lesson (associated with the given question) which contains just 

the information necessary to answer the question. In the CSSMRQA dataset, each lesson 

comprises several paragraphs, and each paragraph comprises several sentences. Supporting 

evidence consists of one or more sentences. 

We used Doccano (Nakayama et al., 2018), an open-source text annotation tool, as the 

platform for annotation. Doccano allows the user to highlight supporting words in the text (i.e., 

those words that provide hints to find the related passage). Given a question and its 

corresponding answer (also the lesson associated with the question), the annotators 

highlighted supporting words necessary to answer the question. Usually, these supporting 

words were words within the given question. Annotators were not allowed to annotate 

supporting words across sentence splitters or delimiters. Nonetheless, some questions lack 

suitable supporting evidence in the lesson. For example, students may rely on common sense 

(instead of textbook context) to answer the question, “班上同學有人亂丟垃圾，身為衛生

股長的小玉可以怎麼做？ (1) 默默的跟在他們後面撿垃圾 (2) 勸告亂丟垃圾的同學，並

請他們將垃圾撿起來 (3) 沒關係，等打掃時間再掃就好了 (4) 把垃圾藏在看不見的地方 

(What can Xiaoyu (the Chief of Health) do when her classmate litters? (1) Pick up trash after 

them silently; (2) Advise the classmate who litters and ask him/her to pick up the litter; (3) It 

doesn't matter, just wait until the cleaning time; or (4) Hide litter out of sight)”. In such cases, 

annotators found no suitable supporting words in the lesson and thus skipped SE annotation. 

Afterward, sentences that contain marked supporting words were annotated as supporting 

evidence. Table 3 shows the final results of SE annotation. 

Table 3. Supporting evidence annotation in training/dev/test subsets.  

Subset Training Dev Test 

Questions 3,879 780 778 

Questions w/ SE 3,135 604 563 

Questions w/o SE 744 176 215 

Averaged SPs 1.09 1.16 1.14 

Averaged SSs 3.17 2.94 2.73 

*Questions w/o SE: the number of questions without supporting evidence 
Averaged SPs: the average number of Supporting Paragraphs 
Averaged SSs: the average number of Supporting Sentences 
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               Figure 5. Multiple-choice question annotation. 

Figure 5 shows an example of multiple-choice question annotation. Annotators first read 

both the question (qtext) and the correct answer (answer) from the right-hand side windows, 

and then highlight supporting words (marked with purple boxes) in the lesson. To prevent 

annotators from highlighting supporting word regions across sentences, we use special 

symbols as separators (||| for paragraphs and || for sentences). 

4. Experiments 

We conducted experiments on the above CSSMC dataset with the three proposed approaches. 

Table 4 shows the dataset statistics. For comparison, we used a typical BERT multiple-choice 

implementation (Xu et al., 2019) as our baseline. 

4.1 Baseline: BERT-MC 

For the baseline, we used the BERT-MC model, that is, BERT (Devlin et al., 2019) fine-tuned 

for the multiple-choice task as our baseline, as it is the most widely adopted state-of-the-art 

model (Xu et al., 2019). It was built by exporting BERT’s final hidden layer into a linear layer 

and then taking a softmax operation. For details on the BERT-MC model, please see Xu et al. 

(2019). The BERT input sequence consists of “[CLS] SE [SEP] Question [SEP] Option-#i 

[SEP]”, where Option-#i denotes the i-th option and [CLS] and [SEP] are special tokens 

representing the classification and the passage separators, respectively, as defined in Devlin et 

al. (2019). Figure 6 shows the architecture of the BERT baseline model. 
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Table 4. CSSMC dataset. 

 Training Dev Test 

Lessons 202 27 26 

Questions 3,879 780 778 

Averaged 
paragraphs/lesson 

11.28 13.93 10.93 

#Averaged  
entences/lesson 

46.40 52.67 46.33 

 

 
      Figure 6. The architecture of the BERT-MC model (Xu et al., 2019). 

4.2 Retrieved Supporting Evidence (SE) Dataset 

SE is the corresponding shortest passage based on which the system can answer the given 

question. Given the annotation results described in Section 3.2, we find many questions that 

involve common-sense reasoning, for which no corresponding SEs can be found in the 

retrieved lesson. We denote as SE1 that set of questions for which SEs can be found in the 

retrieved lesson (this is termed GSE1 if it is also associated with gold SEs); the set of 

remaining questions is SE2. Table 5 shows the statistics for GSE1. 
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Table 5. CSSMS GSE1 (with gold SEs) subset statistics. 

 Training Dev Test 

Lessons 196 27 26 

Questions  
( NEGa ) 

( AllAbv&NonAbvb ) 

3,135 

(53) 

(332) 

604 

(14) 

(69) 

563 

(15) 

(56) 

Averaged 
paragraphs/lesson 

11.35 13.93 10.85 

Averaged sentences/ 
Lesson 

46.72 52.67 46.15 

a NEG: number of negation-type questions. 
b. AllAbv&NonAbv: number of AllAbv&NonAbv-type questions. 

4.3 Results 

We conducted two sets of experiments on the CSSMC dataset: (i) GSE1, based on SE1 with 

gold SEs, to compare the QA component performance of different models; and (ii) LSE, based 

on the whole dataset with all SEs directly retrieved from the Lucene search engine, to compare 

different approaches under a real-world situation. Each set covers six different models: (1) 

BERT-MC Only, (2) SJS, (3) SJCS, (4) BERT-MC+Neg, (5) BERT-MC+AllAbv&NonAbv, and 

(6) BERT-MC+Neg+AllAbv&NonAbv, where BERT-MC Only is the baseline model and Neg 

and AllAbv&NonAbv denote additional answer-selector and preprocessor modules for the 

negation and all-of-the-above/none-of-the-above question-types, respectively. We adopted the 

setting specified in Xu et al. (2019) for BERT training. All other models were trained using 

the following hyperparameters: (1) a maximum sequence length of 300; (2) a learning rate of 

5e-5 with the AdamW optimizer (Loshchilov & Hutter, 2019); (3) 3 to 5 epochs. Table 6 

compares the accuracy of various approaches; we report test set performance using the settings 

that corresponded to the best dev set performance. 

4.3.1 Jointly Judge then Select (JJS) 

In this scenario we sought to evaluate the QA component performance of six different models 

on the GSE1 subset (i.e., with gold SEs). The GSE1 column in Table 6 gives the test set 

accuracy rates of various approaches. As the SJS model has special handling for negation and 

“以上皆是 (all-of-the-above)” or “以上皆非 (none-of-the-above)” questions, it yields better 

performance than BERT-MC Only (0.862 vs. 0.849). The SJCS model further replaces the “以 

上皆是  (all-of-the-above)”  and “以上皆非  (none-of-the-above)”  options with the 

concatenation of the three other options. However, this degrades the baseline performance 

significantly, from 0.849 to 0.822. This is because the “以上皆是 (all-of-the-above)” and  



 

 

    Answering Chinese Elementary School Social Studies Multiple Choice Questions    79 

Table 6. Test-set performance comparison. 

 GSE1a GSE1-Neg b GSE1-AllAbv&NonAbv c LSE d 

BERT-MC only 
(baseline) 0.849 0.200 0.643 0.692 

SJS 0.862 NA NA 0.694 

SJCS 0.822 NA NA 0.661 

BERT-MC 
+ Neg 0.870 0.400 NA 0.695 

BERT-MC 
+ AllAbv&NonAbv 0.879 NA 0.839 0.719 

BERT-MC 
+ Neg  
+ AllAbv&NonAbv 
(also JJS) 0.879 NA NA 0.725 

a GSE1: SE1 subset with gold SEs. 
b GSE1-Neg: Only negation-type questions within GSE1. 

c GSE1-AllAbv&NonAbv: Only AllAbv&NonAbv-type questions within GSE1. 
d LSE: <SE1+SE2> with all SEs retrieved from the Lucene search engine. 

 

“以上皆非 (none-of-the-above)” options are closely related to the other three options. 

However, as it considers the concatenation option and the other three options independently, 

or separately, without using a complicated decision tree (specified in Figure 3), this approach 

is unable to take such correlation into account. 

The JJS model (i.e., the last row in Table 6) addresses this problem by considering all of 

the options together simultaneously. Table 6 shows that it considerably outperforms the SJCS 

model by 5.7% (87.9% - 82.2%) on the test set, which shows that jointly processing all 

options together is essential after the concatenation step. The BERT-MC+Neg and 

BERT-MC+AllAbv&NonAbv models are also evaluated as an ablation analysis. Table 6 

indicates they also outperform the BERT-MC only baseline by 2.1% (87.0% - 84.9%) and 

3.0% (87.9% - 84.9%) on the test set, respectively, which shows the necessity of both the 

preprocessor and answer-selector modules. 

Last, to explore the effects of the proposed approaches on specific question types, we 

conducted two additional experiments on two GSE1 subsets: (1) the Neg-type only subset, 

which contains only negation questions, to compare the performance between the BERT-MC 

only and BERT-MC+Neg approaches to evaluate the effectiveness of the answer-selector 

module; (2) the AllAbv&NonAbv only subset, which contains only AllAbv or NonAbv 

questions, to compare  the  BERT-MC only  and  BERT-MC+AllAbv&NonAbv  

approaches to evaluate the effectiveness of the proposed preprocessor. Table 6 clearly shows  
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Table 7. Error case of “BERT-MC+Neg” on “GSE1-Neg” subset. 

SEs: 另外，隨著商業興盛，在府城、鹿港、艋舺等大城市，也出現由商人組成的「郊」。

「郊」類似現代同業公會，成員除了經營貿易外，也積極參與地方的公共事務。 

Question: 清朝統治臺灣時期，怎樣的人應該比較沒有共同的血緣？ 

Options: (1)參加同一個宗親會 (2)參加同一個祭祀公業 (3)參加同一個「郊」        
(4) 在同一座宗祠祭祀祖先 

Table 8. Error case of “BERT-MC+AllAbv&NonAbv” on “GSE1-AllAbv&NonAbv” 
subset. 

SE:工業生產如果沒有適當處理，很容易破壞周遭環境，造成空氣汙染、噪音汙染、水

質汙染、土地汙染等。例如：工業廢水或是家庭汙水直接排入河流，不僅危害河

流生態，有毒物質如果流入大海，通過食物鏈進入人體，更會嚴重損害健康。 

Question: “志忠家附近有一間工廠，時常將未經處理的汙水排入河川中，這樣可能會造

成什麼後果？” 

Options: (1)空氣汙染 (2)噪音 (3)水質汙染 (4)以上皆是 

that the preprocessor (GSE1-Neg column) and answer-selector (GSE1-AllAbv&NonAbv 

column) modules effectively enhance BERT-MC on these two subsets (from 20% to 40%, and 

from 64.3% to 83.9%, respectively). The above experiments sufficiently demonstrate the 

effectiveness of our proposed approaches (unnecessary combinations are marked “NA” in 

Table 6). 

The remaining errors in the GSE1-Neg and GSE1-AllAbv&NonAbv subsets are mainly 

due to that answering those questions requires further inference capability. Table 7 shows that 

we need to know that “商人  (businessmen)” are people without “共同的血緣  (blood 

relations)”. Similarly, Table 8 shows that we need to know that “未經處理的汙水排入河川 

(untreated sewage discharged into the river)” causes “水質汙染 (water pollution)”. 

4.3.2 LSE (SE1+SE2 with all SEs retrieved from Lucene) 

Since the gold SE is not available for real-world applications, this scenario compares the 

system performance of different models in a real-world situation. That is, we evaluated 

various models with all the SEs retrieved from a search engine (i.e., Apache Lucene 

(https://lucene.apache.org/)). Furthermore, to support those questions for which no associated 

SEs from the lessons (i.e., the SE2 subset), we used Wikipedia as an external knowledge 

resource to provide SEs when possible. We first used Lucene to search the Taiwan 

elementary-school social studies textbook and Wikipedia separately to yield two different SEs, 

after which we constructed a fused SE by concatenating these two SEs with the format 

“Textbook-SE [SEP] Wiki-SE” where Textbook-SE and Wiki-SE denote the two SEs 

retrieved from the textbook and Wikipedia, respectively. 
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Table 9. Error types. 

Error Type Questions 

Incorrect  

supporting 
evidence 

(52%) 

Wrong SE: 清朝統治臺灣初期，漢人渡海來臺後，往往同鄉人聚
居在一起，並且建築廟宇供奉共同信仰的神明。  

Question: 臺灣有許多從中國移民來的漢人，來臺要渡過危險的臺

灣海峽，所以什麼神明就被所有移民所共同信仰？ 

Options: (1)關公 (2)土地公 (3)媽祖 (4)三山國王 

Requires 
advanced 
inference 
capability 

(48%) 

SE: 刑法對傷害他人的行為加以處罰；民法則以損害賠償的方式，

請問牛奶的保存期限過了沒？（相關法律：民法、消費者保護法、

食品安全衛生管理法） 

Question: “小花在超市買到過期的餅乾，請問該超市的販售行為違

反什麼法律？” 

Options: (1)刑法 (2)憲法 (3)教育基本法  (4)食品安全衛生管理法 

Experimental results (the LSE column in Table 6) show that both the preprocessor and 

the answer selector effectively supplement BERT-MC; performance is improved further when 

they are jointly adopted (3.3% = 72.5% - 69.2%). Furthermore, the accuracy of the BERT-MC 

only model on LSE is significantly lower than that on GSE1 (69.2% vs. 84.9%), which clearly 

illustrates that extracting good SEs is essential in QA tasks. Last, to show the influence of 

incorporating Wikipedia, we conducted an experiment in which we used only Lucene to 

search the textbook. The BERT-MC+Neg+AllAbv&NonAbv model now drops to 70.4% (not 

shown in Table 6) from 72.5%, which shows that Wikipedia provides the required common 

sense for some cases. 

5. Error Analysis and Discussion 

We randomly selected 40 error cases from the test set of the 

BERT-MC+Neg+AllAbv&NonAbv model under the “all SEs retrieved from Lucene” scenario. 

We found that all errors come from two sources: (1) the correct support evidence was not 

retrieved (52%), and (2) the answer requires deep inference (48%). Table 9 shows an example 

for each category. For the first example, the retrieved SE is irrelevant to the question; our 

model thus fails to produce the correct answer. The second example illustrates that the model 

requires further inference capability to know that both “牛奶的保存期限過了沒 (Has the 

milk expired?)” and “在超市買到過期的餅乾 (I bought expired cookies in the supermarket)” 

are similar events related to “食品安全衛生管理法  (Act Governing Food Safety and 

Sanitation)”. 
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6. Related Work 

Before 2015, most work on entailment judgment adopted statistical approaches (Kouylekov & 

Magnini, 2005; Heilman & Smith, 2010). In subsequent work, neural network models were 

widely adopted due to the availability of large datasets such as RACE (Lai et al., 2017) and 

SNLI (Bowman et al., 2015). Parikh et al. (2017) propose the first alignment-and-attention 

mechanism, achieving state-of-the-art (SOTA) results on the SNLI dataset. Chen et al. (2017) 

further propose a sequential inference model based on chain LSTMs which outperforms 

previous models. In recent work, pre-trained language models such as BERT (Devlin et al., 

2019), XLNET (Yang et al., 2019), RoBERTa (Liu et al., 2019) and ALBERT (Lan et al., 

2019) yield superior performance on MC RC tasks. However, these results are obtained 

mainly by utilizing surface features (Jiang & Marneffe, 2019). Besides, Zhang et al. (2020) 

propose a dual co-matching network to model relationships among passages, questions, and 

answer candidates to achieve SOTA results for MC questions. Also, Jin et al. (2020) propose 

two-stage transfer learning for coarse-tuning on out-of-domain datasets and fine-tuning on 

larger in-domain datasets to further improve performance. In comparison with those previous 

approaches, instead of adopting a new inference NN, our proposed approaches supplement the 

original BERT with additional modules to address two specific problems that BERT handles 

poorly. 

7. Conclusion 

We present several novel approaches to supplement BERT with additional modules to address 

problems with three specific types of questions that BERT-MC handles poorly (i.e., negation, 

all-of-the-above, and none-of-the-above). The proposed approach constitutes a new way to 

enhance a complicated DNN model with additional modules to pinpoint problems found in 

error analysis. Experimental results show the proposed approaches effectively improve 

performance, and thus demonstrate the feasibility of supplementing BERT with additional 

modules to fix specific problems. 
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