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Abstract

Learning linguistic generalizations from only
a few examples is a challenging task. Re-
cent work has shown that program synthesis
– a method to learn rules from data in the
form of programs in a domain-specific lan-
guage – can be used to learn phonological
rules in highly data-constrained settings. In
this paper, we use the problem of phonolog-
ical stress placement as a case to study how
the design of the domain-specific language in-
fluences the generalization ability when using
the same learning algorithm. We find that
encoding the distinction between consonants
and vowels results in much better performance,
and providing syllable-level information fur-
ther improves generalization. Program synthe-
sis, thus, provides a way to investigate how
access to explicit linguistic information influ-
ences what can be learnt from a small number
of examples.

1 Introduction

Deep neural models have driven recent success in
NLP, including models for tasks in phonology and
morphology. They have been applied to tasks such
as grapheme-to-phoneme conversion (Ashby et al.,
2021) and morphological reinflection (Pimentel
et al., 2021), and also been incorporated into theo-
ries of phonology (Wu et al., 2021). While neural
models are powerful learning machines, they re-
quire a large number of training examples, either
for supervised or for transfer learning. Addition-
ally, these models are not easily interpretable, and
understanding what stuctures and patterns these
models learn from data is a non-trivial task.

In this paper, we explore an different approach
to learning linguistic patterns from data – program
synthesis. Program synthesis (Gulwani et al., 2017)
is a method to learn interpretable rules in the form
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Word Stress pattern

sata 0100
hiha 0100

vatova 000100
kahasi 000100
Paona 01000

dehiaPhe 00001000

Table 1: An example of the task of predicting stress pat-
terns based on surface forms from the Cofan language.
Each phoneme in each word is labelled with 1 for pri-
mary stress or 0 for secondary stress.

of programs in a domain-specific language (DSL).
The design of the DSL allows for specifying do-
main information, such as various linguistic con-
cepts, and using these to guide learning from data.

Vaduguru et al. (2021) show that program syn-
thesis can be used to learn linguistic rules from a
small number of examples, and apply it to learn-
ing phonological rules that perform string-to-string
transformations. They demonstrate their method
for learning different types of rules, including mor-
phophonology, transliteration, and phonological
stress.

In this paper, we investigate how the design of
the DSL influences what rules are learnt from data.
To do this, we focus on learning rules that deter-
mine placement of phonological stress from data.
Phonological stress depends on both the position of
a syllable within words, and language-dependent
syllable weight hierarchies. This allows us to study
how encoding information about position within a
word and distinctions relevant to syllable weight
hierarchies affects a program synthesis system de-
signed to learn these rules from only a small num-
ber of examples.

We extend the formulation of phonological stress
placement as a string-to-string transformation prob-
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lem from Vaduguru et al. (2021) and develop a
program synthesis approach specific to stress. We
design different DSLs, each providing access to
different phonological abstractions. We compare
the results from using these different DSLs on data
from a variety of languages.

Through the example of using program synthe-
sis to learn stress rules, we seek to illustrate how
program synthesis can be used as a general frame-
work to compare how providing the same learning
algorithm access to different linguistic abstractions
can influence generalization from some given data.

2 Program Synthesis

Program synthesis is the task of finding a program
in a domain-specific language (DSL) that satisfies
certain constraints (Gulwani et al., 2017). This
approach allows us to encode domain-specific as-
sumptions about a task, and use generic search-
based (Polozov and Gulwani, 2015) or constraint-
based (Solar-Lezama, 2008) approaches to synthe-
size programs.

We apply program synthesis to learn rules for
stress placement. The programs that are synthe-
sized operate directly on the surface form of a word,
which is provided as a string. By varying the struc-
ture of the DSL, we control the kind of phonologi-
cal abstractions that are available to the synthesizer,
and observe the effects of this on learning and gen-
eralization.

2.1 Stress rules as programs

We model stress rules as string-to-string transfor-
mations. Formally, we synthesize program that im-
plements a function f : Σ∗ → {0, 1, 2, 3}∗, where
Σ is the set of phonemes in a language. f takes
as input a sequence of phonemes w1w2 . . . wn, and
assigns a “degree of stress” to each phoneme. 0
indicates that a phoneme is unstressed, 1 indicates
primary stress, 2 secondary stress, and 3 tertiary
stress. Since stress is applied at the level of the
syllable, we conventionally mark the first vowel of
a syllable with the degree of stress, treating it as
the ‘locus’ of stress within a syllable. We refer to
this output string composed of the degree of stress
for each phoneme in the input word as the stress
pattern for the word.

The programs we synthesize take the form of se-
quences of rules similar to rewrite rules (Chomsky
and Halle, 1968).

Each rule is of the form

φ−l · · ·φ−1X1 · · ·Xcφ1 · · ·φr → T (1)

A rule applies to a central phoneme which
satisfies a conjunction of predicates X1, . . . , Xc,
which appears in a context defined by the conjunc-
tion of predicates φ−l, . . . , φ−1 (which apply to l
phonemes to the left of the central phoneme) and
φ1, . . . , φr (which apply to r phonemes to the right
of the central phoneme). If the conjunction of all
predicates is satisfied, a transformation T is applied
to the phoneme.

The DSL defines the set of predicates P and set
of transformations T that can be used. We vary the
predicates (P) available to the synthesizer to define
different DSLs, each providing access to a different
classes of phonological abstractions. The transfor-
mation is a function that takes the phoneme as input
and outputs the degree of stress, and is of the form
ReplaceBy(s), where s is a value representing the
degree of stress.

2.2 Domain-specific languages

A domain-specific language is a declarative lan-
guage that defines the set of programs within which
we need to search. It is defined by a set of opera-
tors, their semantics, and a grammar that defines
rules to combine operators. Each operator also has
an associated score, which can be combined with
the scores for other operators in the program to
derive a ranking score that can be used to break
ties among multiple correct programs. By appropri-
ately choosing the operators, their semantics, and
the scores associated with them, we can control
domain-specific knowledge and preferences avail-
able to the synthesizer.

We use a DSL that implements rules of the form
described in Section 2.1 using if-then-else con-
structs. This allows us to define a sequence of
rules, the application of which is conditioned on a
conjunction of predicates. The first rule for which
the condition is satisfied is executed. The sequence
of rules is applied to each phoneme of the input to
obtain the degree of stress on that phoneme. This
is achieved using a Map operator.

As described in Section 2.1, the condition for the
IfThenElse constructs is defined as a conjunction
of predicates. Based on the set of predicates avail-
able to the DSL, we define a sequence of 4 DSLs,
each of which provides access to a different set of
phonological classes (sets of phonemes).
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output := Map(rules , input_phonemes)
rules := IfThenElse(C, T, rules) | T

Figure 1: IfThenElse statements in the DSL. A trans-
formation T is applied if the condition C is true, else a
transformation determined by the remaining rules is
applied.

A predicate is defined by a predicate type and a
class of phonemes to which it applies. We define
various classes, and use groups of these classes to
define different DSLs.

2.2.1 Classes of phonemes
The most basic set of classes is the set of single-
ton classes, each referring to one phoneme. We
then define classes of consonants and vowels. Most
stress systems do not distinguish between different
(short) vowels to determine syllable weight hier-
archies. Allowing this distinction to be made can
allow the synthesizer to learn rules that identify syl-
lable types as a sequence of vowels and consonants
in a specific order.

Phonemes that share phonological features are
also grouped into classes. We include vowel fea-
tures such as height and frontness, and also features
of consonants such as place and manner of articu-
lation.

Finally, we define classes based on syllable-level
information, such as whether a phoneme is the first
vowel of a long vowel, diphthong, open syllable,
or closed syllable. For our synthesizer, we define
these uniformly across languages. A diphthong
refers to a sequence of two different vowels. We
treat a syllable as closed when the vowel is fol-
lowed by multiple consonants, and break the sylla-
ble after the first consonant. A syllable that is not
closed is treated as open.

The classes that are available to each of the 4
DSLs we define – BASIC, CV, SYLLABLE, and
FEATURE – are shown in Figure 2.

2.2.2 Predicate types
We define a number of predicate types, which de-
termine the positions in the word to which the pred-
icate applies. In each of these cases, X refers to a
class of phonemes. We will illustrate how each of
this predicate types, defined for one unit, can be
used as part of a hypothetical stress rule.
IsX predicates determine whether a phoneme is

a member of a particular class. For example, since
consonants are not stressed, IsConsonant can be

BASIC

CV

FEATURE

SYLLABLE

vowel height
vowel frontness

voicing
place of articulation

manner of articulation

phonemes

consonants
vowels

long vowels
diphthongs

open syllables
closed syllables

Figure 2: Classes available to each DSL – BASIC, CV,
SYLLABLE, and FEATURE.

used to ensure the output at a consonant is 0.
IsKthX predicates take an additional argu-

ment K, and determine if a phoneme is the
Kth occurence of a member of a class in the
word. If a stress rule places primary stress on
the second closed syllable of a word, then the
IsKthClosedSyllable predicate can be used with
K = 2 to select that syllable. Note that K can also
be negative, to refer to units counting from the right
edge of the word.

Each of these predicates may apply to either
the central phoneme (one of the Xi from eq. (1)),
or phonemes in the context (one of the φi from
eq. (1)). We guide the synthesizer to prefer sim-
pler rules by ranking predicates that refer to nearby
phonemes (at a smaller displacement from the cen-
tral phoneme) above those that refer to more distant
phonemes. For IsKthX predicates, we rank predi-
cates that take a smaller absolute value of K higher
to guide the synthesizer to prefer rules that refer
to edges of the word over arbitrary positions in
between. We also define additional types of predi-
cates that can refer only to the central phoneme.1

PrefixContainsX predicates check whether
the prefix of the word up to, but not includ-

1These predicates are not included in the FEATURE DSL
due to the requirement of enumerating a very large number of
predicates.



622

ing, the phoneme contains any instances of a
class. If a stress rule places primary stress
on the first occurrence of /e/ in a word, then
PrefixContainsPhoneme(e) can be used to en-
sure other occurrences of /e/ are not stressed.
SuffixContainsX predicates check whether the

suffix of the word after, but not including, the
phoneme contains any members of a class. Simi-
lar to the example above, if the last occurrence of
/e/ is to be stressed, PrefixContainsPhoneme(e)
can be used to ensure other occurrences are not
stressed.
WordContainsX predicates check whether a

member of the class exists anywhere in the word.
If a stress rule places stress on the first vowel of the
word if there are no long vowels in the word, then
WordContainsLongVowel can be used to ensure
stress is not placed on the first vowel incorrectly.

2.3 Synthesis algorithm

Synthesis begins with extracting phoneme-aligned
pairs from the words. Each example is a pair of a
phoneme and the degree of stress with which it is
labelled. The synthesis algorithm then learns rules
that map a phoneme (in its context) to the correct
label.

To synthesize IfThenElse constructs, we adapt
the LearnProgram, LearnBranch, and Learn-
Conj procedures from Kini and Gulwani (2015).
These procedures allow for learning decision lists,
which are sequences of predicate-transformation
pairs of the form 〈(p1, t1), (p2, t2), . . . , (pn, tn)〉,
where each pi is a conjunction of atomic predicates
introduced before, and ti is a transformation func-
tion. The list is constructed such that given a set
of examples X , the set can be partitioned into n
subsets such that for the ith subset Xi is does not
satisfy any of the predicates p1, . . . , pi−1, and satis-
fies pi, and the transformation ti results in the cor-
rect output for the examples in Xi. These decision
lists correspond to nested IfThenElse constructs.
An example is tested for the predicate pi. If the
predicate is true of the example, ti is executed, and
execution is terminated. If not, the else clause –
which represents the rest of the list – is executed.

The LearnProgram procedure learns a decision
list given a set of input-output examples X , opti-
mizing for a shorter list. The procedure maintains a
set R of examples which haven’t yet been covered
by any of the predicates of the decision list, which
is initialized with the entire set X . The procedure

then calls LearnBranch, which learns the next ele-
ment of decision list – a predicate that determines
when the item will apply, and a corresponding ac-
tion. Examples which satisfy the predicate are then
removed the from R. This is repeated till R is
empty.

LearnBranch starts by generating a set of candi-
date transformations. Each transformation divides
the set of examples into two – those it transforms
correctly, and those it does not. Then, the Learn-
Conj can be used to obtain conjunctions of candi-
date atomic predicates that are true for the most
examples in the former set, and false for all exam-
ples in the latter set. The conjunctions with the best
ranking scores (determined as the sum of the scores
for individual atomic predicates) are then each com-
bined with the transformation to obtain predicate-
transformation pairs. The predicate-transformation
pair that covers the largest number of examples is
then chosen as the next element of the decision list.

The LearnBranch and LearnConj procedures
require the synthesis of candidate atomic predi-
cates and transformations. These are synthesized
using the FlashMeta algorithm. Given the trans-
formation or predicate operator (as described in
Section 2.2), FlashMeta can be used to infer argu-
ments to the operator such that it satisfies a given
set of examples. Based on the examples, Flash-
Meta finds the position of phonemes to which a
predicate applies relative to the central phoneme (a
value between −l and r in eq. (1), where 0 refers
to the central phoneme), and values of additional
arguments to the predicate such as the value of K
in predicates of the type IsKthX. FlashMeta also
finds the output value for transformation operators.
To do this, FlashMeta uses the inverse seman-
tics of the operators, which constrains the values
of arguments given the behaviour of the operator
as input-output examples. Figure 3 illustrates the
working of the synthesis algorithm.

3 Dataset

We obtain data by consulting grammars and other
linguistic and phonological analyses of languages
listed in the STRESSTYP2 database (Goedemans
et al., 2014) or by Gordon (2002). The database
contains information about various lects and the
kinds of stress patterns exhibited by these lects.
The database also has links to the sources from
which the data was collected for compiling the
database, and these were the sources we consulted
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LearnProgram

LearnBranch

Input
examples

aba → 001
bab → 010

Phoneme-
level

examples
aba → 0
aba → 0
aba → 1
bab → 0
bab → 1
bab → 0

ReplaceBy(’1’)
bab → True
aba → True
aba → False
aba → False
bab → False
bab → False

ReplaceBy(’0’)
aba → True
aba → True
bab → True
bab → True
aba → False
bab → False

LearnConj

#1. IsPhoneme(’a’,0)
#2. IsKthPhoneme(’a’,0,-1)
#3.AND(IsPhoneme(’b’,1)

IsKthPhoneme(’a’,0,-1))

LearnConj

#4. IsPhoneme(’b’,0)
#5. IsPhoneme(’a’,1)
#6.NOT(IsKthPhoneme(’a’,0,-1))

a. 〈IsKthPhoneme(’a’, 0, -1), ReplaceBy(’1’)〉
b. 〈NOT(IsKthPhoneme(’a’, 0, -1)), ReplaceBy(’0’)〉 3

Figure 3: Illustration of the synthesis algorithm on a hypothetical case where the stress is on the last vowel, using
the BASIC DSL. The input examples are first used to generate phoneme-level examples. The LearnProgram proce-
dure then learns a decision list for the phoneme-level examples through calls to LearnBranch. The LearnBranch
procedure iterates through different candidate transformations (such as ReplaceBy(’0’) and ReplaceBy(’1’)).
For each transformation, the LearnConj procedure produces candidate conjunctions for when the transformation
applies and when it does not. The candidate which is true for the most number of cases where the transformation
applies, and none of the cases where it does not, is chosen. Here, this is #1 for the ReplaceBy(’1’) action and #6
for the ReplaceBy(’0’) action. The predicate-action pair which solves the most examples (here b) is then added
to the decision list, and the LearnBranch procedure is called again on the unsolved examples.

for examples of words with stress patterns marked.
All the words collected from these sources have
the stress marking attested in the source – there are
no cases of a given rule being used to predict the
stress pattern on words.

Once words and the corresponding stress pat-
terns are collected for a language, the set of words
is split into two parts – one to be used for synthe-
sizing programs (the training split) and the other
(the test split) to be used for evaluating the syn-
thesized rules. We ensure that all test examples
are marked with a stress rule that is attested in the
training examples.

We also use data from the stress problems pre-
sented in Vaduguru et al. (2021). These problems
are chosen from the Linguistics Olympiads, a set
of contests in linguistics for high school students.
They present a task that is of a similar form to
the tasks we study in this paper. These problems
present words from a language with stress marked,
and require a solver to use this data to infer the
stress rules for that language, just as we do for the
program synthesis system in this work. For these
problems, we preserve the train-test splits from
Vaduguru et al. (2021).

In total, we have data from 34 languages – 28
from the data we collect, and 6 from Linguistics
Olympiad problems. Each language has between

5 and 33 training examples, with an average of
11.3, and between 2 and 16 test examples, with an
average of 4.8.

4 Experiments

As described in Section 3, each language has a
number of pairs – of word and stress pattern – in the
training split. These are provided to the synthesis
system, which produces a program. Given that
the system checks shorter programs before longer
ones, programs that are found after a long search
are likely to be overfit to the given examples, and
unlikely to generalize to unseen cases. This is why
we terminate the synthesis if a program isn’t found
within 60 minutes. We also observe that for most
of the languages, synthesis terminates well before
this limit. For each language, we experiment with
each of the 4 DSLs described in Section 2.2.

We also experiment with two neural sequence-
to-sequence baselines, based on the LSTM and the
Transformer architecture respectively. We use the
implementation made available by Wu (2020), and
train models with the same hyperparameters as in
Vaduguru et al. (2021).

To evaluate the synthesized programs, we con-
sider the output of the program on words in the
test split. We only consider cases where the pre-
dicted stress pattern exactly matches the ground
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truth stress pattern as correct, and compute the
fraction of samples for which the predictions are
correct – the accuracy of the program on the test
set. We report the average accuracy for the set of
languages we consider. We also report the aver-
age accuracy separately for data from each source
– data which we collect and that chosen from Lin-
guistics Olympiads – to observe any differences
based on the source of data.

Additionally, we report the number of languages
for which a synthesizer acheives a test accuracy
of 100% or over 50%. This allows us to count the
number of languages for which the synthesizers
infer all, or a substantial fraction of, the rules of
stress placement.

4.1 Results

The results obtained are shown in Tables 2 and 3.
Language-wise results are presented in Appendix
A. As expected, we see that neural baselines
achieve low scores (except LSTM models on data
from the Olympiads). Using program synthesis
allows for significant gains over these baselines.

We observe that providing no information be-
yond the identity of the phonemes is not sufficient
to infer correct rules. This is seen in the low overall
accuracy obtained using the BASIC DSL, and the
fact that it doesn’t achieve perfect test accuracy for
any of the languages.

Providing the DSL with just the distinction be-
tween consonants and vowels results in a big jump
in performance. The CV DSL achieves a much
higher average test accuracy, and is able to infer
the rules fully in a number of languages.

Since stress placement is determined based on
syllables, it is not surprising that encoding distinc-
tions relevant to syllable weight hierarchies, such
as vowel length and open/closed-ness of syllables,
achieves the best performance. The SYLLABLE

DSL achieves the highest average test accuracy,
and the infers the rules fully in the highest number
of languages.

While providing access to other features of
phonemes in the FEATURE DSL does improve upon
providing only the consonant-vowel distinctions,
we see that it does not help as much as providing
access to syllable-level distinctions.

We also note the difference between different
sources here. Since Linguistics Olympiad prob-
lems are intended as reasoning challenges where
solvers have to infer rules, they pose a more diffi-

cult learning challenge for our program synthesis
system. This is seen in the lower accuracy obtained
using all the DSLs for these languages. We also
note that in these problems, access to syllable-level
distinctions provides a larger gains relative to ac-
cess to only consonant-vowel distinctions.

5 Analysis

We examine the synthesized programs for specific
languages to understand the reasons for different
levels of performance when using different DSLs,
and illustrate patterns in failures due to properties
of the DSL.

5.1 Benefits of the consonant-vowel
distinction

We see that providing the synthesizer access to
the distinction between vowels and consonants can
improve its performance significantly. A synthe-
sizer that does not have access to these needs to
infer from the data alone that different vowels may
behave in the same way, and that the behaviour
may be common in a variety of contexts. In the
absence of a large amount of data to provide nega-
tive evidence that occurrence in a specific context
determines the application of a rule, the synthesizer
tends to discover incorrect rules.

Consider the example of Lezgian. Stress is Lez-
gian is always placed on the second syllable of a
word. Using the BASIC DSL, the system discovers
rules such as

IfThenElse(
And(PrefixContainsPhoneme(’a’, v, i),
And(PrefixContainsPhoneme(’l’, v, i),

Not(
IsKthPhoneme(’f’, 0, 0, v, i)
))),

ReplaceBy (’1’))

This rule places stress on a phoneme if the prefix
of the word up to the phoneme contain /a/ and /l/,
and it is not the first occurrence of /f/ in the word.
It also learns the rule

IfThenElse(
SuffixContainsPhoneme(’i’, v, i),
ReplaceBy (’0’))

which does not place stress on a phoneme if
the phoneme /i/ occurs after it in the word. This
would lead to incorrect predictions if /i/ occurs in
the third syllable of the word. Such rules are clearly
overfit to the training data, and do not generalize
well.
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Languages BASIC CV SYLLABLE FEATURE LSTM Transformer

All 18.9 46.4 60.8 52.8 15.0 12.7

– Ours 18.8 52.8 63.9 57.1 13.2 12.8
– Olympiad 19.4 16.7 46.1 32.2 23.2 12.1

Table 2: Average accuracy across languages for each of the different DSLs for the entire set of languages and
grouped by source of data.

Languages BASIC CV SYLLABLE FEATURE

= 100% ≥ 50% = 100% ≥ 50% = 100% ≥ 50% = 100% ≥ 50%

All 0 7 8 17 12 21 11 18

– Ours 0 6 7 16 11 18 10 17
– Olympiad 0 1 1 1 1 3 1 1

Table 3: Number of languages where the system obtains perfect test accuracy, or test accuracy over 50%.

On the other hand, with the CV DSL, just the
rules

IfThenElse(
IsKthVowel (0, 1, v, i),
ReplaceBy(’1’),
ReplaceBy (’0’))

are learnt, which place stress on a phoneme if it
is the second vowel (indexing starts at 0), and does
not in all other cases. This illustrates the impor-
tance of access to such phonological distinctions
when rules need to be learnt from a small amount
of data.

5.2 Benefits from syllable-level distinctions
The benefits of being able to refer to syllable-level
information in rules is visible in the programs syn-
thesized for Sio. Stress in Sio depends on the
weight of the syllable. If the final syllable of the
word is a heavy syllable, it is stressed. If not heavy,
the penultimate syllable is stressed. One of the
rules the SYLLABLE grammar learns is

IfThenElse(
Not(SuffixContainsDiphthong(v, i)),
ReplaceBy (’1’))

While there are other constraints to placement,
this rule works towards ensuring that if the final
syllable contains a diphthong (which is part of a
heavy syllable), it is not stressed incorrectly.

To infer a rule about diphthongs correctly within
the CV DSL, predicates about the first vowel have
to be taken in conjunction with predicates about the
second vowel, and this conjunction has to be distin-
guished from many other competing conjunctions

which may also be consistent with the data. If other
conjunctions which don’t generalize beyond the
training data are simpler, these are ranked higher
and incorrectly chosen. Allowing the DSL to dis-
tinguish concepts such as diphthongs thus allows
for learning simpler rules in such situations.

5.3 Incorrect generalizations
However, providing access to syllable-level dis-
tinctions may also encourage the synthesizer to
discover incorrect generalizations. We see this in
the case of Tzutujil. Stress in Tzutujil is placed on
the final syllable of a word. With the CV DSL, the
following rules are learnt.

IfThenElse(
And(SuffixContainsVowel(v, i),
And(IsKthVowel (0, -2, v, i),

IsKthVowel (1, -1, v, i))),
ReplaceBy (’1’))

IfThenElse(
And(Not(SuffixContainsVowel(v, i)),

IsKthConsonant (-1, 0, v, i)),
ReplaceBy (’1’))

IfThenElse(
And(Not(SuffixContainsVowel(v, i)),

IsKthVowel (0, 1, v, i)),
ReplaceBy (’1’))

The first rule checks that if the suffix of the word
after a phoneme to be stressed contains a vowel, it
is the last vowel in the word. This is a case where
the rule for a diphthong is discovered in the CV

DSL. The other two rules ensure that a non-final
vowel is not stressed by checking that the suffix
doesn’t contain any vowels.
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The SYLLABLE DSL on the other hand discovers
the rule

IfThenElse(
Not(IsOpenSyllableVowel (0, v, i)),
ReplaceBy (’1’))

which incorrectly places stress on any vowel
that is part of an open syllable. This results in the
SYLLABLE DSL performing worse than the CV

DSL for Tzutujil.

5.4 Insufficient constraints for stress
placement

A common reason for failure is the failure to learn
sufficient constraints for the application of rules.
This results in sets of rules which allow primary
stress to be placed on multiple phonemes, or on
no phonemes, both of which are incorrect. We see
examples of this in the program synthesized for
stress in Cofan, where the penultimate syllable of
the word is stressed.

Using the CV DSL, the following are some of
the rules that are synthesized.

IfThenElse(
And(IsKthVowel (0, 1, v, i),

PrefixContainsPhoneme(’k’, v, i)),
ReplaceBy (’1’))

IfThenElse(
And(PrefixContainsPhoneme(’s’, v, i),

IsKthVowel (0, 0, v, i)),
ReplaceBy (’1’)

Neither of these rules are sufficiently general,
and rely on the presence of /k/ or /s/ in the prefix
of the word up to the phoneme, neither of which is
not relevant to the placement of stress. However,
another problem is that there is no constraint that
prevent both these rules applying to the same word.
This occurs for the Cofan word /sok1/. The pro-
gram incorrectly predicts that both syllables in this
word receive primary stress, which is not allowed.

The program synthesized with the SYLLABLE

DSL for the same data includes the rule

IfThenElse(
IsKthConsonant (-1, -2, v, i),

ReplaceBy (’1’))

This rule places stress on the phoneme follow-
ing the penultimate consonant of the word. When
the word ends with two open syllables, this rule
correctly predicts stress. However, for a word such
as /PaiPpa/, this rule does not apply. When other
rules also fail to apply, as is the case for this word,

no phoneme is predicted to be stressed. This vi-
olates the requirement that at least one syllable
receive primary stress.

6 Related work

6.1 Program synthesis for linguistics

Barke et al. (2019) and Ellis et al. (2015) present
program synthesis as a method for learning mor-
phophonological rules from examples. They as-
sume the existence of underlying forms, and infer
rules of inflection that map an underlying form to
the surface form using program synthesis. These
rules operate directly on features of the phoneme,
and not on the surface form of the words.

Sarthi et al. (2021) apply program synthesis to
the problem of grapheme-to-phoneme conversion
in Hindi and Tamil, which they pose as a string-
to-string transformation task. Their design of the
domain-specific languages captures specific phono-
logical processes in Hindi and Tamil.

Vaduguru et al. (2021) apply program synthesis
to learning phonological rules for string-to-string
transformations from a small number of examples.
They show that the method can be used to learn
rules for various phonological phenomena like mor-
phophonological rules, phonological rules relating
similar languages, and stress rules in a challeng-
ing set of problems drawn from the Linguistics
Olympiads. In this work, we focus on learning
rules for stress placement alone, which allows us
to specialize the DSL and investigate the effect of
encoding phonological knowledge in the DSL.

6.2 Learning rules of phonological stress

Dresher and Kaye (1990) develop a system that
learns stress patterns within the principles and pa-
rameters framework. Given words and the structure
of syllables in these words, their method learns the
parameters for principles relevant to the placement
of stress.

Gupta and Touretzky (1992) propose a
perceptron-based method for learning stress rules
for empirical data. They propose a model that
takes as input the weight of a syllable and predicts
a value corresponding to the type of stress on the
syllable.

Heinz (2006) proposes a method to learn rules
for quality-insensistive stress, where the stress
pattern depends only on the position and not on
the weight of a syllable. Using the property of
neighbourhood-distinctness, they propose a method
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that learns a finite-state machine to model stress
patterns.

While these works consider the learnability of
stress patterns using a model that assumes certain
features or properties of the input to be available,
we propose a generic method where the availabil-
ity of features can be controlled, and learning of
abstract composite concepts like syllable weights
from various primitive concepts can be investi-
gated.

7 Conclusion

In this paper, we explore the problem of learning
rules for the placement of phonological stress from
only a few examples using program synthesis. We
pose the problem as one of learning rules in the
form of programs for string-to-string transforma-
tions. By designing the domain-specific language
in which the rules are synthesized, we can control
the amount of linguistic information available to
the synthesizer.

We use the allowance to explicity provide the
learning algorithm access to linguistic information
to investigate how different linguistic concepts in-
fluence the rules that are learnt from data. To do
this, we develop a generic program synthesis algo-
rithm, and different domain-specific languages in
which programs are synthesized. Each algorithm
provides access to a different set of phonological
classes, which can be used to identify phonemes
that share common features.

We find that given a small number of examples,
a synthesizer that doesn’t have access to linguis-
tic information beyond phoneme identity is unable
to learn any useful rules. However, distinguish-
ing consonants and vowels proves extremely use-
ful, and distinguishing different types of syllables
proves even more so.

Thus, using synthesis of rules for stress as a
case study, we show how program synthesis can be
used as a way to compare how different primitive
concepts can be combined to learn rules for the
same data using the same learning algorithm. Such
methods can therefore be used to analyze what
concepts are necessary to learn various rules from
a limited number of samples, without changing
the way in which these concepts are combined.
Since program synthesis results in human-readable
programs, we can also understand how primitive
concepts are combined based on the data.
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