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Abstract

The task of sentiment analysis has been ex-
tensively studied in high-resource languages.
Even though sentiment analysis is studied for
some resource-constrained languages, the cor-
pora and the datasets available in other low re-
source languages are scarce and fragmented.
This prevents further research of resource-
constrained languages and also inhibits model
performance for these languages. Privacy con-
cerns may also be raised while aggregating
some datasets for training central models. Our
work tries to steer the research of sentiment
analysis for resource-constrained languages in
the direction of Federated Learning. We con-
duct various experiments to compare server
based and federated approaches for 4 Indic
Languages - Marathi, Hindi, Bengali, and Tel-
ugu. Specifically, we show that a privacy
preserving approach, Federated Learning sur-
passes traditional server trained LSTM model
and exhibits comparable performance to other
servers-side transformer models.

1 Introduction

With the proliferation of opinionated user data on
social media platforms (Murphy et al., 2014), cap-
turing user emotions could help in decision making
and determining public opinion on cultural, social,
and political agendas (Zhao et al., 2016; Liu, 2012).
This has prompted research into sentiment analysis
and opinion mining for English (e.g. Thelwall et al.,
2010, 2012; Li and Lu, 2017; Hussein, 2018; Li
and Lu, 2019; Li et al., 2019; Hoang et al., 2019;
Ruz et al., 2020; Chen et al., 2021), which is aided
by the availability of large-scale, centralized train-
ing datasets. However, there is a pressing need to
work on NLP beyond resource-rich languages due
to cultural, linguistic, and societal factors (Ruder,
2020).

* indicates equal contribution

Sentiment Analysis in low-resource Indic lan-
guages has posed a challenge to the research com-
munity due to the absence of large-scale central-
ized datasets. Moreover, to due to increasing
concerns and regulations about data privacy (e.g.
GDPR (Regulation, 2016)), emerging data has been
much more fragmented. It resides in decentralized
private silos across different client devices. To
abide by such regulations and respect the privacy
of users, we must assume that these private data
silos can not be shared either with other clients or
with the centralized server. Hence, it is exigent to
tackle these challenges and study the problem of
sentiment analysis in a much more realistic setting -
i.e., training models on distributed data silos across
different clients to maintain data privacy.

Federated Learning (FL) (McMahan et al., 2017),
is a distributed learning paradigm which aims to
enable individual clients to train their models col-
laboratively while keeping their local data private.
Instead of accumulating data on a centralized server
for training the model, each client sends its model
parameters to the server, which updates and sends
back the global model to all clients in each round.
Since the raw data always remains on the client
device and is never shared, FL offers promising
solution to the above challenges, particularly in
resource poor languages where collection of large-
scale training data is difficult.

Previous works for sentiment analysis have re-
lied on traditional server-based architectures and
have been centered around resource rich languages.
However, such models risk leakage of highly sen-
sitive user-generated data. Thus, we propose a
privacy-preserving approach, Federated Learning
for sentiment analysis in 4 Indic languages. To the
best of our knowledge, our work is the first effort
towards Federated learning on Marathi, Bengali,
and Telugu datasets; and also towards sentiment
analysis in Hindi.
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Language Dataset

Reference

# Classes # Examples

Train Test Dev Total
Marathi (mr) L3CubeMahaSent Kulkarni et al. (2021) 3 12,114 2,250 1,500 15,864
Telugu (te) ACTSA Mukku and Mamidi (2017) 3 3,784 812 812 5,408
ABSA Cricket Rahman et al. (2018) 3 2,085 380 372 2,837

ABSA Restaurant Rahman et al. (2018) 3 1,365 219 224 1,808

Bengali (bn) YouTube Comments Tripto and Ali (2018) 3 1,957 420 419 2,796

SAIL Patra et al. (2015) 3 697 204 98 999

BengFastText Karim et al. (2020) 2 5,610 1,532 1,378 8,420
Combined Hasan et al. (2020) 3 9,901 2,755 2,491 15,147

Hindi (hi) Hindi Sentiment Analysis Sinha (2019) ! 3 6,353 1,362 1,362 9,077

Table 1: Summary of different datasets

We use of publicly available datasets for
sentiment analysis in Marathi (Kulkarni et al.,
2021), Telugu (Mukku and Mamidi, 2017), Ben-
gali (Hasan et al., 2020), and Hindi'. We ex-
amine how Federated LSTM model performs, in
comparison to 4 server-side centralized models:
bi-directional LSTM (Hochreiter and Schmidhu-
ber, 1997), IndicBert (Kakwani et al., 2020b),
mBERT (Devlin et al., 2019), and XLM-R (Con-
neau et al., 2020). We find that the federated learn-
ing architecture outperforms the centralized server-
side LSTM model and shows comparable perfor-
mance to the centralized transformer models for all
4 languages under consideration.

The remainder of the paper is organized into
prior work (§2), a brief description of the datasets
we use (§3), a description of the experimental setup
(§4), an in-depth analysis our experiments (§5), and
finally a conclusion (§6).

2 Prior Work

Federated Learning: Federated Learn-
ing (McMabhan et al., 2017) is used for building
PPML (Privacy Preserving Machine Learning)
models. As proposed by Hard et al. (2018),
Federated Learning is useful for preventing
bottlenecks when the data is trained on central
servers. Some major work is being done for the
English language at the intersection of Federated
Learning and Natural Language Processing which
was also observed in Lin et al. (2021). However,
even though benchmarks were established for
English language, the task of using it on Indic
resource-constrained languages remains relatively
unexplored. Recently, Singh et al. (2021) showed
that Federated Learning surpasses the baselines for
complaint identification in some Indic languages.
It is evident from these approaches that using this
technique helps achieve better results. Therefore,
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we consider a total of 4 Indic languages (Hindi,
Marathi, Telugu, Bengali) in this paper to conduct
Federated Learning.

Sentiment Analysis in Indic Languages: Joshi
et al. (2010) talks about various approaches for
sentiment analysis in Hindi, and resorts to translat-
ing the data to English for sentiment identification
due to the issue of constrained resources for Hindi.
However, even though Hindi cannot be considered
a very resource-constrained language now due to
the development of various corpora such as (e.g.
Kunchukuttan et al., 2018; Khandelwal et al., 2018;
Bafna and Saini, 2021), but a lot of other Indic
languages are still resource constrained and cor-
pora for the same are very limited. The datasets for
such Indic languages are spread out as observed for
Bengali in Table 1. Many approaches have been
adopted server trained models for sentiment anal-
ysis of the languages being considered here (e.g.
Salehin et al., 2020; Regatte et al., 2020; Kulkarni
et al., 2021; Jain et al., 2020; Hasan et al., 2020;
Kakwani et al., 2020a).

3 Datasets

We use publicly available datasets for sentiment
analysis in low-resource Indian languages. Table 1
gives the details of all datasets used in our work.
We combine all the Bengali datasets and train our
models on the combined dataset.

In case of ACTSA Dataset (Mukku and Mamidi,
2017) and Hindi Sentiment Analysis Dataset !, we
make a stratified split of 70:15:15 to divide the
data into train, test, and development sets. For
other datasets, we use the original splits which are
provided.

'nttps://github.com/sid573/Hindi_
Sentiment_Analysis


https://github.com/sid573/Hindi_Sentiment_Analysis
https://github.com/sid573/Hindi_Sentiment_Analysis

mBERT XLM-R IndicBERT
Acc. AUC F1 Acc. AUC F1 Acc. AUC F1
te | 45.81+0.00 49.46+1.66 28.79+0.00 | 48.45+5.89 54.98+10.34 34.81+13.46 | 61.85+0.53 76.61+0.69 61.74 & 0.62
hi | 75.57+3.93 87.03+3.83 74.55+5.02|88.39+0.39 94.93+1.38 87.40+2.49 | 88.58 £1.61 9573 +0.72 88.58 + 1.62
bn | 77.54+0.64 80.66+1.01 76.72+0.67 | 78.30 £6.87 81.24+£7.58 77.00£8.28 | 80.87 +0.26 86.27 =0.76 80.35 +0.23
mr | 69.98 +0.57 83.584+0.43 69.97+0.55 | 82.47+0.46 92.02+£0.62 82.42+£0.47 | 83.36 036 93.51+0.36 83.33+0.35

Table 2: Performance of centrally trained models on 5 different seeds. IndicBERT performs better than the others

for all languages.

3.1 Pre-processing

To pre-process the data, we lower-case all text and
remove numbers, punctuation, and URLS. Since
some of the datasets are taken from Twitter, we
also remove Twitter specific things like hashtags,
@-mentions, and the retweet marker: ”RT:”.

4 Experiments

All the experiments are conducted on Google Colab
using a NVIDIA Tesla P100 GPU (16 GB) with 26
GB RAM. The metrics used to compare the results
are weighted AUC, weighted F1 and the accuracy
score for every model in every variation.

4.1 Central Training

In order to compare results to Federated Learn-
ing, we use 4 different models: mBERT (De-
vlin et al., 2019), XLM-R (Conneau et al., 2020),
IndicBERT (Kakwani et al., 2020b), and Bi-
LSTM (Hochreiter and Schmidhuber, 1997). We
report the mean and standard deviation after train-
ing on 5 random seeds. All of these models except
the Bi-LSTM architecture are pretrained on the
languages being considered in this paper.

Every pretrained model is trained for 25 epochs
and the Bi-LSTM model is run for 500 epochs with
early stopping. The default learning rate (Ir =
4e — 5) is used for the pretrained models and for
the Bi-LSTM model, the learning rate of 0.01 is
set.

4.2 Federated Learning

We use the FedProx algorithm (Li et al., 2018)
because it works better in non-iid data where the
distribution varies rapidly within the dataset. We
conduct various experiments under synthetic-iid
(independent and identical distribution) (Li et al.,
2018) and non-iid settings. Since, some of these
Indic languages cannot be tokenized using general
tokenizers such as Spacy?, we use language specific
tokenizers provided by iNLTK (Arora, 2020).

https://spacy.io/
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To make the computation cheaper on resource-
constrained edge-devices, by the distributed train-
ing process, we train it on a basic Bi-LSTM
model (Hochreiter and Schmidhuber, 1997) with 2
hidden layers and dropout (Srivastava et al., 2014)
set to 0.5. Different client fractions are used to
observe the variation of results in the Federated
setting too. The client fractions of 10%, 30% and
50% are considered and these clients are always
picked randomly for every round.

All the models are run for 500 rounds with early
stopping applied on the average training loss. The
learning rate is set to 0.01 and the proximal term is
set to 0.01 as default (Li et al., 2018).

5 Results

Telugu (te): From Table 4, it can be observed
that for the Telugu language, the Federated train-
ing process performs much better than the cen-
trally trained LSTM model. The best model chosen
for the Federated setting is with ¢ = 30%. Even
though the Federated training is trained on 30%
of the data every round, the results are better than
the central model. Looking at the other models
trained for the Telugu language, we also observe
from Table 2 that the best performing model In-
dicBERT (Kakwani et al., 2020b) has comparable
results to the Federated LSTM model?.

Hindi (hi): From Table 4, we find that the feder-
ated model performs better on all the metrics than
the server-based LSTM model. Even though we
achieve better F1 score for ¢ = 30% (Table 3), we
consider the model with ¢ = 10% as the high per-
forming model for federated learning because of
the AUC score and the accuracy. It must be noted
that the scores are on the lower side for models
trained on non-iid setting in federated learning be-
cause every client cluster is intentionally biased to
represent one single class unlike the synthetic-iid
method.

3IndicBERT was pretrained on 674M tokens of Tel-
ugu. (Kakwani et al., 2020b)


https://spacy.io/
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te
hi
bn
mr

47.62
81.82
68.12
68.52

76.09
99.79
39.38
95.15

55.75
84.18
80.18
79.33

38.10
45.46
53.03
35.19

64.42
92.18
33.15
81.06

37.74
52.14
59.21
38.12

66.67
75.76
65.15
68.52

74.32
99.63
38.65
95.15

54.38
84.57
74.94
79.33

42.86
45.45
46.97
50.00

66.88
87.95
34.16
81.44

25.54
49.46
61.18
51.01

61.91
75.76
65.15
70.37

71.16
95.12
39.74
95.58

49.90
76.73
81.16
79.57

38.10
60.61
53.03
48.15

68.33
88.51
36.16
82.62

32.32
62.13
64.57
62.70

Table 3: Performance of model under federated settings conducted with 3 different client fractions. c is the fraction
of clients whose updates are considered in every round. Evidently, for lower dataset sizes, ¢ = 10% performs

comparatively better.

server-LSTM federated-LSTM

Acc  AUC F1 Acc  AUC Fl1
te | 51.28 73.91 54.60 | 66.67 74.32 54.38
hi | 78.79 98.92 82.60 | 81.82 99.79 84.18
bn | 60.61 40.92 83.46 | 68.12 39.38 80.18
mr | 65.74 92.03 76.67 | 70.37 95.58 79.57

Table 4: Comparison between the centrally trained Bi-
LSTM model and federated Bi-LSTM model. The fed-
erated model is selected based on best results from Ta-
ble 3

Bengali (bn): Table 4 shows that the Federated
Bengali model performs better in terms of accuracy
against the centrally trained LSTM but worse in
terms of AUC and Fl1-score. The reason is that
the Bengali federated model is trained differently.
For the synthetic-IID setting, every client cluster
consists data from one specific dataset only and no
dataset entries are mixed for every client. Since
we use the combined dataset (Hasan et al., 2020),
all of the datasets in it have different distributions
in terms of categories. We believe that the poor
AUC and F1 scores are due to this difference of
distribution as the 'neutral’ category is absent in
some of these member datasets.

Marathi (mr): Looking at Table 4, it is evident
that the Federated LSTM performs better on all
metrics than the centrally trained LSTM. Since this
trend continues across all the languages, we believe
that Federated Learning helps learn the data repre-
sentations better without data bottlenecks and also
without sharing any data which might be sensitive.

6 Conclusion

We show that a LSTM model trained using feder-
ated learning can outperform an identical server
trained LSTM model for 4 Indic languages -
Marathi, Bengali, Telugu and Hindi. We also show
that federated learning achieves comparable per-
formance to other server trained Transformer ar-
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chitectures*. Surprisingly, we find that for smaller
datasets, lower client fractions show better perfor-
mance. To our knowledge, this represents one of
the first applications of federated learning in low-
resource settings for sentiment analysis. Federated
learning offers security and privacy advantages for
users by training across a population of highly dis-
tributed computing devices while simultaneously
improving model performance.

For future work, it would be interesting to train
heavier transformer models like IndicBERT, XLLM-
R, etc. using federated learning which could help
to minimize the large gap in accuracy in non-iid
settings. Conducting some interpretable evaluation
on the intermediate models before updating dur-
ing Federated training is another important future
direction.
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