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Abstract

Sentiment analysis is one of the key Natu-
ral Language Processing (NLP) tasks that has
been attempted by researchers extensively for
resource-rich languages like English. But for
low resource languages like Bengali very few
attempts have been made due to various rea-
sons including lack of corpora to train ma-
chine learning models or lack of gold standard
datasets for evaluation. However, with the
emergence of transformer models pre-trained
in several languages, researchers are showing
interest to investigate the applicability of these
models in several NLP tasks, especially for low
resource languages. In this paper, we inves-
tigate the usefulness of two pre-trained trans-
formers models namely multilingual BERT
and XLM-RoBERTa (with fine-tuning) for sen-
timent analysis for the Bengali Language. We
use three datasets for the Bengali language
for evaluation and produce promising perfor-
mance, even reaching a maximum of 95% ac-
curacy for a two-class sentiment classification
task. We believe, this work can serve as a good
benchmark as far as sentiment analysis for the
Bengali language is concerned.

1 Introduction

In this era of the World Wide Web, sharing of in-
formation, knowledge, opinion, etc. has been in-
creased by a huge margin since the last decade.
Internet users are coming forward to review stuff
like books, movies, videos, e-commerce products,
etc., and are sharing their experiences which in
turn help the next in line users to get feedback up-
front. This genre of texts brings in the essence
of sentiment analysis task which helps in polar-
ity classification, i.e. determining whether a given
text expresses positive, negative, or neutral senti-
ment. Sentiment analysis of texts can be useful
for different applications, like detecting cyberbul-
lying (Saravanaraj et al., 2016), hate speech de-
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tection (von Boguszewski et al., 2021; Mathew
et al.,, 2021), e-commerce recommendation sys-
tem (Hwangbo et al., 2018), etc. There has been
a substantial amount of work done by the re-
searchers to tackle sentiment analysis for resource-
rich languages like English (Pak and Paroubek,
2010; Feldman, 2013), but for low resource lan-
guages, such attempts are scarce (Islam et al.,
2020; Sazzed, 2020; Siripragrada et al., 2020). In
recent times, for low resource languages like Hindji,
Telegu, Bengali, Assamese, Manipuri, Indonesian,
etc. (Akhtar et al., 2016; Mukku and Mamidi,
2017; Sazzed, 2020; Le et al., 2016; Kumar and
Albuquerque, 2021; Meetei et al., 2021; Das and
Singh, 2021; Singh et al., 2021; Kumari et al.,
2021) and even for English-Hindi, English- Ben-
gali code-mixed languages (Jamatia et al., 2020),
researchers have come up with a solution for sen-
timent analysis tasks. In another work, R et al.
(2012) performed cross-lingual sentiment analy-
sis task where the opinion polarity of a text in
a language is predicted using classifier trained in
another language. The authors report results on
two widely spoken Indian languages, Hindi and
Marathi. Gupta et al. (2021) used an LSTM-
RNN based approach to determine the sentiment
of Hindi tweets and also compared their approach
with CNN, machine learning, and Lexicon based
approaches. Gupta et al. (2021) uses Hindi Senti-
WordNet (HSWN) proposed by Joshi et al. (2010)
as a lexicon generating tool for hindi text. So
Hindi being a major Indian language has been ex-
plored whereas more insights are still needed in
Bengali. In one of the very recent works, Islam
et al. (2020) prepare a two-class and a three-class
sentiment analysis dataset in Bengali and report
performances of multilingual BERT (Devlin et al.,
2019) which is impressive. Moving forward in a
similar direction, in this paper we apply two pre-
trained transformers models namely multilingual
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BERT and XLM-Roberta (Conneau et al., 2020)
after fine-tuning and conducting the analysis. In
addition to the datasets proposed by Islam et al.
(2020), we use two other datasets proposed by
Sazzed (2020) and Hossain et al. (2021) for our
study. We observe that, by applying fine-tuned
multilingual BERT and XLM-RoBERTa (for con-
venience we will refer XLM-Roberta as XLM-R
in our paper), we achieve an accuracy of 63%-
94% and 68%-95%, while evaluating against these
three target datasets leading to state-of-the-art per-
formances. To the best of our knowledge, this is
the first attempt at such a comprehensive study
for the Bengali language where pre-trained trans-
former models’ applicability (with fine-tuning) has
been investigated for sentiment analysis tasks and
evaluated against three datasets. All the codes and
datasets are made publicly available'.

2 Dataset

For this study, we use three datasets. The details
of these datasets are described below.

Prothom Alo: This is the first dataset’ used in
this study which is a publicly available dataset cre-
ated from user comments on 10 popular news top-
ics from an online Bengali news portal, Prothom
Alo’. This dataset is introduced by Islam et al.
(2020), for convenience, we refer to this dataset
as ‘Prothom Alo’. The authors scrape user com-
ments from news threads and clean to obtain a to-
tal of 17,852 user comments. Each of the com-
ments is tagged by Bengali domain experts into
one of the following three classes: positive, neg-
ative, and neutral. The authors prepare a variant
of this dataset as well which has only two classes
by removing the neutral class entries. This step re-
sults in a dataset for two-class classification with
13,120 entries.

YouTube-B: This is a collection of reviews manu-
ally annotated from YouTube Bengali drama* con-
sisting of 8500 positive reviews and 3307 negative
reviews and is introduced by Sazzed (2020). This
dataset is a two-class dataset having only positive
and negative as labels. We refer to this dataset as
“YouTube-B’ for the rest of the paper. ‘B’ stands
for Bengali language.

"https://github.com/Anirbanbhk88/
BengaliSentimentWithTransformers
Zhttps://github.com/KhondokerIslam/Bengali_Sentiment
3https://www.prothomalo.com/
*https://data.mendeley.com/datasets/p6zc7krs37/4

#(Classes) Dataset Neu Pos Neg
Three Prothom Alo 4732 | 4769 | 8351
Prothom Alo - 4769 | 8351

Two YouTube-B - 8500 | 3307
Book-B - 982 1018

Table 1: Class Distribution of Bengali sentiment anal-
ysis datasets. ‘Neu’, ‘Pos’ and ‘Neg’ represent neutral,
positive, and negative classes, respectively.

Book-B: This is the third dataset introduced by
Hossain et al. (2021). It is a collection of Bengali
book reviews collected from web resources such
as blogs, Facebook, and e-commerce sites. This
dataset is also a two-class dataset (having positive
and negative classes) with 2000 entries of book re-
views. We refer to this dataset as ‘Book-B’ for the
rest of the paper.

The details of these three datasets are shown in
Table 1.

3 Proposed Approach

In this study, we consider the state-of-the-art mul-
tilingual BERT model (Devlin et al., 2019) and
XLM-RoBERTa model (Conneau et al., 2020) for
the Bengali sentiment analysis task. First, we
use them separately in one of the recent archi-
tecture proposed by Islam et al. (2020), where
authors use Long Short Term Memory (LSTM)
(Cho et al., 2014), Convolutional Neural Network
(CNN) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Cho et al., 2014)) on
top of the transformer model. Next, we fine-tune
the pre-trained BERT and XLLM-RoBERTa model
using each of the three datasets separately (as de-
picted in Figure 1) and analyze the performances.
In both the direction of exploration, BERT and
XLM-RoBERTa are the core transformers for our
analysis. Hence, a summary of both the BERT
model and the XILM-RoBERTa (XLM-R) model
is described below.

Description of models: BERT and XLM-R are un-
supervised language models pre-trained on a large
corpus. They are transformer-based models which
have encoder-decoder architecture and use atten-
tion mechanisms to generate a contextualized rep-
resentation of words. BERT uses a multi-layer bi-
directional transformer encoder. Its self-attention
layer performs self-attention in both directions.
There are several variants of BERT. For example,
bert-base has 12 transformers layers, 110M total
parameters while bert-large has 24 transformers
layers, 340M total parameters. They are useful
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to solve the long-range dependencies which is a
key problem faced by sequence to sequence mod-
els like Recurrent Neural Networks(RNN). For our
proposed approach we use bert-base-multilingual-
cased, which is a bert-base model checkpoint
trained on multilingual corpus.

Sentiment class

Fully Connected
Classification Layer

f

> Fine-tuning

BERT/XLM-RoBERTa

T minimal training

Bengali Sentence

Figure 1: A snapshot of the architecture we fine-tuned
for the sentiment analysis task.

Dataset Layer on top Validation
(#Classes) of BERT Accuracy
LSTM 0.58
Prothom Alo (3) CNN 0.59
GRU 0.57
LSTM 0.63
Prothom Alo (2) CNN 0.74
GRU 0.74
LSTM 0.85
YouTube-B (2) CNN 0.92
GRU 0.91
LSTM 0.49
Book-B (2) CNN 0.91
GRU 0.86

Table 2: Accuracy of the framework proposed by (Is-
lam et al., 2020) where LSTM, CNN and GRU are used
on top of multilingual BERT.

XLM indicates a cross-lingual language model.
XLM-RoBERTa (XLM-R) is a pre-trained multi-
lingual model that is considered to be superior over
multilingual BERT when evaluated against vari-
ous NLP tasks. One probable reason could be
that XLM-R is trained using a much bigger cor-
pus. XLM-R is also trained in approximately 100
languages. Similarly incase of XLM-R, in our ap-
proach we use x/m-roberta-large checkpont of pre-
trained XLM-R model. We opt for the idea of
fine-tuning BERT and XLM-R models especially
for low resource language like Bengali, as fine-
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Dataset Layer on top Validation
(#Classes) of XLM-R Accuracy
LST™M 0.65
Prothom Alo (3) CNN 0.37
GRU 0.63
LST™M 0.64
Prothom Alo (2) CNN 0.77
GRU 0.79
LSTM 0.85
YouTube-B (2) CNN 0.90
GRU 0.90
LSTM 0.60
Book-B (2) CNN 0.88
GRU 0.84

Table 3: Accuracy of the variant of the framework pro-
posed by (Islam et al., 2020) where LSTM, CNN, and
GRU are used on top of XLM-R.

Dataset Models Validation Test
(#Classes) Accuracy | Accuracy

BERT 0.63 0.49

Prothom Alo (3) —yrw 0.68 0.53
BERT 0.77 0.69

Prothom Alo (2) —yrw 0.81 0.73
BERT 0.94 0.95

YouTube-B (2) XLM-R 0.95 0.97
BERT 0.91 0.91

Book-B (2) XLM-R 0.91 0.87

Table 4: Validation (Val) and Test accuracy(Acc) of
fine-tuned BERT and XLM-R models all the three
datasets respectively. XLM-R here represents XLM-
RoBERTa.

tuning can be done with a small amount of train-
ing data, and the training process is also less time
consuming since we are not training all the lay-
ers from scratch. Note that, all these transformer-
based models used in our study are adopted from
HuggingFace.’.

4 Experimental Setup

For the series of experiments performed, we first
adopt the model from the work by Islam et al.
(2020) and use it as a baseline model. This
benchmark model consists of a multilingual BERT
(bertbase-multilingual-cased) pre-trained on mul-
tiple languages. Three different deep neural net-
work layers: GRU, LSTM, CNN are used as an
extra layer on top of BERT separately to produce
three separate architectures. We use their code
repository and train the baseline models using the
same set of hyper-parameters and attempt to repli-
cate the results. Next, we replace BERT with
XLM-R in the same architecture. As XLM-R mod-
els we use xIm-roberta-large. For this set of exper-

>https://huggingface.co/transformers
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Samples

Model

#(Classes) Target Prediction

T

1

QYN A 3 ST Y 5| [FCANGT W e | BERT-Fine 3 Neg Neg
This department of Prothom Alo is very raw in terms of reporting.

CAEIYATE AIORCAIY IF| QTS | @@ T | BERT-Fine 3 Pos Pos
There needs to be a sense of brotherhood in sports. Not a rivalry.

SR SR O &% , JACO 2 A WIG BERT-Fine 3 Neu Pos
The situation is same with everyone, we have to understand nature.

ST A15S AN Bl RCARCE SIS Y T | BERT-Fine 2 Pos Pos
Such an extraordinary drama. The same happened to me.

QYN AR 3 [GATD 43 F61 RCAG s e | BERT-Fine 2 Neg Pos
This department of Prothom Alo is very raw in terms of reporting.

QYN A 3 ST Y 5| [FCANG W e | XLM-R-Fine 3 Neg Neg
This department of Prothom Alo is very raw in terms of reporting.

IR G5 GG b2 Al , IR I I 74 79/ 512 | XLM-R-Fine 3 Pos Pos
‘We do not want such a race, we want a friendly relationship with everyone.

IS HS SN T g Serel 43 XLM-R-Fine 3 Pos Neu
The sleeping person can be awakened but not watchful.

©ER SR 1 O3 XLM-R-Fine 2 Pos Pos
Take Only love brother.

FEHSFN *1(H ofe 2 XLM-R-Fine 2 Neg Pos

A book full of ugly words.

Table 5: Sample predictions for fine-tuned BERT and XLM-RoBERTa extracted from different datasets. ‘Target’
column represents gold standard class as per dataset and ‘Prediction’ column represents predicted class by our
models. ‘Neu’, ‘Pos’ and ‘Neg’ represents the neutral, positive and negative class.

iments, we use a learning rate of 5e~04.

We also perform another set of experiments
where we use pre-trained BERT(bert-base-
multilingual-cased) and XLM-R(x/m-roberta-
large) and fine-tune them. For all the fine-tuning
experiments a batch size of 16, a learning rate of
2e~05, and a categorical cross-entropy loss func-
tion are used. We use Adam optimizer (Kingma
and Ba, 2015) for all the experiments. More
details of hyper-parameters used are mentioned in
Table 1 of supplementary material.

5 Results and Discussion

Even though our primary aim is to investigate
the applicability of fine-tuned multilingual BERT
and XLM-RoBERTa for Bengali sentiment analy-
sis task, we start our experiment with one of the
most recent baseline models proposed by Islam
et al. (2020). As Islam et al. (2020) perform all
their evaluation on their proposed dataset, Prothom
Alo, we first reproduce their result on the same
dataset which is presented in the upper half of Ta-
ble 2. In addition to that, we also evaluate their
models on Youtube-B and Book-B datasets as well
which are presented in the bottom half of Table 2.
We observe BERT with CNN produces an accu-
racy as high as 0.92 and 0.91 for Youtube-B and
Book-B, respectively. Note that, in the study done
by Islam et al. (2020), authors report accuracy for
the validation set. Therefore, to make a fair com-

parison we also report the same. Next, we investi-
gate further by using the same model architectures
but instead of using multilingual BERT, replac-
ing it with XLM-RoBERTa (XLM-R). The perfor-
mances of this modified architecture over all three
datasets are presented in Table 3. The result shows,
that replacing multilingual BERT with XLM-R im-
proves the performance for Prothom Alo dataset
(for both three class and two-class classification
tasks) by a maximum of 7%. On the other hand, for
Youtube-B and Book-B datasets the performance
marginally reduces.

Such inconsistencies in performances over dif-
ferent models lead to our next step which deals
with fine-tuning multilingual BERT and RoBERTa
using three datasets. Note that, in this approach,
we do not use any of the LSTM, CNN, and GRU
layers on top of the transformer layers as it was
done by Islam et al. (2020) as we attempt to show
that rather than implementing custom and complex
architectures working well on a specific task, sim-
ply fine-tuning a transformer is an easier, better
alternative. The results of this approach are pre-
sented in Table 4. We see that, for ‘Prothom Alo’
(both two and three classification tasks) fine-tuned
XLM-R beats all the previous approaches dis-
cussed so far by a significant margin and achieves
validation accuracy of 0.68 for the three-class clas-
sification task and 0.81 for the two-class classifica-
tion task. For ‘Youtube-B’ fine-tuned XLM-R pro-
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duces an accuracy of 0.95 whereas for ‘Book-B’ it
produces an accuracy of 0.91 which looks promis-
ing.

Note that, to have a fair comparison with the
most recent baseline models proposed by (Islam
et al., 2020), we report validation accuracy follow-
ing their performance measures and we see fine-
tuned XLM-R outperforms this baseline by a sig-
nificant margin for the ‘Prothom Alo’ dataset. In
addition, we also report test accuracy in the last
column of Table 4. Fine-tuned BERT/XLM-R pro-
duces substantially improved performances over
closest baselines which will serve as new state-of-
the-art performance for these three datasets.

We further investigate a few predicted sam-
ples from different datasets to check for the
cases that were predicted wrongly by fine-tuned
BERT or XLM-R . Few correctly predicted and
wrongly predicted samples are presented in Table
5. Even though the overall fine-tuned BERT/XLM-
R model performs well, there are certain cases
where these models get confused and predict
wrongly. In most such cases, the Bengali sentence
either contains an ambiguous word or it contains
two words from different polarity or it contains
some sort of philosophy the meaning of which de-
pends on human interpretation. Taking care of
these such cases could be immediate future work.

6 Conclusion

In this paper, we conduct an experimental study
showing the applicability of multilingual BERT
and XLM-R (with fine-tuning) for the Bengali sen-
timent analysis task. We use three datasets to
evaluate the models and obtain promising perfor-
mances for all three datasets. The immediate fu-
ture step would be investigating the erroneously
classified cases and trying to find the reason behind
such errors and mitigate it. Broadly, we plan to in-
vestigate sentiment analysis for other low-resource
languages like Tamil, Oriya, Gujrati, etc and at-
tempt to propose variants of transformer based
models.
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