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Abstract

Text Style Transfer (TST) aims to alter the
underlying style of the source text to another
specific style while keeping the same content.
Due to the scarcity of high-quality parallel
training data, unsupervised learning has be-
come a trending direction for TST tasks. In
this paper, we propose a novel VAE based
Text Style Transfer with pivOt Words Enhance-
ment leaRning (VT-STOWER) method which
utilizes Variational AutoEncoder (VAE) and
external style embeddings to learn semantics
and style distribution jointly. Additionally, we
introduce pivot words learning, which is ap-
plied to learn decisive words for a specific
style and thereby further improve the overall
performance of the style transfer. The pro-
posed VT-STOWER can be scaled to differ-
ent TST scenarios given very limited and non-
parallel training data with a novel and flexi-
ble style strength control mechanism. Exper-
iments demonstrate that the VT-STOWER out-
performs the state-of-the-art on sentiment, for-
mality, and code-switching TST tasks 1.

1 Introduction

Text style transfer (TST) is an important task in the
natural language generation area, aiming to control
the certain manner of the semantics style expressed
in the generated text. Such styles include but not
limit to emotion, humor, politeness, formality, and
code-switching. For instance, sentiment transfer
is widely seen in sentiment analysis for review-
ing comments (e.g., yelp, twitter), and targets on
converting the original negative/positive comment
into a new comment with same topic but opposite
sentiment (Hu et al., 2017; Shen et al., 2017); for-
mality transfer is commonly used in documenting,
aims at transferring the informal oral expression

Work done during an internship at Amazon Alexa AI.
1The code is available at https://github.com/

fe1ixxu/VT-STOWER.

into a formal written expression (Jin et al., 2020).
In this paper, we also consider code-switching as
a style transfer task, which has not been explored
by previous works. Code-switching is a compli-
cated linguistic phenomenon where a speaker al-
ternates between two or more languages in one
utterance, either inter-sentential or intra-sentential.
The code-switching transfer is a more challenging
task considering cross-lingual alignment and lim-
ited available training data in nature. Examples
of these three style transfer tasks are shown in the
Figure 1.

Because of the scarcity of high-quality parallel
training data, unsupervised learning has become
the mainstream for TST tasks. Existing works on
unsupervised TST learning can be roughly cate-
gorized into Disentanglement (Shen et al., 2017;
Hu et al., 2017; Fu et al., 2018; John et al., 2019)
and Style Attribute Rewriting (Lample et al., 2019;
Dai et al., 2019; Yi et al., 2020). Disentanglement
approaches strip style features from the content
and incorporate the content features with the tar-
get style representation. However, researchers be-
come less focus on disentanglement methods after
Locatello et al. (2019) theoretically proved disen-
tanglement approaches are impossible to represent
style fully with unsupervised learning. The style
attribute rewriting enforces the model to focus on
style-independent words by cycle reconstruction
and rewriting the style attributes with style em-
beddings. Dai et al. (2019) firstly proposed style
transfer model based on the transformer architec-
ture along with target style information. Lample
et al. (2019) reported that a good decoder can gen-
erate the text with the desired style by rewriting the
original style. However, the style strength of the
generated sentences cannot be easily adjusted in
above mentioned works.

Variational autoencoder (VAE) is firstly pro-
posed by (Kingma and Welling, 2014) for gener-
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ation by formatting the latent distribution instead
of feeding a single latent feature to the decoder.
Many TST models have been benefited from the
architecture of VAE. Bowman et al. (2016); John
et al. (2019) showed that the latent space learned
by VAE is considerably smoother and more contin-
uous than the one learned by Deterministic Autoen-
coder (DAE). Hu et al. (2017) proposed a new neu-
ral generative model that combines VAE and holis-
tic attribute discriminators for effective imposition
of the style semantic structures. In this paper, we

Figure 1: Examples of different TST. Including sen-
timent style transfer (negative ↔ positive), formality
style transfer (informal ↔ formal), code-switch style
transfer (single language↔ code-switch sentence).

also leverage the VAE and propose a novel method
called VAE based Text Style Transfer with pivOt
Words Enhancement leaRn-ing (VT-STOWER) for
TST tasks. VT-STOWER utilizes both VAE and
style embeddings to jointly learn the distribution of
content and style features. More importantly, we
boost the performance of TST tasks much more
by inventing pivot words enhancement learning.
Compared with other style-transfer methods, our
proposed VT-STOWER has a bunch of advantages.
In general, the advantages and contributions of the
VT-STOWER can be summarised as follows:

• VT-STOWER integrates the advantages of
both VAE and style embeddings. The former
catches continuous style expression distribu-
tion in language itself while the latter differen-
tiates embedding between original style and
target style.

• VT-STOWER has the flexibility to adjust
the target style strength by granting differ-
ent weights to the auxiliary target style em-
bedding; This allows VT-STOWER to bet-
ter migrate to different style transfer scenar-
ios, which is rarely studied in previous style-
transfer work.

• With the pivot words masking enhancement
mechanism, VT-STOWER is able to focus
more on the pivot words (certain words that
can determine the style of the sentence) and

be aware of which words have higher prob-
ability to be transferred in the TST. This en-
hancement significantly improves the transfer
accuracy while maintaining original topic.

• VT-STOWER can be easily scaled to dif-
ferent types of TST tasks. To the best of
our knowledge, we are the first to consider
code-switching in perspective of style trans-
fer and demonstrate that VT-STOWER can
be successfully applied to the Hindi-Hinglish
code-switching transfer. Therefore, we pro-
vide more potential solutions for the the code-
switching problems beyond translation by
which translating from single language to
code-switching expression is very hard given
limited training data.

• We evaluate VT-STOWER on the benchmark
dataset of sentiment, formality transfer tasks,
and the code-switching style transfer. Experi-
mental results on all tasks demonstrate better
overall performance against state-of-the-art
methods, which highlights effectiveness and
wide application of VT-STOWER.

2 Proposed Method

The training of VT-STOWER consists of two
stages. The training stage I is a VAE reconstruction
task in which the input text x will be reconstructed
together with external style embeddings. The la-
tent space of content distribution is learned by VAE,
and the original and target style mapping will be
learned and saved in style embeddings. The trained
VAE and style embeddings will also be utilized in
the second training stage.

To make the style transfer focus on pivot words
(e.g., emotional words in sentiment TST) while
maintaining other words unchanged (so that the
fluency and semantics can be largely preserved),
we fine-tune the VAE with pivot word masking
in training stage II. The masking is based on the
probability distribution of pivot words for specific
styles, which is learned from a style classification
task.

In the inference stage, VT-STOWER uses the
learned external target style embeddings to adjust
the sampled latent vector of the original input to
the target style. The adjusted sentence vector will
then be input to the decoder to generate the target
style text.



164

2.1 Training Stage I: VAE & Style
Embeddings

Figure 2a presents the details of training stage I.
Given a sentence x whose style type is known, we
firstly extract the contextualized vectors through a
pre-trained language model as the input to the VAE
model, since a pre-trained language model (such as
RoBerta (Liu et al., 2019) and XLM-R (Conneau
et al., 2020)) can improve the performance of the
downstream models, especially when the training
data size is small (Peters et al., 2018). After that,
similar to typical VAE structure from Bowman et al.
(2016); John et al. (2019), a multi-layer transformer
is used as the encoder to encode x to a mean vector
u ∈ Rd and a variance vector Σ ∈ Rd to construct
a latent distribution N (µ,Σ). d represents the di-
mension of the latent space. z is the vector sampled
from the latent distribution and will be input to the
decoder (which is also a multi-layer transformer) to
reconstruct the original text. The latent distribution
is assumed to be a normal distributionN (0, I). The
standard loss function of the VAE model is defined
as:

Lvae = −Eq(z|x)[log p(x|z)]+β·KL(q(z|x) ‖ p(z))
(1)

where the first term represents the likelihood of the
reconstruction of the original text x while the sec-
ond term is the Kullback–Leibler (KL) divergence
between the latent distribution and standard normal
distribution. p(z) represents the prior which is the
standard normal distributionN (0, I), and q(z|x) is
the posterior distribution in the form ofN (µ,Σ). β
is the hyperparameter balancing the learning capac-
ity between self-reconstruction and style features
(Higgins et al., 2016).

Style embeddings are also learned in this train-
ing stage. Instead of disentangling style attributes
from latent features (Shen et al., 2017; Hu et al.,
2017; Fu et al., 2018; John et al., 2019), we uti-
lize external style embeddings to learn the orig-
inal and target style representations. The advan-
tage of external style embeddings is that they can
avoid separating latent feature which leads to the
lower capacity of vector representation (Dai et al.,
2019), and can differentiate the space of different
styles. The set of style embeddings is defined as
S = {s1, s2, · · · , sk}, si ∈ Rk×d, where k is the
number of styles (k is commonly to be 2 in TST
tasks). Style embeddings are generated by a linear
forward network whose output dimension is d. This
style embedding network is randomly initialized

and will be updated by minimizing the similarity
between the style embeddings and latent feature of
the input instances.

To minimize such similarity, we calculate the
cosine similarity between style embeddings si
(1 ≤ i ≤ k) and sampled latent feature z as the
style loss. The assumption is that the style embed-
ding should be highly related to the latent feature
encoded from the sentence which belongs to the
same style, e.g., the distance between positive style
embedding and latent vector encoded from positive
sentence should be close to 1, while the distance
should be 0 between positive style embedding and
latent vector from the negative input sentence. The
style loss is defined as follows:

Lstyle = −
k∑

i=1

di log(σ(cos(si, sg(z)))) (2)

For brevity, we only present the loss for a single
style sentence, where di represents the ground truth
distance. Specifically, if ith style is the style of
the input sentence, di = 1, otherwise, di = 0.
σ(·) here is the sigmoid activation function which
controls the range of cosine similarity between 0
and 1. sg(·) is the ‘stop gradient’ function, e.g.,
the feature sg(z) is extracted through the latent
distribution and used as an independent constant
vector for computing the Lstyle. The VAE loss is
slightly modified from Equation 1 by adding style
embedding to hint decoder the style of sentences to
be generated.

Lvae = −Eq(z|x)[log p(x|z + sg(sx))]

+ β ·KL(q(z|x) ‖ p(z)) (3)

where sx is the style embedding of sentence x.
Similarly, the sx is also used as a constant vector.
Therefore, the total loss function is then defined as:

Ltotal = λvaeLvae + λstyleLstyle (4)

where λvae and λstyle are penalty weights, which
are hyperparameters to balance between VAE loss
and style embeddings loss.

2.2 Training Stage II: Pivot Words Masking

In Stage I, we co-train VAE & style embeddings
where we show how to leverage learned style em-
beddings to further improve the VAE model. In
stage II, We further enhance the model by masking
pivot words to prompt decoder to focus on pivot
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(a) Training stage I: VAE & Style Embeddings (b) Training stage II: Pivot Words Enhancement

Figure 2: Workflow of two training stages. a) Training stage I: VAE & style embeddings training. The VAE
structure learns to reconstruct the inputs sentence x, and the style embeddings learn the vector representation of
each style. PTLM represents Pre-Trained Language Model. b) Training stage II: pivot words masking training. The
VAE is further fine-tuned with similar reconstruction task with additional pivot words masking. The frozen style
embeddings are added to the latent vector to reconstruct the original sentence. We frozen the style embeddings in
this step since the style-related pivot words have higher possibility to be masked and latent vector loses the style
information which is the key for style embeddings training.

words, because certain style-related words play cru-
cial roles in TST (Fu et al., 2019). For instance,
the pivot word of the sentence ‘I am disappointed
with the restaurant’ in sentiment transfer is ‘dis-
appointed’ because this word contributes the most
to the negative sentiment. However, other words
such as ”I, was” are anchor words, which are un-
related to the sentiment but affect the semantics
thus should be unchanged during the style trans-
fer. Therefore, this stage of training is important
to enhance the model ability in transferring pivot
words while keeping anchor words. This stage can-
not be merged into training stage I because 1) in
this stage style embeddings have no visibility to the
style-related pivot words so that the style informa-
tion is hard to be learned; 2) the style embeddings
learned in training stage I have auxiliary function in
helping reconstructing masked pivot words during
fine-tuning the VAE.

However, randomly masking words in input sen-
tence and only relying on style embeddings to em-
phasize the pivot words does not achieve ideal
results. A more efficient way is to learn which
words are more possible to be pivot words for a
specific style, and mask them based on the proba-
bility. Similar to Sudhakar et al. (2019), we utilizes
the importance score distribution to indicate the
possibility of words being pivot (a pivot word has
a higher score). Such importance score distribution
is achieved from the attention weights of a style
classifier. Specifically, we train a style classifier

based on a pre-trained language model, appending
with a softmax layer over the attention stack of the
first token. The first token is usually a special sym-
bol that represents the beginning of the sentence
(e.g., ‘<s>’), and also collects other tokens’ atten-
tion weights that correspond to their significance
in identifying the style of the input sentence. The
importance score of a token w in the input sentence
x is defined as follows:

α(w) =
1

L

L∑
i=1

softmaxw∈x(
Q<s>,iK

T
w,i

γ
) (5)

where L is the number of attention heads. Q,K are
quires and keys in the final layer of the language
model (Vaswani et al., 2017). Their subscript <
w, i > represents the vector of token w in ith head.
γ is a hyperparameter ranging in (0,1) to adjust the
sharpness of the score distribution (smaller means
sharper).

After we get the pivot words probability, we
mask words in the input sentences based on this
importance score distribution. Specifically, every
token xi is assigned a random number pi, conform-
ing to the uniform distribution pi ∼ uniform[0,1].
Tokens are masked into a special symbol ‘<mask>’
if their assigned number is smaller than the score
(pi < α(xi)) so that words that possess higher im-
portant scores have higher probability to be masked.
Following the previous example, the input sen-
tence would be masked as ‘I was <mask> with
the restaurant’. In this way, masked sentence pre-
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serves the content but with style attributes removed.
Then the VAE model is fine-tuned to reconstruct
masked sentence to the original sentence by adding
the corresponding style embedding to the latent
feature. The loss function is defined as follows:

Lvae = −Eq(z|x)[log p(x|z + sg(s′x))]

+ β ·KL(q(z|x) ‖ p(z)) (6)

where s′x is the style embedding which has the
same style as input x. Note that we do not up-
date style embeddings in this stage because the
style embeddings are used for assisting fine-tuning
the decoder with style information, and their gen-
eral style representation should not be impacted by
the pivot words reconstruction loss. Moreover, to
prevent the latent space of VAE from shifting or
distorting to unreasonable distribution that only de-
scribes masked sentences, we conduct pivot words
masking in randomly 50% of sentences.

Although Madaan et al. (2020) has a similar
method tagging the source style phrases and gen-
erating the target style sentences by using n-gram
tf–idfs, the core differences of our stage II method
are: 1) each word has a probability of being masked
calculated by the attention scores of the stacked
classifier on a language model, which leads to a
smooth word masking probability distribution; 2)
VAE decoder reconstructs the masked sentences
using both information of latent space and external
style embeddings.

2.3 Inference stage
In the inference stage, the latent representation z
generated from the input sentence x through VAE
will be adjusted before sending to the decoder. In
detail, the latent vector z will be added the target
style embedding and subtracted the style embed-
ding of original style as x. Intuitively, we expect
the injection and removal of style information is
completed by the addition and subtraction oper-
ations of style embeddings. The updated latent
representation is expressed as follows:

z′ = z + w · (st − so) (7)

where st and so are target and original style embed-
dings trained in the stage I respectively. w repre-
sents the style weight that adjusts the style strength
applied to the sentence generation. A higher weight
means stronger style attributes will be injected for
generation.

3 Experiments

3.1 TST Evaluation Tasks and the Settings

We evaluate VT-STOWER with three different TST
tasks: sentiment transfer, formality transfer, and
code-switching transfer.

For sentiment transfer, we adopt the Yelp dataset
(Li et al., 2018), in which each sample is a business
review of a restaurant and is labeled as positive
or negative. For formality transfer, We adopt one
of the largest corpus for formality transfer task,
namely Family and Relationships domain data in
GYAFC (Grammarly’s Yahoo Answers Formal-
ity Corpus) (Rao and Tetreault, 2018). For code-
switching transfer, we evaluate VT-STOWER on a
Hindi→Hinglish transfer task, which is extracted
from the English-Hinglish translation dataset at
LinCE (Linguistic Code-switching Evaluation)
(Aguilar et al., 2020). We first translate English
sentences into Hindi by Amazon Translation Ser-
vice and then transliterate Latin scripts of Hindi
words into Devanagari form by using indic-trans
tool (Bhat et al., 2014) to keep the consistency of
the script of language 2. Note this dataset is very
low-resource, which only contains 7K sentences
for training. Similar to GYAFC set, we shuffle the
training data and treat it as unpaired data. Note
that two of the training sets are transformed from
originally paired dataset instead of directly using
richer unpaired datasets, it is because we want to
make a fair comparison with other referenced ap-
proaches. The training and test set size for each
task is presented in Table 1.

Tasks training set evaluation set test set
Sentiment Transfer (positive/negative) 266K/177K 2K/2K 500/500
Formality Transfer (formal/informal) 52K/52K 2.2K/2.7K 1K/1.3K
Code-Switching Transfer (Hinglish/English) 7K/7K 300/300 300/300

Table 1: Training, evaluation, and test set size of three
evaluation tasks.

Considering that GYAFC and Yelp dataset are
written in English and the code-switching dataset
is in mixed languages of Hindi and English, we use
RoBERTa as the pre-trained language model for
sentiment and formality transfer tasks, and XLM-R
(Conneau et al., 2020) for code-switching transfer.
Also, we fine-tune the style classifier to obtain im-
portant score distribution by leveraging RoBERTa
and XLM-R for the corresponding transfer tasks.

2The output of translator is Devanagari form while the
original script of Hindi in LinCE is Latin.
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More training hyperparameters are shown in Ap-
pendix A.

3.2 Evaluation Metrics

Style Transfer Accuracy (Acc) Style transfer
accuracy (Acc) is defined as the ratio of the number
of successfully transferred sentences and the total
number of input sentences. Following previous
studies (Dai et al., 2019; Sudhakar et al., 2019), we
leverage fastText classifier (Joulin et al., 2017) to
classify whether the original text have been suc-
cessfully transferred to the target style. The clas-
sifier is trained on the same training data used for
style transfer. The three classifiers achieve 97.6%,
85.75% and 99.7% accuracy for sentiment, formal-
ity and code-switching style classification itself,
respectively.

Perplexity (PPL) We also measure the fluency
of the transferred sentences by calculating their
perplexity. The lower the perplexity is, the more
fluent the generated sentences are. For the GYAFC
and Yelp dataset which are in English, we use the
pre-trained language model GPT2 (Radford et al.,
2019) to compute the perplexity, where no further
fine-tuning is conducted. However, GPT2 does
not apply to other languages or code-switching
sentences. Following Samanta et al. (2019), we
train a character-level LSTM (Kim et al., 2016)
on the code-switching training data and utilize this
model to derive the perplexity of generated code-
switching sentences.

BLEU Scores Content preservation is evalu-
ated by the tokenized BLEU scores (Papineni
et al., 2002) between the transferred sentences and
human-authored references, which is calculated
with the multi-bleu.perl. Note that GYAFC
dataset has four human references, so the BLEU for
GYAFC is the mean BLEU scores between the gen-
erated sentences and four references. Because there
is no human reference for code-switching task, we
report BLEU scores between transferred sentences
and original sentences for code-switching transfer
instead.

Geometric Mean (GM) Following Yi et al.
(2020), We also report the geometric mean of accu-
racy, BLEU, 1

ln PPL as the overall performance.

3.3 Main Results

The performance of VT-STOWER and previous
works are shown in Table 2. First of all, we can

Models Acc ↑ PPL ↓ BLEU ↑ GM ↑
Sentiment Transfer (Yelp)

CrossAlignment 74.0 42.91 9.06 5.63
Delete & Retrieve 87.5 40.66 5.99 5.21
B-GST 84.3 25.27 22.82 8.41
Style Transformer 83.9 43.60 28.29 8.57
Deep LatentSeq 83.0 27.08 24.03 8.46
StyIns 91.5 42.60 25.11 8.49
Tag & Generate 87.5 32.98 21.80 8.17
Ours (stage I, w = 4) 91.7 38.35 18.51 7.75
Ours (stage II, w = 2) 91.1 30.78 23.97 8.61
Human Reference 74.1 27.40 100.0 13.08

Formality Transfer (GYAFC)
CrossAlignment 65.35 13.66 1.57 3.40
Delete & Retrieve 53.85 29.70 11.71 5.71
Style Transformer 56.05 48.72 24.67 7.09
Ours (stage I, w = 4) 80.9 31.90 14.19 6.92
Ours (stage II, w = 3.1) 81.0 30.78 15.84 7.21
Human Reference 82.31 28.05 100.0 13.39

Code-Switching Transfer (LinCE)
Style Transformer 99.3 601.45 3.47 3.78
Randomly Replace 1.02 213.24 69.09 2.36
Ours (stage I, w = 0.75) 66.67 29.91 24.30 7.81
Ours (stage II, w = 0.75) 68.70 30.02 26.42 8.11

Table 2: Overall results of our models (VT-STOWER)
and previous methods on three style transfer tasks. The
best scores are bolded in the corresponding metric. ↑
means the higher is better, vice versa.

clearly see the performance improvement brought
by stage II training compared with single train-
ing stage I. In all three transfer tasks, models
trained in stage II lead to lower PPL (or simi-
lar PPL in code-switching transfer) and higher
BLEU scores when we find a w to control them
in a similar Acc, which achieves better overall
performance. For instance, compared with the
model trained in stage I with w = 4 in the sen-
timent transfer, the model fine-tuned in stage II
achieves similar accuracy with w = 2 (91.7% vs.
91.1%). At the same time, the stage II model de-
creases the PPL from 38.35 to 30.78 and increases
the BLEU from 18.51 to 23.97, which demonstrates
that the pivot words masking training is capable of
improving the smoothness of the sentences and the
preserving the content. Note that we cannot use
the same weight w for a direct comparison since
the models in two training stages have different
sensitivity to w. Therefore, we use w that produces
similar accuracy between stage I and stage II for a
fair comparison for the PPL and BLUE.

When comparing our method with several state-
of-the-art references: CrossAlignment (Shen et al.,
2017), Delete & Retrieve (Li et al., 2018), B-GST
(Sudhakar et al., 2019), Style Transformer (Dai
et al., 2019), Deep LatentSeq (He et al., 2020),
Tag & Generate (Madaan et al., 2020) and StyIns
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(a) sentiment transfer (b) formality transfer (c) code-switching transfer

Figure 3: Illustration of style weight w vs. Acc, PPL and BLEU in sentiment, formality and code-switching
transfer tasks. Note there is a trade-off between Acc and PPL/BLEU. With increasing of w, Acc will increase
while BLEU drops down and PPL increases.

Figure 4: Comparison of style transfer outputs of our
models and style transformer in three transfer tasks.
Our models are stage II models in Table 2. Translations
for code-switching sentences are shown in parenthesis.

(Yi et al., 2020), the performance of their methods
is directly evaluated on their provided outputs by
using our metric evaluators. We will further discuss
how w affect the performance in next section. We
can clearly see the overall performance (GM) of
our proposed model is better than all baselines. For
evaluating the success of style transfer, accuracy is
the most critical metrics, for which VT-STOWER
also demonstrates large improvement in sentiment
and formality transfer.

In the sentiment style transfer, our model with
w = 2 (after stage II training) has competitive
accuracy (91.1%), and BLEU (23.97) compared
with the state-of-the-art methods StyIns (Yi et al.,
2020) (accuracy=91.5%, BLEU=25.41) and style
transformer (Dai et al., 2019) (accuracy=83.9%,
BLEU=28.29) but achieve much lower perplexity
(30.78) compared to 42.60 in StyIns and 43.60
in style transformer, which demonstrates that the
sentences generated from our model is closer to
the natural language. VT-STOWER also outper-
forms other previous methods by a large margin
in all three metrics. In the formality transfer, the
most competitive model is the style transformer.
Although it achieves higher BLEU scores (24.67),

our models beats it on higher style transfer accu-
racy (81.0% vs. 56.05%) and significantly lower
PPL (30.78 vs. 48.72) with limited loss of BLEU
scores.

For the code-switching transfer, since there is
no previous TST experimenting on this task, we
train the strongest baseline (style transformer) for
this task. Interestingly, style transformer obtains
a very high accuracy (99.8%) with the costs of
very high PPL (601.46) and very low BLEU score
(3.47). The possible reason is that the style trans-
former is only able to capture partial special style
features from the small dataset (7K) and only trans-
fer sentences based on these features without fully
capturing the nature of languages, resulting in high
accuracy but low fluency and BLEU. However, VT-
STOWER can balance among the accuracy, fluency,
and BLEU to achieve reasonable results even in the
case of the low-resource dataset, which demon-
strates its generalization power. Additionally, we
also design another baseline, i.e., we randomly re-
place 15% Hindi words with English words (Zheng
et al., 2021) based on the MUSE dictionary (Con-
neau et al., 2017), because intuitively, people may
regard code-switching text generation as simply
translating several words. However, this method
only achieve 1.02% accuracy, because simple trans-
lation and replacement cannot accord with the
habit of bilingual expression in code-switching sen-
tences, namely, code-switching has its own style
according to the speakers (e.g., usually noun is
more likely to be replaced with foreign language
than preposition). Intuitively, when we compare the
VT-STOWER with original and other approaches
as shown in Figure 4, the output bilingual sentence
from VT-STOWER reads more fluent and can be
easier understood.
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(a) sentiment transfer (b) formality transfer (c) code-switching transfer

Figure 5: Illustration of the mean attention weights of token ‘<s>’ from all heads at the final layer in three TST
tasks. Higher importance scores are assigned to pivot words, which are depicted as deeper lines in the figures.

3.4 Effect of Style Weights

As shown in Equation 7, the strength of the target
style in z′ is adjusted by the style weight w. In
Figure 3, we present metrics trend with five dif-
ferent w for the models trained in stage II 3, and
demonstrate how the style weight w affects the out-
puts. Taking sentiment transfer task as an example,
when w is increased from 0.5 to 2.5, the transfer
accuracy climbs from 17.3% up to 95.9%, but the
BLEU score drops from 27.44 down to 20.85, and
PPL increases from 24.77 to 32.8. The reason is
when increasing w, more style information is in-
jected into the latent vector that the decoder pays
more attention to the target style feature rather than
the naturalness and content of generated sentences.
Therefore, w is a trade-off hyperparameter between
the transfer accuracy and PPL/BLEU. Examples
of generated sentences transferred from positive
to negative sentiment with w = 1.5, 2, 2.5 are il-
lustrated in Table 3. When w = 1.5, the model
still can find a positive word, ‘enjoying,’ which
makes the sentence ironical. In the case of w = 2,
the ‘enjoying’ is rephrased to ‘avoid’, turning the
sentence into a full negative attitude. If we further
increment w = 2.5, more negative words will be
added regardless of the smoothness of the sentence.
Similar discussions also hold for the formality and
code-switching transfer, where their results versus
various style weights are illustrated in Figure 3b
and 3c.

3.5 Importance Score Distribution

Recall that for the training stage II, the importance
scores are derived from the attention scores of the

3w ranges from 0.5 to 2.5 with an interval of 0.5 for sen-
timent and formality transfer, and from 0.25 to 1.25 with an
interval of 0.25 for code-switching transfer.

Positive→ Negative with various w
Original i will be going back and enjoying this great place !
w = 1.5 i will be going back and enjoying this terrible place !
w = 2 i will be going back and avoid this terrible place !
w = 2.5 i will be going back and worst rude avoid this terrible place !

Table 3: Examples of sentences transferred from pos-
itive to negative sentiment with various settings of w.
The higher w is the more negative words are injected in
the sentences.

BOS token ‘<s>’, which are the mean scores of all
heads from the last layer of a pre-trained encoder.
Figure 5 presents the examples of importance score,
showing how the score value represents the impor-
tance of words in terms of style representation. The
importance scores are higher on ‘comfortable and
welcome’ in the sentiment transfer, these words
represents strong positive emotions. Similarly, the
scores are higher on the informal written words
‘ur’ in the formality transfer, and English words
mixed in a Hinglish sentence in the code-switching
transfer.

4 Conclusion

We proposed the VT-STOWER, a model joinly
trained with VAE and style embeddings for con-
tent distribution and style information. The method
successfully transfers several different text styles,
including the code-switching TST task for the first
time. Taking advantage of the flexibility of style
embeddings, our proposed model has the ability
to adjust the style strength during the transfer by
simply adjusting the style weights. To further en-
hance the transfer accuracy, we propose additional
pivot words masking training scheme, which shows
impressive improvement.
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A Hyperparamerters

The encoder and decoder for sentiment and formal-
ity transfer tasks both are two-layer transformer
(Vaswani et al., 2017), with FFN dimension size of
1024 and 4 attention heads. Due to the limited code-
switching data size, we run smaller encoder and
decoder with 256 FFN dimensions and 2 attention
heads for code-switching transfer task. The neu-
ral networks that formulate the mean and variance
of the latent space are also one-layer transformer
blocks. The dimension of the latent features and
style embeddings is 768. Both penalty weights
λvae and λstyle equal to 1. We set γ as 0.01, 0.03,
and 0.005 for sentiment, formality, code-switching
transfer during importance score calculation, re-
spectively. The β is set as 1. The optimizer is
Adam (Kingma and Ba, 2014) with learning rate
0.0005. The batch size is 8092 tokens.


