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Abstract

Deep learning based methods have shown
tremendous success in several Natural Lan-
guage Processing (NLP) tasks. The recent
trends in the usage of Deep Learning based
models for natural language tasks have def-
initely produced incredible performance for
several application areas. However, one major
problem that most of these models face is the
lack of transparency, i.e., the actual decision
process of the underlying model is not explain-
able. In this paper, first we solve a very fun-
damental problem of Natural Language Under-
standing (NLU), i.e., intent detection using a
Bidirectional Long Short Term Memory (BiL-
STM). In order to determine the defining fea-
tures that lead to a specific intent class, we use
the Layerwise Relevance Propagation (LRP)
algorithm to find the defining feature(s). In the
process, we conclude that saliency method of
εLRP (epsilon Layerwise Relevance Propaga-
tion) is a prominent process for highlighting
the important features of the input responsi-
ble for classification of intent, which also pro-
vides significant insights into the inner work-
ings, such as the reasons for misclassification
by the black box model.

1 Introduction

Chatbots or conversational agents have been gain-
ing immense popularity in recent years. This is one
of the most widely used Artificial Intelligence (AI)
applications that has a market value of USD 190.8
millions, and is expected to grow upto USD 1,250.1
million by the year 20251. These chatbots are being
used in almost every vertical of our society, such
as travel, healthcare, judiciary etc. With the rapid
adaptation of chatbots as digital assistants, it is im-
portant that these chatbots should be very robust, as
many of these domains (e.g., health, judiciary etc.)

1https://www.grandviewresearch.com/industry-
analysis/chatbot-market

are very sensitive, and minor inaccuracies in infor-
mation can lead to significant damage. The model
as a whole can be made robust if all its individual
components are also accurate. The very first step of
most modular dialogue systems is the Natural Lan-
guage Understanding (NLU) phase, that comprises
of dialogue act classification, intent detection and
slot filling. This part of the dialogue system plays
an important role of deciphering the syntax and
semantics of the user input, to aptly produce the
bot’s reply. While the intent classification focuses
on the semantic meaning of the input, slot filling
focuses on extracting the relevant information like
named entities etc.

These systems are not perfect, and even the state-
of-the-art models very often fail to classify the in-
tent correctly. In order to understand what went
wrong in these misclassifications, the features of
the text that led to the incorrect classification can
provide some helpful information. Due to the rise
of deep neural network based architectures the
transparency of such models is low. This leads
to the requirement of eXplainable Artificial Intelli-
gence (XAI) methods that determine the important
features of the input text. There are 2 major meth-
ods that highlight the feature importance, namely
saliency based methods and attention based meth-
ods. Saliency based methods (Section 2.2) are ad-
hoc techniques that explain individual inference
done by the model. This is done after the model
training process, hence the cost depends on the
number of explanations required. The additional
cost of these XAI models tend to make the archi-
tectural framework more expensive. Since most
of the XAI methods explain each prediction indi-
vidually, the processing cost keeps on increasing
during the model deployment. Attention, on the
other hand, calculates the feature importance over
the entire training data, and seems like a cost ef-
fective alternative to saliency in figuring out the
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relevant features of the input text. Whether atten-
tion is actually a good alternative for explanation is
still a matter to be explored (Grimsley et al., 2020).
When compared to the saliency based techniques,
due to the attention’s focus on gradient descent as
the weight updating criteria, attention has shown
high correlation to the gradient based saliency tech-
niques (Jain and Wallace, 2019).

In this paper, we investigate into an explainable
deep learning based intent classifier. We compute
the features responsible for misclassification of the
utterances, in order to get a better idea of why actu-
ally the trained model incorrectly predicted these
test inputs. This leads to a much better understand-
ing of the limitations of Long Short Term Memory
(LSTM) based models. One such limitation is when
we go over the ATIS dataset, where we find out that
the model misclassifies an Intent class(as shown in
figure 2) ’meal’ even though it learns to identify
the ’meal’ token as the most important feature as
cumulative weight of tokens pointing to the ’flight’
intent is higher. Another such instance can be the
’day name’ intent being misclassified as ’flight’.
The model does not even learn to pay attention to
token(s) like ’day’ or ’day of the week’ as the total
instances of ’day name’ in the entire dataset is less
than 0.1% of the dataset.

2 Related Work

In this section, we present a very brief literature sur-
vey that starts with a intent classification followed
by saliency based explainable models.

2.1 Basic Components of any Conversational
System

In practice, two forms of chatbot architectures are
prevalent. One being the modular architecture that
we focus here in this paper. This procedure breaks
the conversational process into a pipeline structure
where the upcoming module uses the information
gathered from the previous step to build a func-
tional agent. The process includes intent classifica-
tion, slot filling/entity extraction for the language
understanding phase. Dialogue Management (DM)
uses the intent and entities extracted to formulate
the next action. In this phase we can also employ
rules to direct the functioning to a specific action.
For example- one rule could be that if the input
is exactly the same, use the reply in the training
data directly. Of course, this depends on the task at
hand. Finally, the information of the DM module

is actualized into human understandable text us-
ing the Natural Language Generation (NLG) phase.
This text generation can be either template based
or a neural based, trained on the data available.
The second prevalent architecture is the end-to-end
architecture which trains a single deep learning
model which takes the user input and gives reply
utterance directly in one go. Since the entire pro-
cess of conversation is condensed into one single
model this kind of architecture generally requires
much more data and since we cannot explicitly im-
part rules on such a model, it can perform poorly
on seemingly simple tasks for a similar amount of
data.

2.2 Intent Classification

Intent classification is a highly informational step
of any modular dialogue system. It is the initial
process of the Natural Language Understanding
(NLU) pipeline, which focuses on the prediction
of the task the user wants the current input to fo-
cus on, from the variety of tasks the model has
been trained to perform. The Cambridge dictio-
nary defines intention as ’something you want or
plan to do’. Similarly in NLP the intent refers
to the task/goal the user wants to accomplish by
the conversation. For example, in the user utter-
ance ’what meals are available in flight from Mil-
waukee to Seattle’ the goal/intent of the user is to
enquire about the food options. The structure of
this utterance is similar to that of a flight search
query like ’what flights are available from Milwau-
kee to Seattle’, we want the model to be able to
aptly distinguish between these intents. A good
intent classifier can bypass poorly directed user
queries and correctly processes user intents leading
to the smooth conversational flow. Bi-directional
Long Short Term Memory (BiLSTM) (Huang et al.,
2015) models are a decent baseline in NLP tasks
including classification, generation, summarization
etc. However, due to the innate opaqueness of
neural network based models it leaves a lot to be
desired in terms of making the users understand
the decision making process. This leads to people
using adhoc post-processing steps (saliency tech-
niques) to find out the features/tokens in our text
most responsible for the classification output of the
model. However, since this adds an overhead to
the model, it results in increased cost for providing
feature importance.
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2.3 Saliency Techniques

Saliency is used in psychology and other fields with
subtly varying meanings. For NLP tasks, we refer
to saliency as the process of finding the most im-
portant features/token(s) responsible for the model.
For example, in the utterance ”The service was
bad.”, the token(s) ’service’ and ’bad’ are respon-
sible for the utterance to be classified with intent
’complaint’. There are multiple classes of these
models with the focus, ranging from token combi-
nations, to game theory concepts (Section 2.3.2)
and propagation based (Section 2.3.3). We discuss
some techniques for saliency and try to highlight
the issues pertaining to these models for adhoc ex-
planations.

2.3.1 Occlusion/Perturbation based
The occlusion or perturbation based methods
(Zeiler and Fergus, 2014) compute the feature im-
portance by removing parts of the input and recal-
culating the classification output and measuring
the deviation from the original classification. This
deviation from the original prediction then serves
as a measure of the importance of the feature with
respect to the current model classification. Though
these methods are easy to execute for the Natural
Language Processing (NLP) tasks, these add a high
computation overhead in order to find the important
features. For example - for just a text of 10 tokens
there can be hundreds of such perturbation based
subtexts resulting in a tedious prediction phase.
The number of such perturbation based combina-
tions of tokens increases exponentially with the size
of the input text. Even though you can use mean-
ingful combination techniques(Fong and Vedaldi,
2017) (here the overhead can be reduced by using
many techniques like stopword removal, named en-
tity removal, merging adjective with adverbs such
as treating ‘very good’ as a single occlusion candi-
date etc.) the substantial overhead still exists.

2.3.2 Mathematical Model based
GradientxInput(Denil et al., 2014) calculates
saliency of the input text as a function of input
sequence vs individual input tokens. Integrated
Gradient(Sundararajan et al., 2017) is another gra-
dient based method that extends upon Gradientx-
Input techniques and deals with the sensitivity and
implementation invariance. Even though both IG
and GradientXInput focus on the sensitivity of the
features, it is taken as a measure of the saliency of
the input features. SHAP (Lundberg and Lee, 2017)

uses the concept of shapley values from game the-
ory to calculate the feature importance.

2.3.3 Propagation based
Layerwise Relevance Propagation (LRP)(Bach
et al., 2015) uses an additional backward pass that
calculates the relevance of the nodes of our network
at each layer. It then uses the weights of the nodes
to redistribute the relevance of each layer with re-
spect to the prediction. So, when it finally arrives
at the input layer it has the relevant information for
each input with regard to the prediction. Since the
backward pass flows over the entire network, the
cost of saliency is directly proportional to the size
of the network trained (example, overhead for a
model with 10 layers of depth is more than a model
with 2 layers).

2.3.4 Sampling based
LIME(Ribeiro et al., 2016) adopts a local approach
to the saliency problem. For a specific input at hand
it calculates a locality around the input and then
uses that local sample space to train an inherently
interpretable model. This newly trained model is
then used to make an explanation regarding fea-
ture importance for the input. However, in some
cases like image classification, even these localities
might be too much to be represented by a linear
model, Anchors(Ribeiro et al., 2018) is a method
which counters this issue by instead forming condi-
tions for prediction. This rule/condition fixes the
prediction at local level so changes ant global level.
Thus highlighting the parts in the input that are
enough to classify it. However, since the technique
involves sampling from the training data and also
training a new model (both for each explanation
to any input), such methods are some of the most
expensive saliency methods available.

2.4 Global vs Local Methods

Global methods describe the average behavior of
a machine learning model. Global methods es-
timate expected values based on the distribution
of the data. For example, the partial dependence
plot (Friedman, 2001), a feature effect plot, is the
most expected outcome when all other features are
turned insignificant i.e. it shows the marginal effect
one or two features have on the predicted outcome
of a machine learning model. Since global interpre-
tation methods describe average behavior, they are
particularly useful when the user wants to under-
stand the general mechanisms in the data or debug
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a model.
The counterpart to global methods are local

methods. Local interpretation methods explain in-
dividual predictions. LIME(Ribeiro et al., 2016)
and SHAP(Lundberg and Lee, 2017) are attribu-
tion methods, so that the prediction of a single in-
stance is described as the sum of feature effects.
Other methods, such as counterfactual explana-
tions(Wachter et al., 2017), are example-based.

For this paper, we focus on local explanations,i.e.
look at the individual instances and try to figure
the reason for misclassification for each group of
instances instead of figuring a general trend for all
the misclassification.

3 Methodology

We implement εLRP (epsilon Layerwise Relevance
Propagation) model over a BiLSTM trained model
to find the important features for a particular pre-
diction. This is done with the aim of finding the
reason behind the misclassification in incorrectly
predicted utterances, as that can potentially help
us deduce the reason for misclassification and im-
prove our understanding of the model.

3.1 Intent Classification

For the base model, we use a BiLSTM based
architecture. Bidirectional LSTM (BiLSTM) is
used to model dependencies on the next time step
in the input utterance. These are a combination
of a recurrent layers that propagate the sequence
forward through blocks and a recurrent module
that propagates the sequence backwards through a
different block. The tail model uses a concatena-
tion operation on the penultimate two hidden states
as input for the final layer.

i0,t = sigmoid(Wixt + bi)

ć0,t = tanh(Wcxt + bc)

c0,t = i0,t × ć0,t

o0,t = sigmoid(Woxt + Voc0,t + bo)

h0,t = o0,t × tanh(c0,t)

For training, the Adam optimizer (Kingma and
Ba, 2014) and categorical cross-entropy loss(Zhang
and Sabuncu, 2018) were used. This model had a
depth of 2 with each layer having 256 hidden nodes
and a dropout of 0.5. We went with a batch size of
24 due to memory restrictions.

3.2 Layer-wise Relevance Propagation

LRP works as an adhoc over the final trained model
to calculate the explanation based on the domain
of its inputs. LRP takes the weightage of the final
classification and distribute this value over the pre-
vious layer depending on the contribution/influence
of the neuron in the previous layer. This backward
pass of sorts recursively distributes the classifica-
tion weight to the input features, quantifying their
importance to the task at hand. For example- if a
model predicted the intent to ’flight’ with a con-
fidence of 0.8, this 0.8 is then distributed to the
neurons of the previous model layer depending on
their influence as per equation 1. Recursively this
weight/relevance of 0.8 reaches to the feature input
layer and the relevance is distributed across the in-
put tokens. For better comprehension we normalize
the input token relevance for clarity.

∑
k

ajwjk∑j
0 ajwjk

Rk (1)

Here, j and k denote 2 neurons of consecutive lay-
ers, w is weight, and a is the activation. Finally, R
denotes the relevance of each neuron. ajwjk mod-
els the extent of influence of the neuron j in making
the neuron k relevant. This influence is then used to
distribute the relevance of neuron k to the neurons
in the previous layer.Rk is the relevance of the kth

neuron at current layer. In this paper, we use εLRP
which is a modification of base LRP (equation 2)
that includes ε term in the denominator.

∑
k

ajwjk

ε+
∑j

0 ajwjk

Rk (2)

The role of ε is to still accumulate some rele-
vance even when the influence of the activation of
neuron k are weak or contradictory i.e. ifRk is very
small then each of the relevance it provides to the
neuron(s) j is negligible. The ε term helps to main-
tain mathematical cohesion in case the relevance
reaches zero. As ε becomes larger, only the most
salient explanation factors survive the absorption.
This typically leads to explanations that are sparser
in terms of input features i.e. the weight distributed
is more focused on the important features and all
the irrelevant features(stopwords etc) get near zero
weightage.This makes the weight distribution less
noisy as we can easily focus on the relevant input
features. So in conclusion we can say εLRP results
in sparser and less noisy relevances.
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3.3 Model

The model used in this paper uses BiLSTM to train
the model for the intent classification task and then
employs a LRP model for explanation of the infer-
ences done by the model at testing. The backward
pass implemented is a single step process that goes
over all the layers of the trained model (from fi-
nal prediction to the input features) and distributes
the weight of the prediction over the input features.
Finally, the input feature(s) with highest relative
weight are considered responsible for the output of
the model.

Figure 1: Basic representation of prediction phase (sin-
gle forward pass) and feature relevance phase (single
backward pass) of the BiLSTM + εLRP architecture

4 Dataset and Experimental Setup

In this section, we present the details of the datasets
and experimental setup.

4.1 Dataset

We use the following benchmark datasets for the
experiments.

ATIS: ATIS (Airline Travel Information System)
(Hemphill et al., 1990) is a dataset of airline cus-
tomer service with multiple user utterances and
corresponding Intents. The dataset includes 4,478
utterances in training, 500 utterances for valida-
tion and 893 utterances in the test set. The data is
annotated with 17 intent classes, viz. ’flight’, ’air-
fare’, ’airline’, ’ground service’, ’quantity’, ’city’,
’abbreviation’, ’aircraft’, ’distance’, ’ground fare’,
’capacity’, ’flight time’, ’meal’, ’flight no’, ’re-

striction’, ’airport’, ’cheapest’. We removed 23
instances labeled with more than one intent.

MultiDoGO: MultiDoGO dataset (Peskov et al.,
2019) comprises of six domains, viz. airline, fast-
food, finance, insurance, media and software. The
dataset has two formats, annotated and unannotated.
The unannotated version contains 86K conversa-
tions, while the annotated version contains 15,000
conversations with 2,500 for each domain. We fo-
cus on the user utterances of two sub-domains of
airline and finance for intent classification with 38
classes. We use the training, validation and test sets,
comprising of 29,742, 4,260 and 8,488 utterances,
respectively.

4.2 Experimental Setup
For the experiment, we train the BiLSTM model.
We train the model with epochs set to 5, 10 and
20. This is done to avoid any possible overfitting
scenario. Adam optimizer and categorical cross-
entropy loss were used. To represent the word
vectors, a 256 dimensional (non-pretrained) vec-
tors were used. Inference is then generated on the
test data, where we primarily focus on the misclas-
sification. The εLRP method is then executed on
these misclassification to find why these utterances
were predicted incorrectly.

4.3 Results and Analysis
The BiLSTM model is trained on the above men-
tioned datasets (ATIS airline dataset, MultiDoGO
airline subdomain dataset and MultiDoGO finance
subdomain dataset). We demonstrate the results in
Table 1. Then, εLRP is used as an adhoc model to
gain insights on misclassification. The interesting
cases are highlighted.

Table 1: Results of BiLSTM trained on 3 datasets
(ATIS airline dataset, MultiDoGO airline subdomain
dataset and MultiDoGO finance subdomain dataset)

Dataset Accuracy Precision Recall
ATIS 0.93 0.93 0.93

MultiDoGO 0.91 0.91 0.91
Airline

MultiDoGO 0.89 0.89 0.89
Finance

While we closely look at the misclassified cases,
we see that most of the misclassifications in the
ATIS dataset are a result of being predicted as be-
longing to the ’flight’ class instead of the actual
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class. This can be attributed to the disproportion-
ate training data where 3388 of the 4478 training
utterances are for the ’flight’ class. This misclas-
sification seems to be due to named entities like
locations being taken as a shortcut to classify ut-
terance as intent ’flight’. For example, in Figure 2
one can see that the presence of location tokens (in
blue) collectively lead to misclassification as intent
’flight’ even though the model knows that the to-
kens ’meal’ and ’cities’ (in red) play important role
in the classification process (tokens highlighted
with blue are responsible for current prediction,
the ones with red highlight the second most likely
class). This structure of sentences comprise of 4 of
the 6 test examples for intent ’meal’, all 4 of which
are misclassified. The only 2 correctly classified ut-
terances are the ones that do not mention the cities
i.e. ’are meals ever served on tower air’ and ’are
snacks served on tower air’.

Figure 2: Examples of misclassifications on the ATIS
dataset

For MultiDoGO airline sub domain, majority
of misclassifications seem to arise from the model
paying heavy weightage to the tokens ’ok’ as ’con-
firmation’, and thanks for ’thankyou’ as the intent
class, as shown in Figure 3. There are also a few
cases of model being confused between the intents
’getseatinfo’ (asking for seat details, ex- I want to
know seat no) and ’changeseatassignment’ (change
the curreent seating, ex- I want to get window seat)
due to having similar tokens in the training data.
Also for the utterance ’thank you sir but i would
like to have a middle seat as i do not like a window
seat’ this direct alignment of the word thank to the
intent ’thankyou’ leads to misclassification even
though the model pays attention to the tokens re-
lating to the correct intent ’changeseatassignment’.
We found that this association can be lowered by
introducing more examples of similar structure to
above utterance but that leads to some instances
of ’thankyou’ intent to ’rejection’ intent(ex- thank
you so much nothing more bye). For the first ex-

ample shown the misclassification is negligible in
the context that the same utterance ’ok thanks’ is
labelled as both ’thankyou’ and ’confirmation’ in
the training data.

Figure 3: Examples of misclassifications for the Multi-
DoGO data

For MultiDoGO finance dataset, on the other
hand, is filled with misclassifications that seem
to be right when going through human evaluation.
For example, in Figure 4, examples 1 and 3 can
be said to be somewhat correctly predicted (since
we are looking at them as individual utterances
instead of entire dialogue) even though the actual
intents are different. For example 2, the evaluation
could go either way depending on preferences of
the annotator and the evaluators as all the closing
greeting examples have the word thanks in them
and are very overlapping in their intention.

Figure 4: Examples of misclassification on Multi-
DoGO finance intents

Going through all these datasets, we summarize
that there are a lot of inferences that can be drawn
with respect to the incorrect classification. The is-
sues arising due to the unbalanced dataset results in
forcing the model to pay high attention to some spe-
cific tokens. We see the benefits of saliency based
methods as it highlights the tokens responsible for
the classification. This not only helps us under-
stand the reason for misclassification but also can
highlight cases where the data might be incorrectly
annotated, resulting in the possibility to improve
the quality of dataset along with the classification
process.
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5 Conclusion and Future work

In this paper, we have attempted to build an ex-
plainable intent detection model with the saliency
based methods. The model is able to identify the
appropriate and relevant features used for intent
classification. We also discussed some issues with
these approaches, most of which deal with the fact
that the saliency techniques calculate the feature
importance (which constitute an explanation) as an
adhoc measure.

Saliency does have quite a few benefits of itself.
The modular nature of the implementations pro-
vides a degree of model-agnostic behaviour which
allows us to treat the black boxed nature of the
deep learning models as an afterthought and focus
entirely on the performance. After the model is
trained and tuned, we applied the saliency tech-
niques for determining the feature relevance. This
also ensures that we can apply different saliency
techniques for the same base model and the same
saliency technique to different models allowing for
a high degree of robustness.

However, even for saliency it is not necessary
that the importance assigned to a feature is, in fact,
due to the relevance of the features but could sim-
ply be a result of the underlying issues with the
technique used. For example, in occlusion based
methods, if we remove a feature, it is possible that
the change in the prediction is just the result of
the new input not being in the format the model
expects(Kindermans et al., 2019).

For future work, we plan to use the feature im-
portance information and use it to retrain the model
in such a way to reduce misclassification. One
such method could be to use the important features
of misclassifications to help identify which kind
of data to add, to improve the performance of the
model further. However, such a method needs to be
done in such a way that the incorrect predictions do
not get corrected at the cost of misclassification of
originally correctly predicted utterances. Another
such method could be to identify the nodes which
are more relevant to a highly misclassified intent
and boost those neurons to improve model perfor-
mance. However, this also needs to make sure the
nodes we are associating with a particular intent do
not have high influence on other intents as well, as
that might lower the accuracy of some other intent.
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