Constrained Decoding for Technical Term Retention in English-Hindi MT

Niyati Bafna*, Martin Vastl*, Ondiej Bojar
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

niba00005@stud.uni-saarland.de, martin.vastl2@gmail.com, bojar@ufal.mff.cuni.cz

Abstract

Technical terms may require special handling
when the target audience is bilingual,
depending on the cultural and educational
norms of the society in question. In particular,
certain translation scenarios may require
“term retention” 1i.e. preserving of the
source language technical terms in the target
language output to produce a fluent and
comprehensible code-switched sentence.
We show that a standard transformer-based
machine translation model can be adapted
easily to perform this task with little or no
damage to the general quality of its output.
We present an English-to-Hindi model that is
trained to obey a “retain” signal, i.e. it can
perform the required code-switching on a list
of terms, possibly unseen, provided at runtime.
We perform automatic evaluation using BLEU
as well as F1 metrics on the list of retained
terms; we also collect manual judgments on
the quality of the output sentences.

1 Introduction and Motivation

It is common for bilingual or multilingual speakers
to borrow technical terms from other, usually
high resource, languages into their native language.
This may be for several reasons, e.g. the technical
term in the high resource language may be much
more popular and therefore better understood, or
the required term may simply not exist in the
language in question. This is very common,
for example, in Indian languages, where the
language of education is frequently different from
the regional native language.

We can imagine, therefore, a scenario which
requires the automatic translation of text or speech,
with the constraint that a given list of English
domain words appear untranslated in the Hindi
output. Essentially, this can be seen as a special
case of constrained decoding with a given source-
target terminology. We make the assumption that

*Equal contribution by these authors.

1

the user knows the terms to be retained at run time,
and can provide this information to the system
before translating the sentence.’

2 Previous Work

The idea of constrained decoding has been
recognized as useful in several works (Hokamp
and Liu, 2017; Chatterjee et al., 2017; Hasler et al.,
2018; Dinu et al., 2019; Jon et al., 2021). Usually,
the constraints are in the form of a terminology
list, as in the above works. To our knowledge, this
is the first study on combining this concept with
introducing code-switching® (CS) into the output
for a multilingual educational or technical setting.

3 Approach

We set up an end-to-end supervised learning
scenario aimed at teaching the model to perform
term retention. The basic idea is to train a
machine translation model to obey a ‘“signal”,
that we can then provide at run time on selected
words. It is easy to see that such a model (the
“tagged” model) would be independent of domain
and could in theory perform term retention on
any term for which the signal was provided. We
also train a simple baseline for comparison; the
baseline model sees the same training data as the
tagged model, but does not receive any signal
that would be highlighting the terms to retain.
Therefore, given input at run time, it must rely
on past exposure on the specific terms and their
(non-)translation to perform term retention.

We provide the mentioned signal in the form
of tags i.e. <REW> and </REW> tags (standing

’We do not, however, assume that we have this
information while training, since it would be expensive and
unviable to retrain such a model every time for a new setting
and/or new domain vocabulary. In this study, we work with
English-Hindi MT.

3Linguists sometimes make a difference between the
terms code-switching and code-mixing; in this paper, they are
used interchangeably.

Proceedings of the 18th International Conference on Natural Language Processing, pages 1-6
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)

Source sentence: You need to install these Python libraries.

Term list: Python, libraries

Input to the system: You need to install these <REW> Python </REW> <REW> libraries </REW>
Desired output: 3TTUehI 3 Python libraries @t TATUT AT T1fed

Figure 1: Example input to and desired output from the system

Dataset Total Sentences
sentences with CS
Train 250 700 123 274
Development 10 247 5064
Test seen 5000 5000
Test unseen 768 768
Test w/o CS 500 0

Table 1: Types of datasets. CS Sentences: sentences
with introduced code-switching. “Test seen”: sentences
with terminology that were all seen during the training,
“Test unseen”: sentences with terminology that were
never seen during the training as retained words. Test
w/o CS: sentences with no terminology constraints.

for “retained English word”) to indicate that
the enclosed term shall be retained during the
translation, see Figure 1. This approach can be
used in any type of transformer-based translation
system and therefore can be implemented with
little to no effort in current systems.

4 Synthetic Data Creation

We used HindEnCorp 0.5 (Bojar et al., 2014)
data set and we split it into multiple parts as
seen in Table 1. We adapt pre-existing English-
Hindi parallel data so that it manifests term
retention on the target while remaining coherent
and grammatical. We leverage the fact that our
parallel corpus already contains many instances
of simple transliteration equivalents, such as
names of people, places, organizations, etc. We
thus interpret the target sentence as “retaining”
the transliterated word, while being perfectly
grammatical.*

4.1 Identifying Transliterations

Given the parallel corpus, we need to identify
pairs of transliterated words in each English-Hindi

4 Although more sophisticated approaches to synthetic
code-switched data creation may be better suited for other
tasks, we find that this approach is sufficient for our needs.
This may be because term retention is in fact required to be
performed on similar words i.e. named entities or domain
terms that behave similarly to named entities.

sentence pair. We first find the word level
alignments® in source-target pairs, using GIZA++
(Och and Ney, 2003). Then for each aligned
word pair, we check for transliteration using a
normalized edit distance threshold.® We define our
normalized edit distance as:

edit_distance(s,t)
maz(length(s),length(t))

NED(s,t) =

calculated between the English word and
the Hindi word transliterated into Latin script.’
Eyeballing the resulting pairs, we see that the
alignment step along with this threshold results in
near perfect accuracy. This method gives us a total
0f' 269095 transliteration pairs in the whole corpus.

Once a transliteration pair is identified in the
training corpus, we simply replace the target
side Devanagari word with the Latin-script source
word, resulting in an instance of term retention.
The original sentence pair is no longer used in the
training of the tagged model.

5 Model

We used a transformer-based model (Vaswani
et al., 2017) with vocabulary size of 32000 tokens
and with hyperparameters as described in The
University of Edinburgh’s Neural MT Systems for
WMT17 (Sennrich et al., 2017) for both of our
models. We used MarianMT framework (Junczys-
Dowmunt et al., 2018) to train the models; we let
the model train until the BLEU score (Papineni
et al., 2002) did not improve on the development
set for 5 epochs. We then selected the model with
the highest BLEU score as the model used for later
experiments. The change of BLEU score on the

3The idea is that the target transliterated word must “come
from” or be aligned with the source word, assuming a correct
word alignment.

®We use a Python transliteration tool https://pypi.
org/project/indic-transliteration/

"The threshold was tuned over a small subset of the Xlit-
Crowd: Hindi-English Transliteration Corpus (Khapra et al.,
2014): using this corpus, we found the edit distance between
the English source words and the “true” transliterations which
were back-transliterated into Latin script. For the final
experiment, we used the threshold of 0.5.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-625F-0
https://pypi.org/project/indic-transliteration/
https://pypi.org/project/indic-transliteration/

—— Baseline

Tagged

— T T T T T T T T T T T T T T T
5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Figure 2: BLEU score on development set per epoch

Model | Seen | Unseen | Without CS
Baseline | 28.7 16.8 22.4
Tagged | 27.2 17.5 21.9

Table 2: BLEU score on test set

development set per epoch is in Figure 2. It can be
seen that the BLEU scores for both of the models
are comparable and they train for a similar number
of epochs.

6 Automatic Evaluation

There are two components of model performance:
* Retention of marked terminology
* Overall coherence and fluency

For the former, we calculate precision, recall,
and F1 over the gold retained set of words and the
set of retained terms in the output. Our evaluation
script compares the system output with the list
of terms that should be untranslated in the given
sentence. Precision is the ratio of term occurrences
in the system output that were anticipated in the
reference, out of all produced Latin terms. Recall
is the ratio of term occurrences produced by the
system out of all term occurrences anticipated by
the reference. For the latter, we use BLEU score.

The BLEU scores on test sets can be seen
in Table 2. The baseline model is slightly
better on the seen test set, while the tagged
approach outperforms the baseline model on the
unseen test set. On the “Without CS” test, the
baseline model still (incorrectly) produces English;
however, while the tagged model does not do this,

Model | Precision | Recall | Micro F1
Baseline 0.43 0.63 0.51
Tagged 0.88 0.88 0.88

Table 3: Retention results on seen test set

Model | Precision | Recall | Micro F1
Baseline 0.08 0.25 0.13
Tagged 0.51 0.85 0.64

Table 4: Retention results on unseen test set

it often produces different and sometimes incorrect
Hindi phrasing for these words as compared
to the reference, resulting in an overall lower
BLEU score. A possible explanation for this
observation is that the tagged model has to learn
to use the given signal at proper places which
can damage its performance. On the other
hand on the unseen dataset, the tagged model
receives explicit information to retain the term
and therefore outperforms the baseline model.
Results for the retention metric can be seen in
Table 3 and Table 4.

It can be seen that the tagged approach
outperforms the baseline model on both the
unseen and seen test set, demonstrating that it
indeed learns to obey the provided signal, instead
of simply relying on previous exposure as the
baseline does.?

7 Manual Evaluation

We also performed a manual evaluation to
complement the BLEU score. This evaluation was
solely for the purpose of judging the quality of
the final output regardless of whether the model
managed to retain the required words or not.

7.1 Design

We provide the annotators with the spoken form of
the candidate translation, rather than asking them
to read the script-mixed output. There are two
reasons for this: (1) we do not want the annotators
to be affected by seeing or not seeing Latin script,
(2) the spoken form is the more natural setting in
which code mixing occurs.

$Note that the drop in performance of the tagged model
in the unseen test F1 score indicates that it is not wholly
independent as yet of the terminology it has been exposed to.

Further, in order to ensure blind evaluation of
the Baseline vs. Tagged system, we needed to
control for the fact that the Tagged system has a
higher tendency to retain words in the Latin script.
Since the user may be unfairly biased one way or
the other when judging between sentences with
different numbers of code-switched words, we
decided to select the test sentences in a controlled
manner, depending on the number and nature of
Latin-spelled (i.e. English) words in the output.

The test set partitions are listed as columns in
Tables 5 and 6: “Same # of En words” is the
group of test sentences where the Baseline and
Tagged translated outputs have the same number
of English terms, thus controlling for bias for or
against a translation simply because it has more
English. In total, there were 5 such sentences each
scored 3 times, so we collected 15 judgements on
this partition. For instance in Table 5, we see
that the tagged model was selected as better by 7
judgements and in 4 cases, it tied with the baseline.
“Same set of En words” takes this a step further:
it is the group of sentences where both model
outputs have exactly the same English words in
them; of course, they may (and do) differ in the
rest of the sentence structure, Hindi wording, etc.
Note that selecting sentences with a comparable
number of terms English in them as we do results
in an inherent advantage for the baseline model:
since the baseline model can code-switch when
it chooses rather than according to an external
signal, it is more likely to choose convenient
situations with globally better translations. This
is the reason for the “Random” test set (the last
column in Tables 5 and 6); i.e. sentences picked
randomly, regardless the output of each system,
which are intended to judge the average quality
of the baseline and tagged against each other,
even though these judgments are vulnerable to the
biases discussed above.

In the manual evaluation, we gave 3 native
Hindi speakers, also fluent in English, the source
text and recordings of the translations. The goal of
the annotation was a three-way judgment: whether
the first translation was better, the second was
better, or both were equivalent in quality.

7.2 Results and Analysis

Our manual test set covers a total of only 26
sentences, split equally between outputs from the

4

Same Same Random || >
of En | set of En
words words
Baseline | 4 5 3 12
Tagged | 7 4 1 12
Equal 4 6 5 15
> | 15 15 |9 39
Table 5: Manual test judgments for seen test set.

Overall, the set contains 13 sentences from the seen
test set, leading to the total of 39 judgments over 3
annotators. For example, we had 3 sentences (and
therefore 9 total judgments) in the randomly selected
group of sentences (“Random”); of these 9 judgments, 4
preferred the baseline model, 1 the tagged model, and 5
judgments saw the baseline and tagged outputs as equal
in terms of overall quality.

Same Same Random || >
of En | set of En
words words
Baseline | 3 8 14
Tagged | 7 4 13
Equal 5 3 4 12
> 15 15 9 39

Table 6: Manual test judgments for unseen test set. This
test set again contains 13 sentences from the unseen
test set, so a total of 39 judgments over 3 annotators
is collected. The columns have the same meaning as in
Table 5.

seen and unseen test sets;” it is intended more
for giving a qualitative sense of the comparison.
Broadly, the evaluators considered the tagged
outputs roughly comparable to the baseline in
terms of coherence and quality, see Tables 5
and 6. Across both test sets, the Baseline
model outputs were considered better 33% of the
time (26 of 78 judgments), the Tagged model
outputs were considered better 32% of the time
(25 judgments), and the outputs were considered
roughly equivalent in quality in the remaining 35%
of the judgments.
We investigated the following questions:

* Do the models perform better on seen words
than on unseen words?

°This is because of the demanding procedure involving
sentence recordings.

In the manual evaluation, we observed
that the models dip in fluency around the
segments with introduced English words.
For example, there is a lack of syntactic
agreement, or the model loses the thread of
the sentence.

Tagged: *31TdYch packages ST SITYTI
(*Essential packages will begg removedsg)

In this example, we need the plural inflection
of the verb phrase “G<HT ST (will be
removed). We see these instances both in the
seen and unseen test sets; however, on the
whole, the models are able to keep track of the
source sentences a little better with the seen
test set.

* Why does tagged do better than baseline in
sentences where the same number of English
words was produced in the output?

The baseline model is worse at retaining
fluency around code-switched words,
especially in the unseen test set. While the
tagged model also shows this tendency, it
manages to translate the shorter instances
correctly. ~ With longer sentences, it is
performing equally bad, especially in the
unseen test set.

The “random” test set is intended to take a look at
the average outputs of the models, not controlled
for the number of English words in them. Here,
the models perform similarly, but users differ in
their preferences regarding the presence of English
words.'? Overall, the qualitative assessment yields
that the tagged model performs on par with the
baseline with respect to fluency, and of course
much better at the retention task.

8 Conclusion

The task of applying terminology constraints while
dealing with code-switched text seems especially
important in current multilingual educational and
other settings. We present a simple technique that
can adapt a vanilla transformer-based MT tool for
performing this task, by synthesizing training data
that exhibits term retention. We demonstrate that
our model performs well on unseen terminology,

0For example, in a sentence that only differs in the fact that
aword is in English in the first sentence and in the Hindi form
in the second sentence, annotators apply their preferences.

and that its general translation quality is not
damaged. Future research should consider using
code-switched parallel corpora, either for training
or fine-tuning, in order to teach the models the
various nuances of natural human code-mixing.

Acknowledgements

This project has received funding from the grants
H2020-1CT-2018-2-825303 (Bergamot) of the
European Union and 19-26934X (NEUREM3) of
the Czech Science Foundation. Computational
resources were supplied by the project “e-
Infrastruktura CZ” (e-INFRA CZ LM2018140)
supported by the Ministry of Education, Youth
and Sports of the Czech Republic and datasets
come from the Lindat Repository supported by
the Ministry of Education, Youth and Sports of
the Czech Republic, Project No. LM2018101
LINDAT/CLARIAH-CZ.

References

Ondfej Bojar, Vojtéch Diatka, Pavel Stranak, Ales
Tamchyna, and Daniel Zeman. 2014. HindEnCorp
0.5. LINDAT/CLARIAH-CZ digital library at
the Institute of Formal and Applied Linguistics
(UFAL), Faculty of Mathematics and Physics,
Charles University.

Rajen Chatterjee, Matteo Negri, Marco Turchi,
Marcello Federico, Lucia Specia, and Frédéric
Blain. 2017. Guiding neural machine translation
decoding with external knowledge. Association for
Computational Linguistics.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural
machine translation to apply terminology constraints.
arXiv preprint arXiv:1906.01105.

Eva Hasler, Adria De Gispert, Gonzalo Iglesias, and
Bill Byrne. 2018. Neural machine translation

decoding with terminology constraints. arXiv
preprint arXiv:1805.03750.
Chris Hokamp and Qun Liu. 2017. Lexically

constrained decoding for sequence generation using
grid beam search. CoRR, abs/1704.07138.

Josef Jon, Jodo Paulo Aires, Dusan Varis, and Ondrej
Bojar. 2021. End-to-end lexically constrained
machine translation for morphologically rich
languages. CoRR, abs/2106.12398.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast

http://hdl.handle.net/11858/00-097C-0000-0023-625F-0
http://hdl.handle.net/11858/00-097C-0000-0023-625F-0
http://arxiv.org/abs/1704.07138
http://arxiv.org/abs/1704.07138
http://arxiv.org/abs/1704.07138
http://arxiv.org/abs/2106.12398
http://arxiv.org/abs/2106.12398
http://arxiv.org/abs/2106.12398
http://www.aclweb.org/anthology/P18-4020

neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages
116-121, Melbourne, Australia. Association for
Computational Linguistics.

Mitesh M Khapra, Ananthakrishnan Ramanathan,
Anoop Kunchukuttan, Karthik Visweswariah, and
Pushpak Bhattacharyya. 2014. When transliteration
met crowdsourcing: An empirical study of
transliteration via crowdsourcing using efficient,
non-redundant and fair quality control. In LREC,
pages 196-202. Citeseer.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 311-318,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield,
Antonio Valerio Miceli Barone, and Philip Williams.
2017. The University of Edinburgh’s neural
MT systems for WMT17. In Proceedings of the
Second Conference on Machine Translation, pages
389-399, Copenhagen, Denmark. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

http://www.aclweb.org/anthology/P18-4020
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/W17-4739
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

