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Abstract

We train word embeddings for Kannada, a Dra-
vidian language spoken by the people of Kar-
nataka, a southern state in India. The word
embeddings are trained using the latest deep
learning language models, to successfully en-
code semantic properties of words. We release
our best models on HuggingFace, a popular
open source repository of language models to
be used for further Indic NLP research. We
evaluate our models on the downstream task
of text classification and small custom analogy
and similarity tasks. Our best model attains ac-
curacy on par with the current State of the Art
while being only a fraction of its size. We hope
that by publicly releasing our trained models,
we will help in accelerating research and eas-
ing the effort involved in training embeddings
for downstream tasks.

1 Introduction

Distributed representation is the foundation of NLP,
as advances in language modelling serve as a step-
ping stone for many NLP tasks. Popular domains
like text classification, text generation, translation,
sentiment analysis, NER etc can be advanced with
access to contextualized word embeddings. Rise
in quality of embeddings is synonymous with an
improvement in downstream NLP tasks.

India is a diverse and rapidly growing country.
With advances in technology, electronic devices are
making their way into the hands of every citizen
of the country, giving them the ability to access
information that was previously out of reach for
them. But this also presents another problem. India
has over 22 official languages and several thousand
more languages and dialects. It is of paramount
importance that we develop NLP tools that bridge
this gap and help India progress faster.

Indian languages are considered resource poor
and have very little monolingual corpora that is
publicly available for NLP tasks. Dravidian lan-

guages in particular are far behind Indo-Aryan lan-
guages. With access to such few resources, training
a language model is very challenging, as it is very
easy to overfit your model and lose its ability to
generalise. Many corpora are also domain specific,
making it difficult for the model to generalise con-
text.

In this paper, we experiment with the latest lan-
guage models on the Kannada language. Using
the monolingual corpora provided by indicNLP1

we have trained the models from scratch and fine-
tuned them. We evaluate these models on the news
dataset classification provided by indicNLP2. We
also perform some custom word similarity and anal-
ogy tests on the generated embeddings. We show
that lightweight transformer based models such as
RoBERTa (Liu et al., 2019) and ELECTRA(Clark
et al., 2020) outperform previously used main-
stream models. We release these models on the
popular transformers open source repository Hug-
gingFace3 where our fine tuned models, capable of
generating quality word embeddings will signifi-
cantly improve all Kannada language downstream
tasks.

2 Related Work

One of the earliest papers to perform embedding
generation on Kannada at scale was fastText by
Facebook (Bojanowski et al., 2016). They pro-
posed an improvised approach for the skip-gram
model, representing each word as a bag of char-
acter n-grams. This overcame the main drawback
in Word2Vec (Mikolov et al., 2013), where words
were considered as atomic units leading to subpar
performance on morphologically rich languages
such as Kannada. fastText’s embeddings are used
as a benchmark for comparison of results in several

1https://github.com/AI4Bharat/indicnlp_corpus
2https://github.com/AI4Bharat/indicnlp_corpus#indicnlp-

news-article-classification-dataset
3https://huggingface.co



Indic language model papers.
Anoop Kunchukuttan et al. (Kunchukuttan

et al., 2020) released the indicNLP corpus in 2020,
a monolingual corpora for 10 Indian languages
sourced from various domains and sites. Word em-
beddings trained on FastText using this corpora
were also released. A news classification dataset
to be used as a downstream evaluation task was
also released. Their embeddings were compared
against the original fastText embeddings and were
found to outperform the latter in several languages.

Gaurav Arora (Arora, 2020) released the Nat-
ural language Toolkit for Indic languages a few
months later, which also released embeddings for
13 Indic languages that outperformed indicNLP
and fastText. ULMFiT (Howard and Ruder, 2018)
and TransformerXL (Dai et al., 2019) were used
to train the embeddings and the data sourced from
Wikipedia was only a fraction of the indicNLP cor-
pora’s size. A 2 step augmentation technique was
used to improve the performance of their models.
Kumar Saurav et al. (Kumar et al., 2020) also re-
leased word embeddings for 14 Indian languages
in a single repository, although their results are not
competitive with Anoop Kunchukuttam or Gaurav
Arora. They trained their embeddings on several
transformer architectures such as BERT (Devlin
et al., 2018) and ELMo (Peters et al., 2018) and
tested them on several custom tasks.

3 Methodology

3.1 Dataset
Our pre-training data is sourced from the indic-
NLP monolingual corpora, a collection of 10 Indic
languages and the iNLTK monolingual corpora.
The indicNLP Kannada corpora has 14 million sen-
tences and 174 million tokens. The iNLTK4 cor-
pora has 26,000 sentences sourced from Wikipedia
articles. We use the news classification released by
indicNLP for the downstream task of text classifica-
tion. We also build small custom datasets for word
similarity and word analogy tests. To ensure fair
comparison for downstream tasks across all models,
we train all our models on the same corpora.

3.2 Preprocessing
The corpora was cleaned to remove any foreign to-
kens and fix formatting errors. Shuffling and dedu-
plication was applied after combining all the cor-
pora sources. An md5 hash was applied to dedupli-

4https://github.com/goru001/inltk

cate the corpora, leaving us with roughly 11 million
sentences after it was applied on the corpora. To
make initial training easier, any sentences greater
than 30 words or having english in more than 30%
of the sentence were removed.

3.3 Tokenization and Vocabulary
All our models use either SentencePiece (Kudo and
Richardson, 2018) or BertWordPiece for tokeniza-
tion and vocabulary generation. With the help of
Sentence-Piece API 5 tokens were generated by ex-
perimenting with the hyper parameters. Vocabulary
size ranged from 8,000-32,000 with incremental
steps of 4,000. BertWordPiece was trained to gener-
ate a vocabulary size of 40,000 with words having
a minimum frequency of 4.

Previous works claim that higher vocabulary
sizes correspond to a lower chance of Out Of Vo-
cabulary words occuring and this usually translates
to better performance in downstream tasks. But
without a morphologically motivated technique to
segment subwords, increasing the vocabulary size
might lead to an increased occurrence of different
inflections of the same word. Hence, we decide to
compare varying vocabulary sizes and their perfor-
mance.

3.4 Experimental Setup
We evaluate our models on the downstream task of
text classification using the indicNLP news classi-
fication dataset which has around 24,000 training
examples and 3,000 test examples with 3 labels. All
models were trained using a single 12GB NVIDIA
Tesla K80 GPU.

4 Models and Evaluation

4.1 Word2Vec
We start off with both the Word2Vec models to
set an initial benchmark. The tokenization was
done with SentencePiece with byte pair encoding
algorithm. The model architecture was provided
for by the gensim API6. The API also provides a
simple interface for tuning hyper-parameters.

The CBOW model gave us better results when
compared to the skip-gram model in the word simi-
larity test. We noticed that Word2Vec models with
lower vocabulary size had more meaningful words
in the similarity predictions, with lower vocabu-
lary models predicting synonyms of the input word

5https://github.com/google/sentencepiece
6https://radimrehurek.com/gensim



and higher vocabulary models predicting inflected
forms of the input word. Some of the similar words
in higher vocabulary size models had no meaning
by itself, which might probably indicate over to-
kenization, which might be good for predicting
unknown words but results in diminished quality
of the word embeddings. We hypothesize that this
might be due to the small size of the input corpus.

4.2 FastText

The fastText API7 was used to train our model.
The publicly released Kannada language model
has an approximate vocabulary size of 1.7 million.
With the API we pre-trained a fastText model from
scratch with both CBOW and skip-gram architec-
ture. The fastText API takes it’s input directly and
handles the tokenization. Due to very few hyper
parameters provided by the fastText API for tuning
the model, further experimentation was done with
the gensim API. With the gensim API, first the in-
put data was tokenized with SentencePiece. The
API provides hyper parameters for tokenization,
vocabulary frequency and the architecture which
helped us fine tune our model for better accuracy
in the news classification dataset. The API’s super-
vised module was used to perform text classifica-
tion on the news dataset.

4.3 RoBERTa

Since base BERT models require a large corpus
and access to heavy computation resources, we
trained embeddings on a RoBERTa model with dis-
tilBERT’s (Sanh et al., 2019) configuration using
the HuggingFace API. Byte Pair Encoding (Sen-
nrich et al., 2015) was used to tokenize the corpus
after which the tokenizer weights were transferred
to the roBERTa tokenizer. The vocabulary size was
set to 32,000 and the model’s configuration was
set to 6 hidden layers, 12 attention heads and 768
embedding size. The size of the model was 68
M parameters. After the pre-training phase 2 lin-
ear layers were added to fine tune the model on
the classification task. As RoBERTa performs in-
memory tokenization, due to resource constraints
we were unable to train the model on the entire
corpora that was used for Word2Vec and fastText.
The model was trained for 1 epoch. Hyper param-
eters such as batch size, hidden layers, number of
attention layers and the embedding size were tuned
to accommodate the decreased model size.

7https://github.com/facebookresearch/fastText

4.4 ELECTRA
We also trained embeddings using one of Google
research’s newer models, ELECTRA. It is a BERT
model that performs Masked Language Modelling
using a discriminator instead of a generator. The
model is trained to corrupt words with high proba-
bility in place of the MASK and the discriminator
tries to identify these corrupt words. Since ELEC-
TRA generates tf.pretrain records of the in-
put corpora and stores them offline, it is not limited
by memory and is capable of training on the entire
corpora. The model uses the BertWordPiece tok-
enizer. The vocabulary size was set to 40,000. We
used the ’small’ version of the model which has
14M parameters and trained it for 200,000 steps.
Maximum sequence length was set to 512. After
pre-training the model, it was fine tuned and eval-
uated on a text classification task using the ktrain
library on the Kannada news articles dataset. The
pretrained model has been uploaded to Hugging-
Face8 for future use.

5 Results

Our models are compared against Facebook’s fast-
Text model trained on Wikipedia and Commmon-
Crawl, indicNLP and iNLTK on a text classifica-
tion task using the indicNLP News Classification
dataset. The results are documented in Table 1.

We found that our Word2Vec and fastText mod-
els trained with a vocabulary size of 8,000 had more
meaningful similar word predictions compared to
the same models with a 32,000 vocabulary size.
fastText outperformed Word2Vec models and our
fastText model’s accuracy was marginally lower
than the original fastText model. Figure 1 shows
some notable results from our experiments on word
similarity. Word2Vec results were observed to be
heavily influenced by the domain of the dataset and
contained pronouns in word similarity results as
it considers word as the atomic token value. In
comparison, fastText produces significantly better
results at it considers the n-gram characters’ infor-
mation as an atomic unit.

We can also observe that the lower vocabulary
models produce words that are synonyms of the
input word while the large vocabulary models pro-
duce inflections of the same word. The official
fastText model had very different words at the mor-
pheme level but these words were distinctly similar
to the actual word.

8https://huggingface.co/DarkWolf/kn-electra-small



  
  
  
  
  

W2V   -   Word2Vec   
FT   -   FastText   

Model    Word   Similarity     

   �ಜ   (king)    ಮ�ಷ�    (man)   

W2V   -   
cbow   

�ಜ�ದ   
Rājanāda   
‘The   king’   

ಪ� ��   
Pravādi   
‘Prophet’   

997ರ��    
997Ralli   
‘In   997’   

ಫ��ಯ�   
Pharisāyanu   
‘The   Pharisee’   

�ತ� �   
Putranē   
‘Son’   

ಮ�ಷ� ನ��    
Manuṣyanannu   
‘The   man’   

W2V   -   sg    ��ೕದ   
Dāvīda   
‘David’   

���ೕನ   
Solomōna   
‘Solomon’   

ಅಮಚ� �   
Amājiyā   
‘Amaziah’   

����ೕ�ವ�   
Bidduhōguvadu   
‘To   fall   off’   

ಮ�ಷ� ನ   
Manuṣyana   
‘Man's’   

ಇ�� �ಲ��   
Isrāyēlanige   
‘For   the   Israelites’   

FT   -   inltk    �ಜನ   
Rājana   
‘King's’   

��   
Rāj   
‘Raj’   

�ಜ�ೕಯ   
Rājakīya   
‘Politics’   

ಮ�ಷ� ರ   
Manuṣyara   
‘Human   beings’   

ಭಗ�ತ   
Bhagavanta   
‘Lord’   

�ವ�    
Devva   
‘Devil’   

FT   -   8K    ಅರಸ   
Arasa   
‘King’   

ಅರಸ�ದ   
Arasanāda   
‘The   king’   

��ರ   
Kumāra   
‘Son’   

��ಷ�   
Puruṣanu   
‘The   man’   

��ಷ   
Puruṣa   
‘Male’   

ಮ�ಷ� �ಂದ   
Manuṣyaninda   
‘By   man’   

FT   -   16K    �ಮ   
Rāma   
‘Rama’   

ಪ� ��   
Pravādi   
‘Prophet’   

ಅರಸ   
Arasa   
‘King’   

��ರ�   
Kumāranu   
‘Son’   

�� �ೕ�   
Strīge   
‘Female’   

��ಗ   
Huḍuga  
‘Boy’   

FT   -   32K    �ಥ   
Nātha   
‘Nath’   

�ಟ   
Nāṭa   
‘Nata’   

�ಜನ   
Rājana   
‘King's’   

���ಯ   
Huḍugiya   
‘Girl’   

ಮ�ಷ� �ಂದ   
Manuṣyaninda   
‘By   man’   

ಫ��ಯ�   
Pharisāyanu   
‘The   Pharisee’   

FT   -   
original   

�ಂಘನ�   
Siṅghananu   
‘Lioness’   

��   
Rāṇi   
‘Queen’   

ಎ�ತ�  
Enutali   
‘Chattering’   

ಪ� ���   
Pravādiyū   
‘Prophetic’   

�ತ� �   
Putranē   
‘Son’   

ಮ�ಯವ�   
Maneyavarē   
‘Housekeeper’   

FT   -   sg   �ಜ�   
Rājanu   
‘The   king’   

�ಜನ   
Rājana   
‘King's’   

��ೕ   
Rājī’   
‘Rajee’   

����ೕ�ವ�   
Bidduhōguvadu   
‘To   fall   off’   

ಮ�ಷ� ��   
Manuṣyanige   
‘For   the   man’   

ಇವ�   
Ivanu   
‘He’   

FT   -   cbow    �ಜನ   
Rājana   
‘King's’   

�ಜ�ದ   
Rājanāda   
‘The   king’   

�ಜ�ಭವದ   
Rājavaibhavada   
‘Of   royalty’   

ಮ�ಷ� ನ   
Manuṣyana   
‘Man's’   

�ಳ�ಂದ   
Roḷaginda   
‘From   within’   

ಮ�ಷ� �ಂದ   
Manuṣyaninda   
‘By   man’   

Figure 1: Word Similarity. W2V - Word2Vec ; FT - fastText ; cbow - continuous bag of words ; sg- skip-gram

The RoBERTa model, despite being trained for
only 1 epoch and on only a subset of the corpora,
outperforms Word2Vec and fastText in text clas-
sification, also managing to beat indicNLP on the
same task with a classification accuracy of 97.37%.

Our ELECTRA model is built using the ’small’
version with 14M parameters and was fine tuned
on the text classification task after pre-training for
200,000 steps. It obtained a classification accuracy
of 98.53%. This accuracy is only marginally lower
than iNLTK’s accuracy on the same task, despite
having a fraction of the parameters.

6 Future Work

Future work will involve training ELECTRA mod-
els on all Indic languages. ELECTRA has proven
to be a competitive and efficient choice to develop
language models for Indic languages by achieving
accuracy on par with much larger and compute in-
tensive BERT models. BERT based models have
proved to be superior to the previously utilised
mainstream models like Word2Vec and FastText.
With more training and fine tuning, lightweight
BERT models might even be able to outperform
their mainstream counterparts in low resource set-

Model Name Vocab Size Accuracy
fastText WC 1.7M 96.2%
fastText_32 32K 94.2%
fastText_14 14K 94.2%
fastText _8 8K 94.3%
indicNLP - 97.2%
RoBERTa 32K 97.37%
ELECTRA 40K 98.53%

iNLTK 25K 98.87%

Table 1: Text classification accuracy. The models in
italics are our models while the others are popular Kan-
nada language models for comparison

tings. We believe that the vocabulary size dilemma
can be overcome by using a linguistically motivated
subword segmentation technique like Morfessor9.
This will help us identify frequently occurring suf-
fixes and eliminate the occurrence of inflections in
the vocabulary. We also intend to release RoBERTa
and ELECTRA pretrained models on HuggingFace
for Kannada and other Indic languages to further
research on distributed representation.

9https://github.com/aalto-speech/morfessor
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