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Abstract

An important degree of accessibility, novelty,
and ease of use is added to smart kitchen de-
vices with the integration of multimodal in-
teractions. We present the design and proto-
type implementation for one such interaction:
guided cooking with a smart food processor,
utilizing both voice and touch interface. The
prototype’s design is based on user research.
A new speech corpus consisting of 2,793 user
queries related to the guided cooking scenario
was created. This annotated data set was used
to train and test the neural-network-based natu-
ral language understanding (NLU) component.
Our evaluation of this new in-domain NLU
data set resulted in an intent detection accu-
racy of 97% with high reliability when tested.
Our data and prototype (VoiceCookingAssis-
tant, 2021) are open-sourced to enable further
research in audio-visual interaction within the
smart kitchen context.

1 Introduction

The importance of cooking in daily life makes the
kitchen a natural focus for emerging technologies,
as shown by Khot and Mueller in their analysis of
human-food interaction (Khot and Mueller, 2019).
Smart kitchen gadgets are part of this growing mar-
ket (Research Private Ltd and Markets, 2020), in-
cluding the all-in-one food processor, a countertop
device which combines the expected blending util-
ity with additional functionalities, such as weighing
and cooking (Fries et al., 2018). This paper pro-
poses a multimodal guided cooking experience for
such a device, incorporating voice input and output,
and touch interface.

The kitchen is a complex environment, and cer-
tain modes of interaction may be unavailable to a
chef - for example, if their hands are oily, a touch-
screen will be difficult to use. Offering multiple
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modes of interaction allows the user to interact with
the device via the modality most natural to them
in a context. Essential to natural interaction with
any voice assistant is the Natural Language Under-
standing (NLU) component of the system, which
greatly depends on both the quality of the model
used and the amount of training data for the under-
lying domain. Although speech corpora for smart
home and kitchen devices exist, to the best of our
knowledge there is currently no public corpus with
annotated voice commands for step-by-step guided
cooking.

Our contributions are the design and implemen-
tation of a prototype for multimodal guided cook-
ing with an all-in-one food processor. Moreover,
we built an English-language NLU text corpus
annotated with 39 intents and 19 entities for the
guided cooking domain, and evaluated the quantity
of training data. The prototype and data set are
open source (VoiceCookingAssistant, 2021), and
can be extended for further research in the area of
smart cooking voice assistants.

2 Related Work

Existing guided recipe solutions require many sen-
sors and ’smart’ accessories to monitor a chef’s
progress. For example, the Smart Kitchen requires
accessories such as radio frequency identification
(RFID) tags to identify ingredients (Hashimoto
et al., 2008), and Shadow Cooking requires a depth
camera, projector, and digital scale (Sato et al.,
2014). Both KogniChef (Neumann et al., 2017)
and Kochbot (Alexandersson et al., 2015) make
use of an entire smart kitchen system to monitor the
user’s actions and communicate recipe instructions,
although the Kochbot may also be used alone as
a mobile app providing recipe guidance via voice
and screen (Schäfer et al., 2013). The research of
Bouchard et. al (Bouchard et al., 2020) focuses



on the elderly and cognitively impaired, and their
safety in the kitchen. They propose and prototype
a smart range that monitors and guides cooking via
a touch interface, but only monitors the stove, with
limited recipes. These solutions and others suc-
cessfully provide a multimodal approach to recipe
guidance, and can also provide support for users
with unique needs.

Blasco et al. (Blasco et al., 2014) discuss the im-
portance of a voice interface in their smart kitchen
proposal, which focuses on Assisted Living for the
elderly and incorporates multiple kitchen and home
appliances. They emphasize that voice commands
are not only a natural interaction, but they also pro-
vide accessibility for users with visual or cognitive
impairments. Although their research focuses on
nutritional guidance, Angara et. al (Angara et al.,
2017) outline another important benefit for con-
versational interaction in the kitchen: users prefer
voice interaction when multi-tasking, and cooking
is a complex and hands-on activity.

Our approach differs in that, for the majority
of recipes, no other devices are needed to prepare
or monitor a dish. Recipe guidance and cooking
implements are contained in the same product, and
the user must only interact with one device. It
is also significant that, as recipe guidance is both
visual and auditory, the chef does not need to look
at the visual interface while cooking, and can focus
on the meal being prepared.

3 Behind the Prototype and NLU Corpus

A detailed interaction flow (Section 3.1) supported
by user interviews (Section 3.2) provided the basis
for the prototype. The speech corpus (Section 3.3)
was developed after the design & interaction flow
were established. Section 3.4 briefly discusses the
architecture and implementation of our prototype.

3.1 Interaction Flow for Guided Cooking

We began by evaluating guided cooking experi-
ences, charting the potential interactions between
the user and the system in an interaction flow. Ex-
amples of guided cooking experiences - such as
instructional videos, product reviews, and recipe
tutorials - were analyzed, from which we created
an adaptive recipe framework, similar to that of
Hashimoto et al. (Hashimoto et al., 2014). We
found that recipe steps consist of the same or simi-
lar sub-steps, for which we created accompanying
voice/touch interactions. A simplified example of

Figure 1: Excerpt from detailed interaction flowchart.

a recipe step may be seen in Figure 1. The dia-
gram is based on Bollen’s understanding of flow
charts (Bollen, 2010).

This flow provides the basis of the prototype
logic, affordances for the visual interface, and pro-
vides a general framework to adapt recipes for use
with the food processor.

3.2 Visual & Voice Design based on User
Studies

Two studies were conducted with potential users,
which formed the basis of the NLU corpus and pro-
vided requirements for the visual design. Both qual-
itative and quantitative methods were employed,
and the studies focused on identifying user needs
and potential device interactions. The first study
was a usability test which simulated a guided cook-
ing scenario. While a participant used an all-in-one
food processor to cook a recipe, the researcher dic-
tated the recipe steps. The second study was a
semi-structured interview, without using the food
processor, in which 12 participants imagined a spe-
cific guided cooking scenario and were asked how
they would give commands. For example, how
would the participant increase the number of peo-
ple a recipe would feed if they were preparing for
a dinner party later that day?

Using affinity diagramming (Lucero, 2015) to
analyze the interviews provided design insights,
which informed the user expectations for the visual
interface and user experience of the device. Figure
2 displays a sample of the visual interface, showing
the overview of a selected recipe.

3.3 Generating the NLU Data
In order for our prototype to understand the user’s
intentions, we had to create a sufficiently large
basis of annotated user queries (Allen, 1988). The
language of the queries should sound as natural as



Figure 2: Visual Screen-Design: Recipe Overview.

possible. Therefore, we noted the specific language
used by the participants from the second study in
Section 3.2. The resulting 93 sample commands
served as a starting point for several iterations to
generate more commands and define the intents
and entities.

Another condition of the definition of our
domain-specific intents and entities was to define
them in such a way that every interaction possible
via the visual (or touch) interface can also be re-
alized via speech. A detailed study of all of our
prototype screens, like the one in Figure 2, and
the interaction flow (see Figure 1) allowed us to
fine-tune the definition of intents and entities. Fol-
lowing this strategy, we generated a set of 2803
text-based user queries with an in-domain vocab-
ulary size of 436 and 15231 running words. Each
sentence of this query base, denoted by C, carries
an intent label, but must not necessarily be labeled
with an entity.

The resulting in-domain corpus C enables a user
to navigate through step-by-step recipes, search
for specific recipes, and add recipes to favourites.
Also, it is possible to set device parameters like
temperature, process duration, or blender speed.
Overall there are 39 intents and 19 entities (Voice-
CookingAssistant, 2021).

3.4 Architecture of the Prototype
As depicted in Figure 3, the prototype architecture
is comprised of three components:

1. The State Machine Frontend (SMF) con-
trols the user interface using high-fidelity
graphics and a voice & touch interaction layer.
It streams audio continuously to the

2. Middleware Backend (MB) which connects
the SMF with the

3. Logical Backend (LB) using the MQTT pro-
tocol (Light, 2017). The LB processes the
voice signal and provides the classified user in-
tent in a JSON structure. (Pezoa et al., 2016).

Any component can be executed locally on the po-
tential device without an internet connection as
motivated by (Stemmer et al., 2017), or with par-
tial internet access as proposed by (Georges et al.,
2014). The heart of the LB uses Rhasspy (Hansen,
2021), an open-source collection of offline voice
assistant services. It contains all subsystems neces-
sary to processing a spoken query uttered by a user
in a guided cooking scenario.

The prototype waits for a query that starts with
a wake word. As soon as the wake word is recog-
nized, the query is transcribed using the automatic
speech recognition (ASR) system Kaldi (Povey
et al., 2011). The recognized text is then forwarded
to Rhasspy’s intent recognition system in order to
determine the user’s intention. Here, the devel-
oper can choose the state-of-the-art NLU capabili-
ties (Bocklisch et al., 2017).

4 Evaluation of the NLU Corpus

Rasa (Rasa Technologies, 2021) was used to evalu-
ate our NLU dataset C, as it can be selected in the
Rhasspy pipeline. In addition, Rasa allowed us to
easily use the Dual Intent and Entity Transformer
(DIET) architecture, a powerful state-of-the-art sys-
tem for joint intent classification and entity recog-
nition (Bunk et al., 2020).

4.1 First Analysis of the Speech Corpus

From the original NLU corpus C from Section 3.3,
we carefully selected 839 sentences as our global
test data set, denoted by T , with 4507 running
words. The remaining 1964 queries formed our
training data set, denoted by D := C \ T , with
a total of 10724 running words. We repeatedly
trained1 the DIET model using the training data D
and tested each model using the test set T (n = 10).
The resulting averaged evaluation metrics (see Ta-
ble 1) promise a good NLU performance. However,
it is more interesting to know if we have collected
enough user queries. The absolute numbers above
do not allow us to make a statement about this.

1The configuration file which we used to specify Rasa’s
NLU training pipeline can be found on our GitHub repository.



Figure 3: Architecture diagram for the high fidelity prototype. Touch input is processed by the same pipeline.

Table 1: Evaluating using 1964 user queries for training
& 839 for testing, respectively.

Recognition Precision Recall f1-score

Intent 0,975 0,973 0,971
Entity 0,948 0,958 0,944

Figure 4: Evaluation using different amounts of train-
ing data D.

4.2 Amount of Training Data vs. Intent
Recognition Accuracy

We addressed this problem by running 200 ex-
periments with different numbers of user queries
Dpi in each training phase. The process of suc-
cessive enrichment of training data was simulated
by starting with one-tenth of the original training
data, denoted by D1/10, and repeatedly sampling
about 200 new training examples until we collected
all queries D. This process yielded ten reduced
training data sets Dp1 ⊂ . . . ⊂ Dp10 = D, where
pi = i/10, i = 1, . . . , 10, denotes the ratio of the
original amount of training data.

We simulated the above collection process 20
times, each time starting with a different randomly
sampled set D1/10 resulting in different reduced
training sets in each iteration. We used the same
training parameters for the DIET models and the
same test queries T as in Section 4.1. Evaluation
started with ratio p1 = 1/10 of the available train-
ing data and ended with the complete training data

D. Figure 4 shows the intent accuracy evaluation
in more detail. When using 10% of the training
data, the accuracy varied between 47% and 62%
depending on the query selection. This means one
may be lucky getting suitable queries, but a small
number of user queries to train a NLU model is not
reliable. The more training data is used, the higher
the accuracy with decreasing dispersion.

5 Discussion and Future Work

This prototype is still a work in progress and was
developed to test the recipe guidance, therefore it
is not yet integrated into a device. The dataset is
generic to multimodal assistants in the kitchen con-
text, and may provide a basis for further research.
To prove that the approach is generic to the kitchen
context, similar work with emphasis on representa-
tive studies with larger data sets is needed. At the
time of writing this paper, we recorded a subset of
the NLU corpus in an anechoic chamber together
with kitchen and device noises. The recordings
will be published to enable academic and industrial
research in this challenging speech domain.

6 Conclusion

The need for creating audio-visual interfaces is
growing with the increasing availability of voice as-
sistants in the home environment. Any new device
is expected to provide a natural way of interaction.
This short paper proposes a novel guided cooking
experience, consisting of an audio-visual interface
for a multi-functional food processor, in addition
to an accompanying prototype with limited func-
tionality.

Moreover, we built a speech corpus based on the
proposed prototype design and user studies. Both
the prototype and NLU dataset are freely acces-
sible (VoiceCookingAssistant, 2021). This work
provides a starting point for further research in the
area of Natural and Spoken Language Understand-
ing in the smart cooking domain.
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