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Abstract

Training on graphemes alone without
phonemes simplifies the speech-to-text
pipeline. However, models respond differ-
ently to training on graphemes of different
writing systems. We investigate the impact
of differences between Latin and Tifinagh
orthographies on automatic speech recog-
nition quality on a Kabyle Berber speech
corpus. We train on a corpus represented
in a Latin orthography marked for vowels
and gemination and subsequently translit-
erate model output to a consonantal Ti-
finagh orthography not marked for these
features, which results in 10% absolute im-
provement in word error rate over a model
trained on the unmarked orthography. We
find that this performance gain is primarily
due to a reduced error rate for graphemes
marked for vocalic and voiced consonantal
phonemes. Our results suggest that speech-
to-text corpora for languages with alterna-
tive defective orthographies may lead to
better model quality by being fully marked
for vowels and gemination.1

1 Introduction
Graphemic modeling units and their corre-
spondence with the spoken word can vary be-
tween different language communities (Turki
et al., 2016), and even a single language com-
munity may have multiple orthographic con-
ventions for application in different contexts
(Zitouni, 2014) (diglossia). Minority languages
in particular have often undergone less stan-
dardization (Jaffe, 2000), contributing to a
greater tendency to be written in multiple or-
thographies. Improving speech technologies to
support minority and ‘low-resource’ languages
and orthographies is crucial to ensuring their
vitality and their users’ access to information

1A repository of our work can be found at
https://github.com/berbertranslit/berbertranslit

in the digital era (Cooper, 2019). Poor qual-
ity of low-resource language systems can com-
pel users to interact with ASR systems in lan-
guages of which they are non-native, diminish-
ing use of their native language. Furthermore,
high error rates for a low-resource language
ASR systems disadvantage monolingual speak-
ers of the low-resource language that have a
limited ability to switch to systems in more
prevalent languages with better recognition
quality.

Modern speech-to-text (S2T) models are
trained on audio data paired with sequences of
modeling units (Davel et al., 2015), which may
be graphemes, phonemes, or other represen-
tations (Belinkov et al., 2019) that represent
the linguistic constituents. Training models
on phonemes constitutes a general paradigm in
the creation of S2T systems (Yu et al., 2020a)
especially in the context of low-resource lan-
guages (Besacier et al., 2014). Training on
phonemes can be advantageous for decoding
out-of-vocabulary words or words from an ex-
ternal language (Hu et al., 2019), but manual
annotation of speech data can be prohibitively
expensive for low-resource languages (Cooper,
2019).

ASR pipelines often include a component to
automatically generate phoneme-based train-
ing data through grapheme to phoneme (G2P)
conversions (Kubo and Bacchiani, 2020; Chen
et al., 2019) by training supervised mod-
els (Rao et al., 2015; Jyothi and Hasegawa-
Johnson, 2017; Arora et al., 2020) or con-
structing rule-based systems (Abbas and Asif,
2020a). Recently, there is a trend towards
G2P conversion with minimal intervention
and preparation to streamline the end-to-end
learning process. Several systems have sought
to streamline the G2P process using self-
training (Hasegawa-Johnson et al., 2019), en-



sembles of varying degrees of supervision (Yu
et al., 2020b), and leveraging open dictionaries
of higher-resource languages (Deri and Knight,
2016). For low-resource languages, training
S2T systems with graphemes alone obviates
the G2P step in the S2T pipeline and the need
for language-specific expert annotations (Le
et al., 2019). However, S2T models respond
differently to training on graphemes of differ-
ent writing systems.

In this paper, we the study the impact of
graphemic vowel inclusion, gemination mark-
ing, and elision on S2T performance for
Kabyle, a Berber language of northern Alge-
ria. We chose to experiment with this lan-
guage to augment the discussion surround-
ing orthographic choice on S2T quality that
has been conducted primarily on Semitic lan-
guages that are comparatively more resourced,
such as Arabic. While several previous stud-
ies (Alhanai, 2014; Alshayeji et al., 2019; Al-
Anzi and AbuZeina, 2017) have demonstrated
the effect of training and decoding using de-
fective and non-defective orthographies sepa-
rately, our study is the first to compare a
neural speech model’s performance between a)
training and decoding in a defective orthog-
raphy, and b) training on a non-defective or-
thography and decoding into its defective rep-
resentation. Our study is also the first to
analyze the nature of phonemic errors made
by neural ASR models trained on a corpus in
a defective and non-defective orthography to
understand any systematic difference of types
of errors made by models trained on these or-
thographies. The results demonstrate the im-
portance of including vocalic graphemic inputs
for improved S2T recognition of vowels and
voiced consonants. To our knowledge, this re-
sult represents the first S2T system trained
on a Tifinagh-encoded corpus of a Berber lan-
guage.

2 Related Work

The investigation of orthographic choices on
S2T system performance parallels the research
on human language comprehension of writ-
ten text. A significant body of research has
sought to uncover how different G2P map-
pings across writing systems may predict read-
ing level achievement and interactions with

dyslexia (Daniels and Share, 2018; Rafat et al.,
2019). For example, Law et al. (2018) assess
the reading abilities of children diagnosed with
dyslexia when taught a novel orthography con-
sisting of new G2P mappings. Maroun et al.
(2020) study the effect of diacritization and
non-diacritization of dyslexic and non-dyslexic
readers’ processing of the Arabic script and
found spelling knowledge of study participants
to be the most significant predictor of process-
ing speed.

S2T learning solely with graphemes has a
long history (Eyben et al., 2009). More re-
cently, Wang et al. (2018) report that the
phonemic-graphemic performance gap closes
when model architecture and hyperparame-
ters are attuned to the specific data input.
Rao and Sak (2017) found improved perfor-
mance of graphemically trained models in
multi-accented corpora and in trials of in-
creased input data scale. Other work has
tested derivatives of graphemes, such as bytes
(Li et al., 2019), wordpieces (Rao and Sak,
2017), and context-dependent graphemes (i.e.
chenones) (Le et al., 2019; Wang et al., 2020).
Wang et al. (2020) achieved state-of-the-art
results on English data with graphemically-
derived modeling units for English.

Imputation of diacritics to augment defec-
tive model inputs has been, and continues
to be, an active area of research (Schone,
2006; Ananthakrishnan et al., 2005; Alqahtani
and Diab, 2019; Alqahtani et al., 2019; Dar-
wish et al., 2020). Diacritic imputation sys-
tems are designed to help computational mod-
els resolve heterophonic homographs, or con-
gruent graphemic sequences that have multi-
ple phonemic interpretations, in orthographies
that do not mark certain features. Sequences
of this type are prevalent in consonantal writ-
ing systems, such as that used for Arabic,
in which roughly one-third of tokens may be
pronounced differently when not diacritized
(Maroun and Hanley, 2017).

There has been work investigating diacriti-
zation’s effect on speech modeling in languages
that are written in defective orthographies,
or those not marked for certain phonemes.
Afify et al. (2005) used HMMs to demonstrate
that training on voweled graphemes could in-
crease performance over training on unvow-



elled graphemes on Arabic broadcast tran-
scripts, even when decoding into unvowelled
text. However, to the authors’ knowledge, this
has not been demonstrated in modern neu-
ral speech models. However, more recently,
Alhanai (2014) showed that training neural
acoustic models and decoding into voweled
graphemes generally improved WER over un-
vowelled graphemes. Alsharhan and Ramsay
(2019) pre-annotate training transcripts with
phonetic information deduced from graphemic
context with rules to improve system per-
formance. Alshayeji et al. (2019) and Al-
Anzi and AbuZeina (2017) compare diacritized
and non-diacritized input with various S2T
model architectures and hyperparameters and
observe higher WER for diacritized trials,
though they do not train on diacritized data
and decode on non-diacritized data.

Augmenting inputs via transliteration has
been shown to improve S2T systems or ma-
chine translation performance. Emond et al.
(2018) transliterate model output as a post-
process to improve the recognition of code-
switched speech. Le and Sadat (2018) and
Cho et al. (2020) model the G2P task as a
neural sequence-to-sequence model and record
improvements in named entity recognition
and code-switched speech for Vietnamese and
mixed Korean-Chinese scripts, respectively.
While these studies use neural G2P models,
rule-based systems are commonly developed
for under-resourced languages (Ahmadi, 2019;
Abbas and Asif, 2020b).

To date, there are limited efforts that ap-
ply neural speech models to Berber languages.
OCR techniques have been applied to Tifi-
nagh recently (Sadouk et al., 2017; Benaddy
et al., 2019), and Lyes et al. (2019) produced
a pronunciation dictionary for speech model-
ing of phonemes. However, to the best of our
knowledge, the ASR research community has
not documented the training of Berber S2T
models aside from those produced from the
CommonVoice initiative (Ardila et al., 2019)
trained with a Latin-script corpus, although
Zealouk et al. (2020) do describe a speech
recognition system for Amazigh of Morocco.

3 The Kabyle Language and Berber
Writing Systems

Kabyle is a Berber language spoken in north-
ern Algeria that has historically been written
in Latin, Arabic, and Tifinagh scripts. Con-
temporary Kabyle is most widely written in
a Latin orthography popularized by the lin-
guist Mouloud Mammeri in a 1976 grammar
of the language, though the Arabic and Tifi-
nagh scripts are still promoted among certain
groups within Algeria society (Souag, 2019).
Souag (2019) contends that the Latin script
predominates over the others in modern usage.

The alphabetic Neo-Tifinagh orthograpies
came into use after language planning initia-
tives for the Berber languages in the mid-
twentieth century spearheaded by organiza-
tions such as Morocco’s IRCAM (Amazigh),
the Nigerien APT (Tuareg) (Blanco, 2014),
and the Académie berbère (Kabyle) (Souag,
2019). The traditional, consonantal Tifinagh
orthographies are not commonly used to write
Kabyle. However, we transliterate Kabyle into
a consonantal orthography to expand the in-
complete literature on decoding into defective
orthographies, which has primarily focused on
Semitic languages. To our knowledge, no prior
study has trained or decoded a speech model
for a Berber language using a Tifinagh orthog-
raphy.

We outline the fundamental differences be-
tween the Latin Kabyle orthography and the
consonantal Tifinagh orthography: the first is
that the Latin marks for gemination via di-
graphs, unlike the traditional Tifinagh. Some
consonantal digraphs are spirantized with re-
spect to their singleton counterparts (e.g. ‘tt’
from ‘t’). In the Latin orthography, these di-
graphs are phonemically ”tense” and correlate
with increased pronunciation length and reg-
ister a fortis-lenis contrast, including devoic-
ing. They are phonemically distinct from their
singleton counterparts and can form minimal
pairs (Elias, 2020).

The second fundamental difference is of
vowel denotation. Although vowels are writ-
ten in all contexts in Neo-Tifinagh orthogra-
phies, they are not marked save for word-final
positions in the traditional Tifinagh orthogra-
phies (Elghamis, 2011; Savage, 2008). From
the set of Tifinagh characters that may repre-



sent vowels, only ‘ⴰ’ exclusively represents non-
glide vowels (for ‘a’, ‘ə’2), while ‘ⵓ’ (‘u’) and
‘ⵉ’ (‘i’) also represent semi-vowels (‘w’ and ‘j’,
respectively). These latter two graphemes are
analogous to the matres lectionis of Semitic
language scripts (Posegay, 2020).

A final difference is that certain Tifinagh or-
thographies make use of ligatures that elide
certain combinations of adjacent graphemes.
The number of attested ligatures across the
many varieties of traditional Tifinagh is vast
(Savage, 2008) and most are not supported by
Unicode3. We test the effect of ligatures by en-
coding those used in the Ahaggar orthography
Elghamis (2011) as distinct characters in trial
(1c) described in Section 5.

4 Approach

4.1 Mozilla CommonVoice
We use the original CommonVoice Kabyle cor-
pus for all experiments4. The audio-transcript
pairs from Mozilla’s CommonVoice crowd-
sourced initiative (Ardila et al., 2019), which
has collected data for over 54 languages at
the time of writing. All corpora are released
with train/dev/test subsets, and a unique
speaker may appear in only a single set among
each split. Most utterances are derived from
Wikipedia, but some have been added by an-
notators through the language community’s
Pontoon page5. We removed special symbols
and normalized Unicode characters of similar
graphical appearance to ensure that characters
intended to represent a single grapheme were
treated as such6.

4.2 Mozilla DeepSpeech
For S2T model training, we use Mozilla’s Deep-
Speech pipeline, which is based on the Deep-
Speech framework (Hannun et al., 2014) and
is maintained by a large community. After
parameter tuning we found that the default
hyperparameters worked well. For all exper-
iments, we used models of 1024 hidden units

2We do not find attestations of ‘ⴻ’ in the traditional
Tifinagh orthographies described in Elghamis (2011),
so we transliterate word-final ‘e’ (primarily in loan-
words) as ‘ⴰ’

3https://www.unicode.org/charts/PDF/U2D30.pdf
4Accessed April 2020, 4th ed.
5 https://pontoon.mozilla.org/projects/common-voice/
6E.g., ε, and € were converted to ɛ (U+025B)

and trained for 50 epochs, with a learning rate
of .0001 and dropout of 0.3. We used batch
sizes of 32, 16, and 16 for train, dev, and test
sets, respectively. We used the default tri-
gram settings for training the LM with KenLM
(Heafield et al., 2013) in our experiments.

4.3 Transliterator
To convert the Latin-script CommonVoice cor-
pus to the Tifinagh orthographies in our ex-
periments, we use the Graph Transliterator
Python package(Pue, 2019). This constructs
a directed tree of ranked transition rules (e.g,
mm -> ⵎ (not ⵎⵎ) because mm -> ⵎ ranks
before m -> ⵎ) to convert between between
Latin and Berber orthographies. We write
rules for two distinct defective orthographies
modelled after Elghamis (2011)’s description
of the Ahaggar variant of Tiginagh - one with
ligatures, and one without. In cases where mul-
tiple Unicode graphemes represent the same
phonemes across Berber languages and or-
thographies (e.g. ⴽ, ⴾ), we opted to use the
symbol closest to that described in Elghamis
(2011). Heterophonic homographs in the Latin
corpus remain as such in the transliterated Ti-
finagh (e.g. ‘d’ represents both ‘d’ and ‘ð’, and
is transliterated as ‘ⴷ’ and not the IRCAM
‘ⴸ’. All Kabyle phonemes that do not have dis-
tinct graphemes in the orthography described
in Elghamis (2011) are represented with a cor-
responding Neo-Tifinagh symbol (e.g. č -> ⵞ,
ṛ -> ⵕ).

Table 1: Kabyle CommonVoice Data Statistics

Split Downloaded Processed Length
Train 37,056 35,715 35 hrs, 24 min
Dev 11,482 11,100 10 hrs, 52 min
Test 11,483 11,125 11 hrs, 42 min

4.4 Sequence Alignment
We sought to investigate which, and to what
degree, phonemic classes are affected by dif-
ferent training orthographies. To facilitate
this analysis, we required a tool to align the
graphemic output sequences from the ASR sys-
tems, such that the aligned character pairs rep-
resented the audio data at the same time pe-
riods in the input data. Therefore, we con-
duct a phonemic confusion analysis from the



Table 2: Normalization and transliteration examples

Original Normalized Tifinagh Transliteration

D tasnareft taserdasit i yettreṣṣin
deg Lezzayer.

d tasnareft taserdasit i yet-
treṣṣin deg lezzayer

ⴷ ⵜⵙⵏⵔⴼⵜ ⵜⵙⵔⴷⵙⵜ ⵉ ⵉⵜⵔⵙⵏ ⴷⴳ
ⵍⵣⵉⵔ‘

Teĉĉiḍ iles-ik waqila? teččiḍ iles ik waqila ⵜⵞⴹ ⵍⵙ ⴾ ⵓⵈⵍⴰ

Σerḍeγ-t-id ad yekkes lxiq, yeẓẓel
iḍarren.

ɛerḍeɣ t id ad yekkes lxiq yeẓẓel
iḍarren

ⵄⵔⴹⵗ ⵜ ⴷ ⴷ ⵉⴾⵙ ⵍⵆⵈ ⵉⵌⵍ ⴹⵔⵏ

Tawaγit d lmeḥna d-yeγḍel ṭrad γef
tmurt.

taɣaɣit d lmeḥna d yeɣḍel ṭrad
ɣef tmurt

ⵜⵓⵗⵜ ⴷ ⵍⵎⵘⵏⴰ ⴷ ⵉⵗⴹⵍ ⵟⵔⴷ ⵗⴼ ⵜⵎⵔⵜ

Table 3: Modelling unit experiment (1c) input example. Note: ⴵ and ⴺ are stand-in single-character
substitutions for ligatures that are not represented in Unicode and are not graphically representative of
the traditional graphemes for these ligatures

Non-ligatured ⵏⴳⵌⵓⵔ ⵉⵣⴳⵏ ⵣⴱⵓ ⵙⴷⵜ ⵛⵏⴳⴰ ⵂⵜ ⵜⴾⵏ ⴷⵉ ⵜⵎⵏⵜⵍⵜ
Ligatured ⵑⵌⵓⵔ ⵉⵣⴳⵏ ⵣⴱⵓ ⵙⴷⵜ ⵛⵑⴰ ⵂⵜ ⵜⴾⵏ ⴷⵉ ⵜⵎⴵⴺ

graphemes with Sound-Class-Based Phonetic
Alignment (SCA) List (2014). This was pos-
sible due to the high transparency, or unam-
biguous correspondence between graphemes to
phonemes (Marjou, 2021) of the Kabyle Latin
script. We use the prog_align function con-
tained in the Lingpy package (List et al., 2019),
which constructs a similarity matrix and ap-
plies a Neighbor-Joining algorithm (see Saitou
and Nei (1987)) to construct a guide tree to
successively align phonemic sequences. A dy-
namic programming routine finds a least-cost
path through the matrix to align the two se-
quences according to similar sound classes. We
find that this approach gives reliable alignment
for phonemic sequences. We found no errors
after manually inspecting a thousand aligned
phoneme pairs7.

5 Experimentation and Results

Now we present our result comparing S2T per-
formance when training on orthographies of
varying degrees of phonemic informativeness,
and analyzing phonemic confusing using se-
quence alignment techniques.

5.1 Experiments
First, we test the hypothesis that training
and testing upon an orthography unmarked
for vowels, as opposed to marked, yields lower
ASR word error rates. Experiment 1 com-
pares the effect of training and testing upon

7https://github.com/berbertranslit/berbertranslit

the Latin-based orthography and transliter-
ated Tifinagh orthography in a set of trials
listed in Table 4 (1a-c). In 1a, the Latin corpus
is used for training and testing. The outputs
were evaluated against Latin gold utterances
in the test split. In 1b, we train in the same
manner, but test by applying a transliterator
to convert the Latin test set into the conso-
nantal Tifinagh orthography without ligatures.
The corpus used to train the language model
(LM) is composed of the transliterated utter-
ances of the original corpus. In the third setup
(1c), we repeat experiment 1b using a translit-
erator that models the ligatures described in
Section 3. Examples of the ligatured Tifinagh
are shown in Table 3.

Secondly, we test the hypothesis that learn-
ing from an orthography marked for vowels
and decoding on an orthography unmarked
for vowels results in lower word error rates
compared to training and testing on either of
the marked or unmarked orthographies alone.
In experiment 2, we test the hypothesis that
training on the plene (fully marked) Latin or-
thography and subsequently decoding into and
testing against the defective Tifinagh orthogra-
phy yields lower error rates compared to both
training and testing on the Tifinagh orthogra-
phy. We train all components on the Latin
script and obtain Latin-script output for test
utterances as in 1a. However, we then translit-
erate the output and test against gold utter-
ances transliterated into Tifinagh, as in 1b.
Because our main goal is to study the acoustic



Table 4: The impact of orthography and language modeling. Group 1: trained and tested on the same
orthography types. Group 2: Latin to Tifinagh transliteration at test time given a Latin model. Group
3: the same as Group 1 but without language modeling.

Exp. Train Orthography Transliteration LM Test Orthography CER (%) WER (%)
1a Latin no yes Latin 29.9 49.9
1b Tifinagh no yes Tifinagh 35.8 57.9
1c Tifinagh (ligatured) no yes Tifinagh (ligatured) 33.7 57.4
2 Latin yes yes Tifinagh 29.7 47.4
3a Latin no no Latin 34.9 78.3
3b Tifinagh no no Tifinagh 38.8 77.9
3c Latin yes no Tifinagh 35.6 72.1

Table 5: Alignment of the same sentence produced by different models in Table 4. ∗ indicates a missing
space in the alignment. + indicates transliterated gold sequence in Tifinagh.

Group Raw Alignment (in IPA representation)
3a - Latin - Latin Gold yuweḍ ɣer lebɣi s j u w ə ḍ ʁ ə r l ə b * ʁ * i s

Pred yuweḍ ɣaleb ɣ is j u w ə ḍ ʁ a - * l ə b ʁ i * s

3b - Tifinagh - Tifinagh Gold+ ⵉⵓⴹ ⵗⵔ ⵍⴱⵗⵉ ⵙ j w ḍ ʁ r l b ʁ j s
Pred ⵉⵓⴹ ⵗⵍⴱⵗ ⵙ j w ḍ ʁ - * l b ʁ - s

3c - Latin - Tifinagh Gold+ ⵉⵓⴹ ⵗⵔ ⵍⴱⵗⵉ ⵙ j w ḍ ʁ r l b * ʁ j s
Pred ⵉⵓⴹ ⵗⵍⴱ ⵗ ⵙ j w ḍ ʁ - * l b ʁ - s

model and we do not want a small LM training
corpus to negatively affect the experimental
result, we build the LM in DeepSpeech on all
train, dev, and test utterances of the normal-
ized CommonVoice Kabyle Latin-script data
for experiments 1 and 2.

Finally, we train the S2T model without
a LM as a post-process to specifically under-
stand the sensitivity of the neural speech com-
ponent. Trials 3a-c replicate 1a-c, but do not
apply LM post-processing to help understand
the effect of our interventions on the neural
ASR component.

5.2 Results
We report the results of all three sets of trials
in Table 4. 1a and 1b show that the original
Kabyle input encoded in the plene Latin or-
thography yields lower error rates than when
training and testing on the transliterated Ti-
finagh alone (CER: -5.9%, WER: -8%). How-
ever, this reduction is less pronounced when
the ligatured Tifinagh orthography is used (1c)
(CER: -3.8%, WER: -7.5%).

Trial 2 exhibits improved recognition when
training on the Latin orthography and subse-
quently transliterating to and testing against
Tifinagh. This arrangement reduces CER by
0.2% and WER by 2.5% with respect to trial

1a in which the plene orthography was used
for both training and testing. Compared to
training and testing in the defective orthogra-
phy (1b), 2 shows a 10.5% absolute decrease
in WER and 6.1% absolute decrease in CER.

Trial 3 shows that, without the language
model, the WER for training upon and testing
against Latin orthography (3a) is greater than
when using the Tifinagh orthography (3b) by
0.4%. However, the CER for the former pro-
cedure with respect to the latter is less by
3.9%, likely due to the increased difficulty of
predicting more characters. Applying a Tifi-
nagh tansliterator to the Latin trained model
(3c) resulted in a WER reduction of 6.2% and
5.8% with respect to 3a and 3b. 3c exhibits an
improved CER compared to the Tifinagh-only
trial (3b) (-3.2%), although it is 0.7% higher
when compared to the Latin-only trial (3a).

5.3 Phonemic Confusion Analysis
To understand the orthographies’ effects on
the speech model we conduct an analysis by
alignment between the gold utterances and
the predictions from experiments 3b and 3c.
This analysis is inspired by recent studies by
Kong et al. (2017), Alishahi et al. (2017) and
Belinkov et al. (2019), to explore the nature
of neural learning of phonemic information.



More specifically we use Lingpy (List et al.,
2019) package to determine phone error rates
as described in Section 4.4. We translate all
graphemes of the gold utterances and their pre-
dicted counterparts into sequences of G2P IPA
representations and tabulate phoneme class
confusions using PHOIBLE’s sound classes
(Moran and McCloy, 2019). Table 5 shows ex-
ample aligned sentences produced by this pro-
cedure. By analyzing the aligned utterances,
we tabulate estimated confusions between the
gold and predicted alignments.

We count phonemic disagreements between
the models as a proportion of gold target con-
texts of the aligned matching phoneme. To
understand which model achieves better per-
formance for word-final vowel recognition that
is denoted in the Tifinagh orthography, we an-
alyze the counts of all gold contexts in which
vowels or semi-vowels appear (always word-
finally) against the counts of aligned model in-
ferences at these contexts. Table 6 shows that
the model trained on the Latin orthography
and subsequently transliterated (3c) achieves
higher recognition of the pure vowel grapheme
compared to the model trained on the unvow-
elled traditional Tifinagh (3b).

Table 7 compares the errors across several
different phonemic classes. We do not con-
sider the ‘continuant’ and ‘delayedRelease’ fea-
tures, as the distinction between allophonic
and phonemic fricativity is difficult to deter-
mine for Kabyle from graphemes alone. Al-
though the PHOIBLE database includes these
features as ’syllabic’, we tally counts for the
’approximate’, ‘sonorant’, and ‘dorsal’, and
‘periodic glottal source’ features without ‘syl-
labic’ phonemes so as to better analyze the
contribution of non-syllabic features. McNe-
mar’s asymptotic test with continuity correc-
tion Edwards (1948) affirms the significance of
the difference between 3b and 3c (P < 0.025
for all features except the ‘geminate’ feature).

6 Discussion

Performance when training on plene inputs
(3c) to decode word-final vowels improves
when compared 3b in which intra-word vow-
els are hidden from the model. The re-
sults suggest that sonorous phonemes benefit
more from model training on the voweled text.

When only one model between 3b and 3c is
correct, we see that ‘approximate’, ‘sonorant’,
and ‘period glottal’ phonemes exhibit compar-
atively high disagreement, surpassed only by
the phonemes with positive ‘lateral’ and ‘syl-
labic’ features. The model may share informa-
tion across these features, and in particular,
voicing. All of these features record higher
recognition rates in the case of 3c. While
the difference in error rates for sonorous and
voiced consonants between 3b and 3c does
not exactly trend according to the sonority hi-
erarchy (Ladefoged and Johnson, 2014), the
number of disagreements between the models
does follow this trend. These findings suggest
that the model in 3c is leveraging correlates of
sonority for phoneme recognition (Figure 1).

A surprising contrast was discovered in the
models’ differential abilities in detecting coro-
nal and dorsal consonants. We hypothesize
that this difference is a function of the differ-
ing contexts that these sounds occur in rela-
tion to vowels and geminate consonants. The
improvement in the ‘spread glottis’ feature be-
tween 3b and 3c is notable, though it is diffi-
cult to generalize given the low prevalence of
graphemes representing phonemes possessing
this feature.

Our study experiments with the Deep-
Speech architecture using a single set of hyper-
parameters for a single data set and language.
Future work can investigate the interactions
of model architectures, hyperparameters, data
scales, G2P mappings, and statistics of ortho-
graphic informativeness on S2T performance.

7 Conclusion

Our study is the first to document S2T perfor-
mance on Tifinagh inputs and shows that the
choice of orthography may be consequential
for S2T systems trained on graphemes. We
amplify findings of prior studies focused on
Semitic languages by showing that a Berber
S2T model intended to output unvowelled
graphemes benefits from training on fully-
featured inputs. Our research suggests that
ensuring data inputs are fully-featured would
improve ASR model quality for languages that
conventionally use consonantal orthographies,
like Syriac, Hebrew, Persian, and Arabic ver-
naculars.



Table 6: Comparison of model performance for different word-final vowels. The columns represents
phoneme pairs (Tifinagh grapheme : Latin IPA). Trial 3c shows considerably higher recognition of vowels.

ⴰ : a/ə ⵉ : i (j) ⵓ : u/� (w) All Vowels
The number of word-final vowels in gold 7,430 6,557 1,341 15,328
Cw: The portion (%) of all word-final phonemes 11.7% 10.3% 2.1% 13.0%
C2: The portion (%) of Cw either 3b (x)or 3c is correct 23.7% 28.1% 30.4% 26.2%
C3: Both 3b and 3c are incorrect 38.2% 46.8% 34.9% 41.6%
C3b: The portion (%) of C2 for which 3b is correct 18.5% 13.2% 13.7% 15.6%
C3c: The portion (%) of C2 for which 3c is correct 81.5% 86.8% 86.3% 84.5%

Figure 1: Comparison of the relative error difference between 3b and 3c.

Table 7: Comparison of model performance for different phonemic features. Cp represents the portion
(%) of G2P mappings the feature comprises of the total number of G2P mappings in the corpus. See the
definition of C2, C3, C3b and C3c in Table 6. 3c is correct for more disagreements for all features except
for the coronal, strident, and trill features. We use McNemar’s asymptotic test with continuity correction
Edwards (1948) to test the null hypothesis that there is no difference between the performance of C3b

and C3c with respect to different sound classes. χ2
1 values are particularly high for voiced and syllabic

phonemes. We bold the higher between C3b and C3c when χ2
1 > 18.5 (corresponding to P=0.001).

Cp C2 C3 C3b C3c χ2
1

consonants 53.1% 16.6% 29.7% 47.9% 52.1% 38.9

sonorant (- syllabic) 24.0% 18.1% 26.2% 44.1% 55.9% 151.4

approximate (- syllabic) 12.6% 18.6% 28.2% 45.9% 54.0% 38.2

nasal 11.5% 17.6% 24.1% 42.0% 58.0% 130.1

retracted tongue root 2.1% 16.7% 60.0% 45.8% 54.2% 6.0

labial 11.7% 16.1% 49.8% 35.0% 65.0% 26.3
labiodental 1.5% 17.8% 30.3% 40.7% 59.3% 23.7
coronal 37.1% 16.4% 29.1% 51.9% 48.1% 22.3
strident 8.0% 10.5% 33.5% 53.8% 46.2% 12.3
lateral 4.3% 18.6% 30.0% 47.4% 52.6% 5.3

geminate 8.6% 9.0% 56.8%* 49.6% 50.4% 0.13
trill 5.0% 16.3% 30.7% 55.7% 44.3% 26.0

dorsal (- syllabic) 11.8% 17.7% 28.7% 38.2% 61.8% 294.6

periodic glottal (voiced) (- syllabic) 36.4% 18.5% 29.2% 42.2% 57.8% 407.9

spread glottis 0.4% 20.3% 47.1% 34.6% 65.4% 18.8

syllabic (vowels) (word-final) 6.1% 26.2% 41.6% 15.6% 84.4% 1902.8
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