
Compressive Performers in Language Modelling

Anjali Ragupathi, Siddharth Shanmuganathan, Manu Madhavan
Department of Computer Science and Engineering

Amrita School of Engineering - Coimbatore
Amrita Vishwa Vidyapeetham, India

anjaliragupathi99@gmail.com
siddhsham@gmail.com
m manu@cb.amrita.edu

Abstract

This work introduces the Compressive
Performer, a hybrid Transformer variant
based on two existing model architectures:
the Performer, which reduces the mem-
ory requirement and processing time of
the Transformer to linear complexity, and
the Compressive Transformer, which re-
tains contextual dependencies over a long
range by compressing old activations in-
stead of discarding them. Experiments in
language modelling at the character level,
the word level, and the sub-word level
demonstrate that the Compressive Per-
former shows improved perplexity scores
on the enwik-8 dataset, compared to its
base models. This work also compares
convolutional compression with autoen-
coder compression, determining that both
show similar perplexity scores.

1 Introduction

Language models were initially based on the
relative frequencies of words occurring in a
corpus. Traditionally, statistical models like
n-grams (Jurafsky and Martin, 2000) and tem-
poral neural models like RNNs (Rumelhart
et al., 1986; Hochreiter and Schmidhuber,
1997) were preferred to simulate the structure
of natural language. However, they had many
deficits like the inability to generalize over un-
seen words (for n-grams) or to capture infor-
mation from prior parts of the sentence while
taking less time to train(for RNNs).

Recent state-of-the-art deep learning models
such as the Transformer (Vaswani et al., 2017)
and its subsequent incarnations were created
to mitigate these issues. They relied on par-
allelization techniques that efficiently utilised
multiple GPUs - unlike RNNs, which could
only use one at a time. Their core feature was
”attention”, which used O(n2) operations to
find correlations between token pairs for a se-
quence of n tokens. Although attention had
the advantage of large context windows, it also
placed constraints on the performance of the
Transformer in environments with small mem-
ories and few CPUs/GPUs. Since a quadratic
number of operations was required (n×n), the
Transformer took longer to train. Additionally,
each layer of the Transformer stored the out-
put of its activation function in the form of an
n×n matrix, which made the space complexity
quadratic as well.

There have been many attempts to miti-
gate either the space complexity or the time
complexity of Transformers using techniques
that would reduce the number of computations
(Vyas et al., 2020), the amount of data being
processed (Li et al., 2016; Panahi et al., 2019),
or the amount of information being stored in
memory (Child et al., 2019; Katharopoulos
et al., 2020; Lan et al., 2019). These were
explored in a survey conducted by Tay et al.
(2020). Drawbacks of these methods included
loss of information due to sparse representa-
tions of data (Child et al., 2019), as well as the



uncertainty around the optimal kernel function
to be used (Katharopoulos et al., 2020). While
models like the Reformer (Kitaev et al., 2020)
were effective in reducing the space complex-
ity of the model, they could not adequately
capture context over long-range sequences.

Conversely, the Transformer-XL model (Dai
et al., 2019) aimed to preserve dependency
across long sequences. It introduced relative
positional encoding and applied a recurrence
relation over segments of data, to extend the
length of context dependency learnt by the
model.

The success of Transformers sparked the
development of two important variants - Com-
pressive Transformer (Rae et al., 2019) and Per-
formers (Choromanski et al., 2020; Likhosh-
erstov et al., 2020). The former was devel-
oped as an extension of the TransformerXL
which distinguished between long-term and
short-term memories. Unlike its predecessor, it
compressed old activations instead of discard-
ing them, which allowed extended amounts of
context to be preserved with minimal informa-
tion loss.

In the Performer, a method called FAVOR
- Fast Attention Via Positive Orthogonal Ran-
dom Features - was proposed to scale attention
linearly. The attention matrix was decomposed
into random features of lower dimensionality,
allowing information to be encoded to take up
less space than a complete attention matrix. An
extension to the algorithm also demonstrated
that it was not necessary to construct the com-
plete attention matrix, as the random features
could be rearranged to form an approximation
that had lower space and time complexities.

Based on the advantages demonstrated by
the above models, this work proposes the Com-
pressive Performer-a hybrid model which com-
bines the linear space and time complexity
of the Performer with the long-range context-
sensitivity of the Compressive Transformer.

The empirical performance of this integrated
model is compared with the original models
on which it is based. The goal is to preserve
the low space complexity shown by the Per-
former without losing any valuable contextual
information over a long-range sequence. To
demonstrate the consistency of the model over
different use cases, this work also involves tok-
enization of the dataset at three different levels
of natural language - word, sub-word, and char-
acter.

2 Proposed Model

This section briefly describes the FAVOR+ al-
gorithm implemented in the Performer (Choro-
manski et al., 2020), along with the two
compression techniques used in the proposed
model. Further, the integration of compression
with FAVOR is discussed in Section 2.2.

2.1 FAVOR+ - Fast Attention
Fast attention was developed as an alternative
to multiplicative attention / scaled dot-product
attention(Luong et al., 2015) and Bahdanau’s
attention (Bahdanau et al., 2014). To bring
down the space complexity for the model, the
complete attention matrix is never constructed.
Instead, the softmax function is approximated
by using suitable kernel functions which make
use of ”random orthogonal features”. Using
this approximation, the original Q and K ma-
trices cannot be reconstructed, but similar ma-
trices of the same dimension (L× d, where L
is the input sequence length and d is the inner
dimensionality) can be approximated.

The original attention formula is defined in
Equation 1, while its corresponding FAVOR
approximation is defined in Equation 2.

Attn(Q,K, V ) = softmax(
Q ·KT

√
dk

) · V
(1)

where
Attn = Attention Function



Q = Query Matrix
K = Key Matrix
V = Value Matrix√
dk = Scaling factor of dimension k

Attn(Q,K, V ) = Q′ · ((K ′)T · V ) (2)

where
Attn = Attention Function
Q′ = Approximated Query Matrix
K ′ = Approximated Key Matrix
V = Original Value Matrix

2.2 Compression algorithm integrated
with FAVOR

The algorithm used in the Compressive Per-
former is based on the original paper on the
Compressive Transformer (Rae et al., 2019).
It uses a FIFO queue as the data structure in
which the attention weights at each memory
layer are stored (Wang, 2020). This allows a
time-independent Transformer to access ”mem-
ories” in a definite temporal order. The queue
is split into the short-term memory (mem) and
the long-term memory (cmem for compressive
memory). At each time step, after the atten-
tion weights have been calculated, they are
pushed into the FIFO queue’s short-term mem-
ory. Once this section is filled, the short-term
memory data is compressed and pushed into
the long-term memory, and the complete mem-
ory queue is updated. During backpropagation,
the gradients used for the compressive network
itself are not propagated into the main network
and are instead used to improve reconstruc-
tion loss. However, since the memory layers
are generally hidden layers, the stored activa-
tions are used to update the weight matrices on
subsequent passes through the network, thus
preserving context.

The proposed work compares two compres-
sion algorithms. The first is basic convolu-
tional compression, which is generally used
in images. It uses convolutional layers to ex-
tract features from data, and pooling layers

to reduce the dimensions of data by discard-
ing unnecessary features (as in Equation 3).
When text data is represented in the form of
vectors or tensors, the underlying numerical
representation of language structure can also
be compressed in a way similar to images (Ma-
honey, 2000; Cox, 2016; Goyal et al., 2018).
The second type of compression is autoencoder
compression. An autoencoder is an artificial
neural network that can learn an encoding for
data by training itself to ignore ”noise”. This
encoding is a projection of the input data in
latent space, typically of lower dimensionality
than the original data. The proposed work uses
convolutional autoencoders, which compress
data with some loss of information. Hence,
Mean Squared Error loss is used as the evalua-
tion metric for reconstructing the original input
from its encoded counterpart.

dim′ = (dim− f)/(s+ 1) (3)

where dim′ is the new length or width of im-
age, dim is the original length or width of
image, f is the filter dimension and s is the
stride length.

While integrating the compression algo-
rithm with FAVOR, no complete attention ma-
trices are constructed, as in ordinary Perform-
ers. Pre-normalization is used at each layer
instead of post-normalization, as described by
Nguyen and Salazar (2019). Since backward
propagation for the computation of attention
reconstruction loss is nearly identical to the
one described by Rae et al. (2019), its discus-
sion remains beyond the immediate scope of
this paper.

In Algorithm 1, the batch size is represented
by b, the embedding dimensions by d, the
length of the memory by lmem, and the length
of the compressed memory by lcmem. The vari-
able h(i) represents the hidden state at layer i.
At time step 0, the memory queue is initial-
ized to be empty. At each succeeding time



step, the subsequent input is extracted using
random sampling. It is then passed to the em-
bedding layer, where the embedding weights
are calculated and relative positional encoding
is applied to get the first hidden state (Dai et al.,
2019). The long-term compressed memory and
the short-term uncompressed memory are con-
catenated with the generated hidden state to
form the queue. By applying a suitable pro-
jection function (for example, a simple linear
function or multi-layer perceptron), the input is
converted into the query, key, and value matri-
ces. The FAVOR+ algorithm is then applied to
these matrices as in Equation 2. Here, matrix
associativity is applied to rearrange the three
matrices, ensuring that the output of the atten-
tion function has linear complexity. Residual
connections are made to prepare the model for
the backward pass of training. In the compres-
sion phase, the oldest memories are extracted
and compressed by the specified compression
ratio c. The current hidden state is pushed into
the short-term memory, while the compressed
memories are pushed into the long-term mem-
ory. Per convention, normalization is applied
to the output activations to speed up training
time by making the gradients of the network
stable. The next hidden state is generated and
propagated to the following layers.

3 Experiments

3.1 Pre-processing and Tokenization

Raw data (a subset of the enwik8 dataset - orig-
inally curated by Mahoney (2006)) was read
from its source file and pre-processed. The
training and evaluation phases were tested at
all three levels of tokenization. The number
of bytes read from the input file had to be de-
creased from the character level model having
the highest number (95 MB), to the word level
having the lowest (25 MB). This was done be-
cause the large vocabulary of word level mod-
els would impede execution by creating many

parameters, thus resulting in memory misman-
agement.

Pre-processing included removing XHTML
tags, delimiting sentences, and tokenizing
them based on the level of natural language
considered. At the character level, it was
enough to split the data into separate charac-
ters. At the sub-word level, it was essential to
identify the most common morphemes. While
stemming can be used for this purpose, it re-
mains inefficient when quick processing is de-
sired. A Byte-Pair Encoding Tokenizer from
HuggingFace was, thus, used to build com-
mon subwords based on the frequency of co-
occurrence of characters. At the word level, a
simple word tokenizer from the NLTK library
was incorporated; it was complemented by a
multi-word tokenizer to add delimiters to the
vocabulary.

Post-tokenization, a vocabulary of the appro-
priate size was built and passed as a parameter
to the learning algorithm. At the character and
sub-word levels, the data was split into train-
ing, validation, and testing using a 90:5:5 split.
For the word level model, the data was split
using an 80:10:10 split, as per convention.

3.2 Training and Tuning

The model was trained using Kaggle Kernels
on a Tesla P100 GPU with 16 GB of mem-
ory. At each iteration, gradient clipping was
done to prevent exploding gradients. Perplex-
ity (Equation 5) was calculated as an exponent
of validation cross-entropy loss (Equation 4).
Further discussion on suitable metrics for lan-
guage models can be found in the article by
Huyen (2021).

Another mechanism that was implemented
was a learning rate scheduler (Rath, 2021). The
implementation scaled down the learning rate
by a factor of 0.5 if it observed no improve-
ment in the validation loss for at least 5 epochs
in a row. Early stopping (Rath, 2021) was



Algorithm 1 Proposed Algorithm: Compressive Performer Main Forward Propagation
At time t0

1: mem0 ← 0 . Shape of memory is b x lmem x d
2: cmem0 ← 0 . Shape of compressed memory is b x lcmem x d
3: for t in 1, 2, ... ntimesteps do
4: h(1) ← xWemb . Wemb is the weight matrix for embeddings, x is the input tensor
5: for i in 1, 2, ... nlayers do . nlayers represents the number of memory layers
6: fifo(i) ← concat(cmem

(i)
t ,mem

(i)
t , h(i)) . Create FIFO queue with both memory queues and input

7: q(i), k(i), v(i) ← projection(fifo(i)) . Extract Q, K, V matrices
8: a

(i)
favor ← FastAttention(q(i), k(i), v(i)) . Apply FAVOR on the queue

9: a(i) ← a
(i)
favor + h(i) . Apply residual connection

10: old mem(i) ← mem
(i)
t [: noldest] . Extract oldest memories to be compressed (noldest x d)

11: new cmem(i) ← f
(i)
c (old mem(i)) . Compress oldest memories by factor c (noldest

c
x d)

12: mem
(i)
t+1 ← concat(mem

(i)
t , h(i))[−lmem :] . Push current input into short-term memory

13: cmem
(i)
t+1 ← concat(cmem

(i)
t , new cmem(i))[−lcmem :] . Push new compressions into long-term

memory
14: h(i+1) ← pre norm(linear(a(i))) + pre norm(a(i)) . Generate next hidden state
15: end for
16: end for

also included as a mechanism to stop training
when the validation loss showed no sign of
improvement. This was done in an attempt to
avoid overfitting, based on suggestions in the
paper (Komatsuzaki, 2019). Finally, the Adam
optimizer (Kingma and Ba, 2014) was used
because of its advantages over stochastic gradi-
ent descent. The addition of these optimization
techniques reduced training time significantly
from a few hours to a minute.

Using various tunable parameters like com-
pression ratio, batch size, memory size, and
sequence length, the learning algorithm itera-
tively calculated a set of weights that would
minimize the cross-entropy loss and the aux-
iliary MSE loss which is related to the recon-
struction error after compression. In addition
to these parameters, the highest batch size that
showed the least error was found to be 16
batches. A model depth of 6 was also found to
be better suited to the size of the dataset than
a model depth of 8. Most hyperparameter val-
ues have been taken from the original paper on
Compressive Transformers (Rae et al., 2019),
such as sequence length and memory length

being 768, compressed memory length being
1152, and compression ratio being 4.

LossCE = −
k∑

i=1

yo,i log2 po,i (4)

where
LossCE = Cross Entropy Loss
k = number of classes
yo,i = binary value which tells if observation
o was correctly categorized as class i (true
value)
po,i = predicted probability of observation o
being in class i

Perplexity = 2LossCE (5)

4 Results and Discussion

The two baseline models that have been con-
sidered for comparison and inference are the
Compressive Transformer (Rae et al., 2019)
and the Performer (Choromanski et al., 2020).
The Performer has been fitted with reversible
layers as described in the paper by (Kitaev



et al., 2020), based on the implementation by
(Wang, 2021).

Each model has been studied at the character
level, sub-word level, and word level. Vocab-
ulary size was found to have increased, with
n(character) < n(sub-word) < n(word). This
was primarily because the set of characters in
ASCII comes out to 256 tokens, whereas the
number of unique words is significantly larger.
Sub-words may share morphological stems of
words.

4.1 Character Level

When the models were trained at a character
level, they had access to 256 possible classes
or categories. Since this number was signif-
icantly lower than the vocabulary size at the
other two levels, the cross-entropy loss func-
tion mentioned in Equation 4 had to compute
the summation over fewer classes. Hence, the
training and validation losses were part of a
lower range of values. However, there was sig-
nificant volatility in the losses as seen in Fig-
ure 1a, because the model could not learn rela-
tionships between characters in a structurally
or semantically cognizant manner. However,
the model did learn which characters occur to-
gether frequently. The losses remained much
lower than that of the Performer and the Com-
pressive Transformer, despite starting at sim-
ilar points; this showed that the Compressive
Performer tended to have a much better record
of achieving a relevant prediction compared to
the baseline models, which could be attributed
to its ability to learn complex context depen-
dencies.

It was also noted that all the character level
models were highly unstable, but their curves
plateaued after a certain elbow point. Since
character level models had not implemented
early stopping, the graphs in Figure 1a indicate
that this would be a good strategy to follow in
subsequent implementations.

4.2 Sub-word Level

At the sub-word level, the training losses of
both versions of the Compressive Performer
were highly volatile, indicating that the num-
ber of classes was not easily determined. This
was due to the numerous morpheme combina-
tions that could potentially be predicted next.
The model thus struggled to predict the best
possible class consistently. Still, it can be seen
in Figure 1b that the slope of the graphs was
much steeper and decreased a lot more than
for the baseline models. This showed that the
Compressive Performer learned much faster
and also more uniformly than both the Com-
pressive Transformer and the Performer.

4.3 Word Level

At the word level, the loss graphs were much
less volatile than at the sub-word level because
of the relative ease of predicting a class. With a
fixed-size vocabulary like that used in the word
level model, the loss curves decreased with
much less fluctuation. It can be seen in Figure
1c that the Performer still found predictions
difficult because it could not preserve context
dependencies as easily as the three compres-
sive models.

4.4 Comparison and Inference

From the results, it can be seen that the pro-
posed model could utilize compression algo-
rithms without incurring large space overheads;
thus, the space complexity of the Compressive
Performer was closer to that of the Performer
than to the Compressive Transformer. A com-
parison of both Compressive Performer vari-
ants with their baseline models is shown in
Tables 1, 2 and 3. It is clear that the Com-
pressive Performer has outperformed the base-
line models at all three levels of experimenta-
tion, by achieving the lowest relative perplexity.
Though the GPU utilization of the proposed
model was greater than that of the Performer



(a) Character Level (b) Sub-word Level (c) Word Level

Figure 1: Cross-entropy Loss over Validation
Cross-entropy loss of Compressive Performer is much lower than the base models at all three levels. Differences in
graph lengths in Figure (1b) and Figure (1c) are due to early stopping. Steep curves imply faster learning. High jitter
implies greater uncertainty in predicting the next token (seen in all four models in Figure (1a) and in Compressive

Transformer in Figure (1c))

Table 1: Performance Comparison of Models - Word Level

Model Name Prediction Time(ms) GPU RAM(GB) Training Perplexity Test Perplexity
Compressive Transformer 70.7 6.9 173.45 102.36
Performer 170 3.1 220.32 109.334
Compressive Performer (Conv) 67.7 3.6 110.2 75.896
Compressive Performer (Auto) 57 3.6 111.69 75.141

Table 2: Performance Comparison of Models - Sub-Word Level

Model Name Prediction Time(ms) GPU RAM(GB) Training Perplexity Test Perplexity
Compressive Transformer 32 6.9 209.69 179.28
Performer 140 3.2 230.93 171.316
Compressive Performer (Conv) 55.375 3.5 128.4 127.82
Compressive Performer (Auto) 55.05 3.5 133.32 126.727

Table 3: Performance Comparison of Models - Character Level

Model Name Prediction Time(ms) GPU RAM(GB) Training Perplexity Test Perplexity
Compressive Transformer 96 8.6 11.61 13.078
Performer 166 4.7 9.57 9.3378
Compressive Performer (Conv) 51 7.2 6.26 6.4314
Compressive Performer (Auto) 51 6.8 6.295 6.025

due to the inclusion of queues, it was consider-
ably less than that of the Compressive Trans-
former.

At the word and sub-word levels, the Per-
former fared the worst at capturing seman-
tic and contextual dependencies over long se-

quences. The Compressive Transformer used
the highest amount of GPU RAM because of
its dependence on traditional softmax attention,
as opposed to the linear attention mechanism
preferred by the three Performer variants.

At the character level, it was noted that



the activations computed by the convolutional
compression algorithm took up slightly more
RAM than those computed using autoencoder
compression. The comparable training perplex-
ity scores in Table 3 also showed the effective-
ness of autoencoders in learning contextual rep-
resentations from compressed data. The low
perplexity scores compared to the word level
and sub-word level models were due to the fact
that there was a very small set of tokens (256
ASCII characters) that the model could predict.
Additionally, the amount of GPU RAM used
by the convolutional model was slightly higher
than that used by the autoencoder model.

When the models were tested based on their
prediction time (i.e., from input submission to
output prediction), it was found that the Com-
pressive Performer took much less time to pre-
dict the next tokens in a sequence at all three
levels of tokenization. These results are demon-
strated in the column “Prediction Time” in Ta-
ble 1, Table 2, and Table 3. The models were
also generalizable over new data and overfitted
less than the base models, as demonstrated in
the corresponding column “Test Perplexity”.

Overall, the models proposed in this pa-
per have yielded promising results in terms
of space complexity and perplexity scores. De-
spite the use of random sampling, the perplex-
ity scores of both Compressive Performers
were observed to be consistently lower than
the base models, while small variations were
observed in the ranking of the base models
themselves.

5 Conclusion

The goal of this work was to be able to train
Transformer models on consumer-grade de-
vices, without resorting to expensive cloud ser-
vices and specialized hardware. It was deter-
mined that the Compressive Performer showed
comparable space complexity to the Performer
and maintained perplexity scores that were

much lower than the base models. It was also
determined that the autoencoder compression
mechanism offered similar results to the convo-
lutional compression mechanism. In addition
to this, it was seen that the proposed model
performed equally well on both training and
testing data when compared to existing state-
of-the-art models.

However, the model showed major limita-
tions in the quality of text generated. Owing to
a scarcity of suitable high-performance com-
puting resources, the experiments in this paper
were conducted with minimalistic models and
a small dataset. While it is expected that the re-
sults can be replicated on a large scale, it would
be necessary to attempt training the model
from scratch using a benchmark dataset like
PG-19 (Rae et al., 2019). Experiments may
also be done with custom tokenizers and clean-
ing algorithms, as well as with other kernels
and activation functions, to determine what re-
sults arise from them. Pre-training approaches
like ELECTRA (Clark et al., 2020) could be
implemented to help the model learn context
adversarially.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences
with sparse transformers. arXiv preprint
arXiv:1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane,
Tamás Sarlós, Peter Hawkins, Jared Davis,
Afroz Mohiuddin, Lukasz Kaiser, David Be-
langer, Lucy Colwell, and Adrian Weller. 2020.
Rethinking attention with performers. CoRR,
abs/2009.14794.

Kevin Clark, Minh-Thang Luong, Quoc V Le,
and Christopher D Manning. 2020. Elec-

http://arxiv.org/abs/2009.14794


tra: Pre-training text encoders as discrimina-
tors rather than generators. arXiv preprint
arXiv:2003.10555.

David Cox. 2016. Syntactically informed text
compression with recurrent neural networks.
arXiv preprint arXiv:1608.02893.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime
Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. 2019. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860.

Mohit Goyal, Kedar Tatwawadi, Shubham Chan-
dak, and Idoia Ochoa. 2018. Deepzip: Loss-
less data compression using recurrent neural
networks. arXiv preprint arXiv:1811.08162.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Chip Huyen. 2021. Evaluation metrics for lan-
guage modeling. https://thegradient.
pub/understanding-evaluation-metri
cs-for-language-models/.

Daniel Jurafsky and James H. Martin. 2000.
Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Computa-
tional Linguistics, and Speech Recognition, 1st
edition. Prentice Hall PTR, USA.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos
Pappas, and François Fleuret. 2020. Transform-
ers are rnns: Fast autoregressive transformers
with linear attention. In International Confer-
ence on Machine Learning, pages 5156–5165.
PMLR.

Diederik P Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Nikita Kitaev, Łukasz Kaiser, and Anselm Lev-
skaya. 2020. Reformer: The efficient trans-
former. arXiv preprint arXiv:2001.04451.

Aran Komatsuzaki. 2019. One epoch is all you
need. arXiv preprint arXiv:1906.06669.

Zhenzhong Lan, Mingda Chen, Sebastian Good-
man, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. 2019. Albert: A lite bert for self-
supervised learning of language representations.
arXiv preprint arXiv:1909.11942.

Xiang Li, Tao Qin, Jian Yang, and Tie-Yan Liu.
2016. Lightrnn: Memory and computation-
efficient recurrent neural networks. In Ad-
vances in Neural Information Processing Sys-
tems, pages 4385–4393.

Valerii Likhosherstov, Krzysztof Choromanski,
Jared Davis, Xingyou Song, and Adrian
Weller. 2020. Sub-linear memory: How
to make performers slim. arXiv preprint
arXiv:2012.11346.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D Manning. 2015. Effective approaches
to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025.

Matt Mahoney. 2006. Enwik-8 source version. ht
tps://cs.fit.edu/˜mmahoney/compress
ion/textdata.html.

Matthew V Mahoney. 2000. Fast text compression
with neural networks. In FLAIRS conference,
pages 230–234.

Toan Q Nguyen and Julian Salazar. 2019. Trans-
formers without tears: Improving the nor-
malization of self-attention. arXiv preprint
arXiv:1910.05895.

Aliakbar Panahi, Seyran Saeedi, and Tom Arodz.
2019. word2ket: Space-efficient word embed-
dings inspired by quantum entanglement. arXiv
preprint arXiv:1911.04975.

Jack W Rae, Anna Potapenko, Siddhant M Jayaku-
mar, and Timothy P Lillicrap. 2019. Compres-
sive transformers for long-range sequence mod-
elling. arXiv preprint arXiv:1911.05507.

Sovit Ranjan Rath. 2021. Using learning rate
scheduler and early stopping with pytorch.
https://debuggercafe.com/using-learning-rate-
scheduler-and-early-stopping-with-pytorch/.

David E Rumelhart, Geoffrey E Hinton, and
Ronald J Williams. 1986. Learning represen-
tations by back-propagating errors. nature,
323(6088):533–536.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Don-
ald Metzler. 2020. Efficient transformers: A
survey. arXiv preprint arXiv:2009.06732.

https://thegradient.pub/ understanding-evaluation-metrics-for-language-models/
https://thegradient.pub/ understanding-evaluation-metrics-for-language-models/
https://thegradient.pub/ understanding-evaluation-metrics-for-language-models/
https://cs.fit.edu/~mmahoney/compression/textdata.html
https://cs.fit.edu/~mmahoney/compression/textdata.html
https://cs.fit.edu/~mmahoney/compression/textdata.html


Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in neural
information processing systems, pages 5998–
6008.

Apoorv Vyas, Angelos Katharopoulos, and
François Fleuret. 2020. Fast transformers
with clustered attention. arXiv preprint
arXiv:2007.04825.

Phil Wang. 2020. Compressive transformer imple-
mentation pytorch. https://github.com/l
ucidrains/compressive-transformer-
pytorch.

Phil Wang. 2021. Performer implementation py-
torch. https://github.com/lucidrains/
performer-pytorch.

https://github.com/lucidrains/compressive-transformer-pytorch
https://github.com/lucidrains/compressive-transformer-pytorch
https://github.com/lucidrains/compressive-transformer-pytorch
https://github.com/lucidrains/performer-pytorch
https://github.com/lucidrains/performer-pytorch

