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Abstract

The vast majority of the existing ap-
proaches for taxonomy enrichment apply
word embeddings as they have proven to
accumulate contexts (in a broad sense)
extracted from texts which are sufficient
for attaching orphan words to the taxon-
omy. On the other hand, apart from being
large lexical and semantic resources, tax-
onomies are graph structures. Combining
word embeddings with graph structure of
taxonomy could be of use for predicting
taxonomic relations. In this paper we com-
pare several approaches for attaching new
words to the existing taxonomy which are
based on the graph representations with
the one that relies on fastText embeddings.
We test all methods on Russian and En-
glish datasets, but they could be also ap-
plied to other wordnets and languages.

1 Introduction

Taxonomic structures are often used for the down-
stream tasks like lexical entailment (Herrera et al.,
2005), entity linking (Moro and Navigli, 2015),
named entity recognition (Negri and Magnini,
2004). Therefore, they always need to be up-to-
date and to keep up with the language change.
Moreover, with the rapid growth of lexical re-
sources for specific domains it becomes more and
more important to develop systems that could au-
tomatically enrich the existing knowledge bases
with new words or at least facilitate the manual
taxonomy extension process.

In this paper we tackle the taxonomy enrich-
ment task which aims at associating new words
(words not present in a taxonomy) with the ap-
propriate hypernym synsets from the taxonomy.
For instance, the word “foster-child” should be at-
tached to the hypernym synset “child.n.1” (which

refers to “child”, “kid”, “youngster”) from Word-
Net, and the word “cactus” – to the synset “suc-
culent.n.1”. A word may have multiple hyper-
nyms. The task of finding a single suitable synset
is difficult for a machine, and a model trained to
solve this task will inevitably return many false
answers if asked to provide only one synset can-
didate. On the other hand, if we relax the require-
ment of uniqueness and ask instead to provide N
(for example, 10 or 15) most suitable candidates,
this list can contain correct synsets with higher
probability. This setting is also suitable for the
manual annotation: presenting an annotator with
a small list of candidates will facilitate the anno-
tation process, because the annotator will not need
to look through all synsets of the taxonomy. Thus,
the task is usually formulated as the soft ranking
problem, where we need to rank all the synsets ac-
cording to their suitability for a given word.

While word embeddings demonstrate decent re-
sults for predicting hypernyms (Arefyev et al.,
2020; Dale, 2020), much less attention is paid
to the approaches based on graph representations.
We assume that graph-based representations are
complementary to the distributional word embed-
dings, as they capture the hypo-hypernymy rela-
tions from graphs. We expect that models using
graph representations could be beneficial for the
taxonomy enrichment task in combination with
distributed word vector representations or on their
own. We check our hypothesis on several mod-
els which make use of graph structures: node2vec
(Grover and Leskovec, 2016), Poincaré embed-
dings (Nickel and Kiela, 2017) and GCN autoen-
coder (Kipf and Welling, 2016a) and compare it
with an approach of Nikishina et al. (2020b) which
applies fastText (Bojanowski et al., 2017) and fea-
tures from Wiktionary. All in all, our contribution
is the exploration of graph-based representation
for the taxonomy enrichment task and its combi-
nation with the word distributed representations.



2 Related Work

The existing studies on the taxonomies can be di-
vided into three groups. The first one addresses
the Hypernym Discovery problem (Camacho-
Collados et al., 2018): given a word and a text cor-
pus, the task is to identify hypernyms in the text.
However, in this task the participants are not given
any predefined taxonomy to rely on. The second
group of works tackles Taxonomy Induction prob-
lem (Bordea et al., 2015; Bordea et al., 2016; Ve-
lardi et al., 2013), where the goal is to create a
taxonomy automatically from scratch. The third
group deals with the Taxonomy Enrichment task:
the participants need to extend a given taxonomy
with new words (Jurgens and Pilehvar, 2016; Nik-
ishina et al., 2020a). Both word and graph repre-
sentations can be applied to any of these tasks.

2.1 Approaches using word vector
representations

Approaches using word vector representations are
the most popular choice for all tasks related to tax-
onomies. When solving the Hypernym Discov-
ery problem in SemEval-2018 Task 9 (Camacho-
Collados et al., 2018) word embeddings are used
by most of participants. Bernier-Colborne and
Barrière (2018) predict the likelihood of the rela-
tionship between an input word and a candidate
using word2vec (Mikolov et al., 2013) embed-
dings. Word2vec is used by Berend et al. (2018)
to compute features to train a logistic regression
classifier. Maldonado and Klubička (2018) simply
consider top-10 closest associates from the Skip-
gram word2vec model as hypernym candidates.
Pre-trained GloVe embeddings (Pennington et al.,
2014) are also used by Shwartz et al. (2016) to ini-
tialize embeddings for their LSTM-based Hyper-
nymy Detection model.

Pocostales (2016) also solve the SemEval-2016
Task 13 on taxonomy induction with word embed-
dings: they compute the vector offset as the av-
erage offset of all the pairs generated and exploit
it to predict hypernyms for the new data. After-
wards, Aly et al. (2019) apply word2vec embed-
dings similarity to improve the approaches of the
SemEval-2016 Task 13 participants.

The vast majority of participants of SemEval-
2016 task 14 (Jurgens and Pilehvar, 2016) and
RUSSE’2020 (Nikishina et al., 2020a) also apply
word embeddings to find the correct hypernyms
in the existing taxonomy. For instance, Tanev and

Rotondi (2016) compute a definition vector for the
input word by comparing it with the definition vec-
tors of the candidates from a wordnet using co-
sine similarity. Kunilovskaya et al. (2020) train
word2vec embeddings from scratch and cast the
task as a classification problem. Arefyev et al.
(2020) compare the approach based on XLM-R
model (Conneau et al., 2020) with the word2vec
“hypernyms of co-hyponyms” method. It consid-
ers nearest neighbours as co-hyponyms and takes
their hypernyms as candidate synsets.

Summing up, the usage of distributed word vec-
tor representations is a simple yet efficient ap-
proach to the taxonomy-related tasks and can be
considered a strong baseline (Camacho-Collados
et al., 2018; Nikishina et al., 2020a).

2.2 Graph-based representations for
taxonomies

Graph-based representations for taxonomies have
already been tested on other tasks related to the
taxonomy enrichment. For instance, node2vec
embeddings (Grover and Leskovec, 2016) are used
by Liu et al. (2018) for taxonomy induction among
other network embeddings.

Another work on Taxonomy Induction which
benefits from graphs-based representations is the
one by Aly et al. (2019) who achieve state-of-the-
art results on all domains. The authors use hyper-
bolic Poincaré embeddings to enhance automati-
cally created taxonomies. The subtask of reattach-
ing orphan words to the taxonomy is quite similar
to taxonomy enrichment. However, the datasets
of the SemEval-2016 Task 13 are restricted to
specific domains, which leaves an open question
of the efficiency of Poincaré embeddings for the
general domain and larger datasets. Moreover,
Aly et al. (2019) use Hearst Patterns to discover
hyponym-hypernym relationships. This technique
operates on words, and cannot be transferred to
word-synset relations without extra manipulation.

Graph convolutional networks (GCNs) (Kipf
and Welling, 2016a) as well as graph autoencoders
(Kipf and Welling, 2016b) are mostly applied to
the link prediction task on large knowledge bases.
Rossi et al. (2020) present an expanded review of
the field and compare a wide variety of existing ap-
proaches. Graph embeddings are also often used
for other taxonomy-related tasks, e.g. entity link-
ing (Pujary et al., 2020). To the best of our knowl-
edge, GCN embeddings have never been used for



enhancing taxonomies like wordnets.
Thus, to the best of our knowledge, our work is

the first work on Taxonomy enrichment task which
considers wordnets from the prospective of graph
structure instead of lexico-semantic resource and
makes use of graph-based representations com-
puted from the synsets and hypo-hypernym rela-
tions for hypernym prediction.

3 Diachronic WordNet Datasets

For this task we use two diachronic datasets de-
scribed by Nikishina et al. (2020b): one for En-
glish, another one for Russian based respectively
on Princeton WordNet (Miller, 1995) and Ru-
WordNet taxonomies. Each dataset consists of a
taxonomy and a set of novel words to be added to
this resource. The statistics are provided in Table
1.

Dataset Nouns Verbs

WordNet1.6 - WordNet3.0 17 043 755
WordNet1.7 - WordNet3.0 6 161 362
WordNet2.0 - WordNet3.0 2 620 193

RuWordNet1.0 - RuWordNet2.0 14 660 2 154
RUSSE’2020 2 288 525

Table 1: Datasets statistics.

3.1 English Dataset
This dataset is created by selecting words which
appear in a newer WordNet version, but do not
appear in an older one. The words are added to
the dataset if only their hypernyms appear in both
snippets. Adjectives and adverbs are excluded,
as they often introduce abstract concepts and are
difficult to interpret by context. Besides, the tax-
onomies for adjectives and adverbs are worse con-
nected than those for nouns and verbs, thus mak-
ing the task more difficult.

3.2 Russian Dataset
For the Russian language we test methods on
the RUSSE’2020 (Nikishina et al., 2020a) and
non-restricted dataset by Nikishina et al. (2020b)
which are based on RuWordNet (Loukachevitch
et al., 2016), a taxonomy analogous to English
WordNet. The RUSSE dataset was filtered from
short words (< 4 symbols), diminutives, named
entities and other words that can distort the results
of the competition. In contrast to this data, the

non-restricted dataset did not undergo this prepro-
cessing and contains all new words from RuWord-
Net2.0.

3.3 Evaluation Metric

The goal of diachronic taxonomy enrichment is to
build a newer version of a wordnet given its older
version and a list of new terms to be added to the
wordnet. We cast this task as a soft ranking prob-
lem and use Mean Average Precision (MAP) score
for the quality assessment:

MAP = 1
N

∑N
i=1APi;

APi =
1
M

∑n
i preci × I[yi = 1],

(1)

where N and M are the number of predicted and
ground truth values, respectively, preci is the frac-
tion of ground truth values in the predictions from
1 to i, yi is the label of the i-th answer in the
ranked list of predictions, and I is the indicator
function.

This metric is widely used in the Hyper-
nym Discovery shared tasks, where systems are
also evaluated over the top candidate hypernyms
(Camacho-Collados et al., 2018). Following Nik-
ishina et al. (2020b), we use as gold standard
hypernyms not only the immediate hypernyms
of each lemma, but also the second-order hyper-
nyms( hypernyms of the hypernyms). Finding the
region where a word belongs can already be con-
sidered a success. Otherwise, the task of automat-
ically identifying the exact hypernym is too chal-
lenging.

The MAP score takes into account the whole
range of possible hypernyms and their rank in the
candidate list. We use the MAP computation strat-
egy as presented by Nikishina et al. (2020b). It
transforms a list of gold standard hypernyms into a
list of connectivity components, as new word may
have more than one candidate and they could and
could not be related directly.

4 Taxonomy Enrichment Methods

We test a number of methods that make use of tax-
onomy structure to predict hypernyms for the un-
seen words and compare their performance with
the existing approach that is based on fastText em-
beddings. We describe each method in the corre-
sponding section.



4.1 Word Embeddings with Features
Extracted from Wiktionary

We consider approach by Nikishina et al. (2020b)
as our baseline. There, a vector representation for
a synset in the taxonomy is created by averaging
vectors of all words from this synset. Then, for
each new word top 10 closest synset vectors are
retrieved (we refer to them as synset associates).
For each of these associates, we extract its imme-
diate hypernyms and hypernyms of all hypernyms
(second-order hypernyms). This list of first- and
second-order hypernyms forms our candidate set.
We rank the candidate set using the following fea-
tures:

• n × sim(vi, vhj
), where vx is a vector rep-

resentation of a word or a synset x, hj
is a hypernym, n is the number of occur-
rences of this hypernym in the merged list,
sim(vi, vhj

) is the cosine similarity of the
vector of the input word i and hypernym vec-
tor hj .

• candidate presence in the Wiktionary hyper-
nyms list for the input word (binary feature),

• candidate presence in the Wiktionary syn-
onyms list (binary feature),

• candidate presence in the Wiktionary defini-
tion (binary feature),

• average cosine similarity between the candi-
date and the Wiktionary hypernyms of the in-
put word.

Finally, feature weights are computed by
training a Linear Regression model with L2-
regularisation on a training dataset from the previ-
ous WordNet/RuWordNet version. Candidate hy-
pernyms are ranked by their model output score
and are limited to the k = 10 best candidates.

4.2 Candidate Generation Using Poincaré
Embeddings

Poincaré embeddings is an approach for “learn-
ing hierarchical representations of symbolic data
by embedding them into hyperbolic space — or
more precisely into an n-dimensional Poincaré
ball” (Nickel and Kiela, 2017). Poincare models
are trained on hierarchical structures and simulta-
neously capture hierarchy and similarity due to the
underlying hyperbolic geometry. According to the

authors, hyperbolic embeddings are more efficient
on the hierarchically structured data and may out-
perform Euclidean embeddings on several tasks,
e.g, in Taxonomy Induction (Aly et al., 2019).

Therefore, we use Poincaré embeddings of our
wordnets for the taxonomy enrichment task. We
train Poincaré ball model for our wordnets using
the default parameters and the dimensionality of
10, which yields the best results on the link pre-
diction task (Nickel and Kiela, 2017).

However, applying these embeddings to the task
is not straightforward, because Poincaré model’s
vocabulary is non-extensible. It means that new
words that we need to attach to the existing tax-
onomy will not have any Poincaré embeddings at
all and we cannot make use of the embeddings
similarity. To overcome this limitation, we com-
pute top-5 fastText nearest synsets (analogously
to the procedure described in Section 4.1) and
then aggregate embeddings in hyperbolic space
using Einstein midpoint following Gülçehre et al.
(2019). The resulting vector is considered as
an embedding of the input word in the Poincaré
space.

Then, we search for the word’s top-10 Poincaré
nearest neighbours and consider them as candi-
dates. We also try to extend the candidate list with
the hypernyms of each Poincaré associate and rank
them according to their frequency and similarity to
the input word.

4.3 Candidate Generation Using Node2vec
Embeddings

The hierarchical structure of the taxonomy is a
graph structure, and we may also consider tax-
onomies as undirected graphs and apply random
walk approaches to compute embeddings for the
synsets. For this purpose we apply node2vec
(Grover and Leskovec, 2016) approach which rep-
resents a “random walk of fixed length l” and
“two parameters p and q which guide the walk
in breadth of in depth”. Node2vec randomly
samples sequences of nodes and then applies a
Skip-gram model to train their vector represen-
tations. We train node2vec representations of all
synsets in our wordnets with the following param-
eters: dimensions = 300, walk length = 30,
num walks = 200. The other parameters are
taken from the original implementation.

However, analogously to Poincaré vector space,
node2vec model has no technique for representing



out-of-vocabulary words. Thus, it is unable to map
new words to the vector space. To overcome this
limitation, we apply the same technique of aver-
aging top-5 nearest neighbours from fastText and
considering their mean vector as the new word em-
bedding and search for the most similar synsets.

We also use an alternative approach to com-
puting out-of-vocabulary node2vec embeddings.
Namely, we apply linear transformation from the
source fastText to the target node2vec embed-
dings. For this purpose we train a matrix which
is used to project fastText embeddings of the input
words to the target node2vec space.

4.4 Link Prediction Using GCN Autoencoder
The models described above have a major short-
coming: the resulting vectors for the input words
heavily depend on their representations in fastText
model. This can lead to incorrect results if the
word’s nearest neighbour list is noisy and does not
reflect its meaning. In this case the noise will prop-
agate through the Poincaré model and result in in-
accurate output even if the Poincaré model is of
high quality.

Therefore, we test graph convolutional network
architecture (Kipf and Welling, 2016a) that makes
use of both fastText embeddings and the graph
structure of the taxonomy. In particular, we
use graph autoencoder model (Kipf and Welling,
2016b) whose encoder is a graph convolutional
network architecture. This model learns vector
representations in a completely unsupervised way:
it encodes the nodes in the network in a low-
dimensional space in such a way that the embed-
dings can be decoded into a reconstruction of the
original network. FastText embeddings are used
as input node features. Even though new words
are not connected to the taxonomy, it is still possi-
ble to compute their embeddings according to their
input node features.

For each new node we get its vector represen-
tation from the encoder and then predict the prob-
ability of the link between the new node and all
other nodes in the graph. The top-10 synsets from
the existing taxonomy with highest probabilities
are considered as final candidates.

4.5 Combining Word and Graph
Representations

Additionally, we extend the above model with fea-
tures based on node2vec and Poincaré embed-
dings. Namely, we use two extra features: co-

sine similarity between the candidate and the input
word in node2vec vector space and similarity be-
tween the candidate and the input word in Poincaré
ball model. The overall formula is the following:

scorehj
= w ·m =

n∑
i=1

wimi (2)

Feature weights from the Logistic Regression
model are denoted as vector w, m is the feature
vector.

5 Experiments

In this section, we report the performance of our
models on the Taxonomy Enrichment task and dis-
cuss reasons of low performance of methods ex-
ploiting hierarchical structure of the taxonomy.

5.1 Results
We test the models suggested in Section 4 on both
English (Table 2) and Russian (Table 3) datasets.
It is clearly seen that distributed word vector repre-
sentations outperform graph-based approaches by
a large margin.

Even though Poincaré ball model is designed
for the taxonomic structures, the absence of vec-
tor representations for the OOV words dramati-
cally affects the results. The aggregated vector of
top-5 nearest neighbours retrieved from fastText
can often provide a noisy or an overly general rep-
resentation. Such representation is likely to yield
incorrect hypernyms even if the Poincaré embed-
dings for the taxonomy are of perfect quality.

Likewise, node2vec model also possesses a
non-extensible set of embeddings for the taxo-
nomic synsets and uses averaging of fastText asso-
ciates for representing the new words which nega-
tively affects the results. However, the approach
which uses node2vec embeddings and averages
top-5 fastText associates is the best-performing
approach across methods with graph representa-
tions. Moreover, node2vec embeddings perform
much better than the Poincaré embeddings. Ein-
stein midpoint aggregation used in our Poincaré-
based model makes generalisation of the associate
synsets, which results in too abstract synset can-
didates. On the other hand, averaging node2vec
vectors does not have such an effect. The differ-
ences between the two models are illustrated by
the examples in Table 5.

However, node2vec embeddings still rely on the
fastText similarities of the closest embeddings to



method
nouns verbs

1.6-3.0 1.7-3.0 2.0-3.0 1.6-3.0 1.7-3.0 2.0-3.0

Poincaré embeddings 0.0593 0.0658 0.1013 0.1255 0.0656 0.1092

node2vec (top-5 fastText associates) 0.1938 0.2187 0.1554 0.1514 0.1091 0.1469
node2vec (projection) 0.0400 0.0273 0.0218 0.1041 0.0517 0.0377

GCN autoencoder 0.1570 0.1751 0.1677 0.1088 0.0937 0.1173

Nikishina et al. (2020b) 0.3372 0.3800 0.3443 0.2696 0.2002 0.2366
Nikishina et al. (2020b) + node2vec 0.3130 0.3797 0.3402 0.2591 0.1948 0.1999
Nikishina et al. (2020b) + node2vec + Poincaré 0.3112 0.3498 0.2995 0.2508 0.1770 0.2482

Table 2: MAP scores for the taxonomy enrichment methods for the non-restricted English datasets of
different WordNet versions.

method
nouns verbs

non-restricted restricted non-restricted restricted

Poincaré embeddings 0.1431 0.2517 0.1050 0.1397

node2vec (top-5 fastText associates) 0.2660 0.3659 0.1681 0.2518
node2vec (projection) 0.1854 0.2527 0.1800 0.2531

GCN autoencoder 0.1826 0.2605 0.0948 0.1406

Nikishina et al. (2020b) 0.4132 0.5515 0.2973 0.3889
Nikishina et al. (2020b) + node2vec 0.4095 0.5575 0.2931 0.3834
Nikishina et al. (2020b) + node2vec + Poincaré 0.4141 0.5587 0.3056 0.3910

Top-1 for nouns: Yuriy 0.3932 0.5522 0.2925 0.4355
Top-1 for nouns: Yuriy, no search engine features 0.3692 0.5071 0.2665 0.3888
Top-1 for verbs: Dale (2020) 0.2878 0.4178 0.3398 0.4483

Table 3: MAP scores for the taxonomy enrichment methods for the Russian datasets non-restricted and
restricted (short words, named entities, diminutives excluded) datasets from (Nikishina et al., 2020a)

the input word vector and propagate the fastText
inaccuracies. Linear projection which is an al-
ternative option for the computation of node2vec
vectors for out-of-vocabulary words, does not
solve the problem either. As it can be seen in Ta-
ble 5, candidates generated using node2vec with
the linear projection come from completely irrele-
vant domains.

GCN autoencoder does not outperform the ma-
jority of the approaches for neiter of languages de-
spite being a holistic and self-sufficient approach
aimed at combining word representations with
the graph structure of taxonomy. The model as-
signs high probabilities to all synsets in the word’s
neighbourhood in the graph, whereas only direct
and second-order hypernyms are the correct an-
swer. Taxonomic “uncles”, “siblings”, “cousins”,
and other distant “relatives” are not welcome.

The combined approach is not very consistent:
incorporating graph-based features leads to an in-
crease in scores for the Russian nouns and verbs
datasets, whereas for the English dataset the ap-
proach does not yield any improvement except for
the WordNet 2.0-3.0 dataset. Nevertheless, the
combined method performs on par with the best
RUSSE’2020 system for nouns track. Despite the
close scores, our model can be considered superior
to the winner of RUSSE’2020, because it is more
stable across languages and easier to replicate.The
best RUSSE’2020 approach for nouns extensively
uses external tools such as online Machine Trans-
lation (MT) and search engines. This approach is
difficult to replicate, because its performance for
different languages can vary significantly, and we
have no means for quantifying this difference.



Francis Joseph I
emperor.n.01, sovereign.n.01

Poincaré node2vec node2vec projection

person.n.01 king.n.01 fish genus.n.01
entity.n.01 edward.n.02 genus.n.02

life form.n.01 herod.n.01 mammal genus.n.01
causal agent.n.01 arthur.n.02 city.n.01

worker.n.01 messiah.n.03 municipality.n.01
european.n.01 louis xiii.n.01 arthropod genus.n.01

leader.n.01 louis xiv.n.01 dicot genus.n.01
object.n.01 frederick ii.n.01 asterid dicot genus.n.01
ruler.n.01 belshazzar.n.01 animal order.n.01

animal.n.01 pyrrhus.n.01 asterid dicot genus.n.01

GCN fastText combined (best)

day.n.04 king of england.n.01 king of england.n.01
metallic element.n.01 king.n.01 king.n.01

large integer.n.01 pope.n.01 holy roman emperor.n.01
semitic deity.n.01 islamic calendar month.n.01 pope.n.01
hindu deity.n.01 holy roman emperor.n.01 deliberation.n.02

hindu calendar month.n.01 general.n.01 islamic calendar month.n.01
month.n.02 calendar month.n.01 emperor.n.01

anomalistic month.n.01 emperor.n.01 missionary.n.02
chemical element.n.01 frank.n.01 frank.n.01

religionist.n.01 jew.n.01 gravida.n.01

Table 4: Prediction noun examples from the English v 1.6-3.0 dataset. Underlined bold text denotes
predictions of the model from the ground truth.

5.2 Error Analysis

In order to better understand the difference in sys-
tems performance and their main difficulties, we
performed quantitative and qualitative analysis of
the results on the English nouns subset.

First of all, we wanted to know to what extent
the set of correct answers of graph-based models
overlaps with the one of fastText-based models. In
other words, we would like to know if the graph
representations are able to discover hypernymy re-
lations which could not be identified by word em-
beddings.

Therefore, for each new word we computed av-
erage precision (AP) score and compared those
scores across different approaches. We found that
at least 90% words for which fastText failed to
identify correct hypernyms (i.e. words with AP=0)
also have the AP of 0 in all the graph-based mod-
els. This means that if fastText cannot provide
correct hypernyms for a word, other models can-
not help either. Moreover, only 8% to 55% words

correctly predicted by fastText are also correctly
predicted by any of the graph-based models. At
the same time, the number of cases where graph-
based models perform better than fastText is very
low (3–5% cases). Thus, combining them cannot
improve the performance significantly. This ob-
servation is corroborated by the scores of the com-
bined models.

We list the candidate synsets predicted by dif-
ferent methods in Table 5. They demonstrate the
main features of the tested approaches. As we can
see, the Poincaré embeddings retrieved by aggre-
gating words from fastText provide too broad con-
cepts which are clearly too far from the correct an-
swers (“object”, “person”, “element”). GCN is too
far from the correct answers in general, whereas
node2vec results depend on the fastText embed-
dings and are semantically close to the ground
truth synsets.

The candidates provided by fastText model
combined with graph-based models features are



overreact
react.v.01, act.v.01

Poincaré node2vec node2vec projection

change.v.01 react.v.02 play.v.01
act.v.01 react.v.01 compete.v.01

touch.v.01 pursue.v.04 utter.v.02
judge.v.02 act.v.01 change.v.01

change magnitude.v.01 run down.v.01 shape.v.03
interact.v.01 backfire.v.01 compete.v.01
think.v.03 buck.v.02 adjust.v.01
affect.v.01 marry.v.02 correct.v.01
tell.v.02 answer.v.02 fast.v.02

participate.v.01 wrench.v.01 travel.v.01

GCN fastText combined (best)

retaliate.v.02 act.v.01 act.v.01
exacerbate.v.02 react.v.02 react.v.01

cramp.v.01 react.v.01 react.v.02
respond.v.03 change.v.01 make.v.01

upset.v.01 affect.v.05 change.v.01
upset.v.06 make.v.01 fear.v.02

dictate.v.02 dramatize.v.02 terrify.v.01
irritate.v.02 misjudge.v.01 take.v.06

hurt.v.04 change state.v.01 misjudge.v.01
sedate.v.01 right.v.01 burn.v.01

Table 5: Prediction verb examples from the English v 1.6-3.0 dataset. Underlined bold text denotes
predictions of the model from the ground truth.

quite similar to those generated by the fastText
model without additional features. Therefore, it
is reasonable that the difference in scores is minor.
However, for some cases (like “emperor.n.01” and
“react.v.01” in Table 5) graph vector representa-
tions slightly improve the ranking.

6 Conclusion

In this work, we experimented with the graph-
based representations for the taxonomy enrich-
ment task and compared them to word vector
representations. We tested approaches based on
Poincaré and node2vec embeddings along with the
approach based on graph autoencoder to predict
hypernym synsets for the input word.

Our results show that the use of word vector
representations is much more efficient than any of
the tested graph-based approaches. Moreover, our
baseline method (candidates retrieved from fast-
Text nearest neighbour list and ranked with fea-
tures extracted from Wiktionary) does not benefit

from graph-based methods. Namely, combining
the baseline scoring function with Poincaré and
node2vec similarities results in marginal improve-
ments for some datasets, but this does not hold for
all of them.

According to our experiments, word vector rep-
resentations are simple, powerful, and extremely
effective instrument for taxonomy enrichment, as
the contexts (in a broad sense) extracted from the
pre-trained fastText embeddings are sufficient to
attach new words to the taxonomy.

Error analysis also reveals that the correct
synsets identified by graph-based models are usu-
ally retrieved by the fastText-based model alone.
This makes graphs representations irrelevant and
excessive. Nonetheless, there exist cases where
graph representations were able to identify cor-
rectly some hypernyms which were not captured
by fastText.

Despite the discouraging first results of the ap-
plication of graph-based methods, we suggest that



the taxonomy enrichment task could still bene-
fit from them. In order to improve their perfor-
mance, we plan to switch from linear transfor-
mation to non-linear to project fastText embed-
dings to node2vec and to apply recently published
unsupervised graph word representations Graph-
Glove (Ryabinin et al., 2020). Moreover, we find
it promising to experiment with temporal embed-
dings such of those of Goel et al. (2020) for the
taxonomy enrichment task.
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