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Abstract

The availability of language representations
learned by large pretrained neural network
models (such as BERT and ELECTRA) has
led to improvements in many downstream Nat-
ural Language Processing tasks in recent years.
Pretrained models usually differ in pretraining
objectives, architectures, and datasets they are
trained on which can affect downstream perfor-
mance. In this contribution, we fine-tuned Ger-
man BERT and German ELECTRA models to
identify toxic (subtask 1), engaging (subtask
2), and fact-claiming comments (subtask 3) in
Facebook data provided by the GermEval 2021
competition. We created ensembles of these
models and investigated whether and how clas-
sification performance depends on the num-
ber of ensemble members and their composi-
tion. On out-of-sample data, our best ensem-
ble achieved a macro-F1 score of 0.73 (for all
subtasks), and F1 scores of 0.72, 0.70, and
0.76 for subtasks 1, 2, and 3, respectively.

1 Introduction

Social media plays a role in the spreading of prob-
lematic content, ranging from conspiracy theories
and concerted misinformation campaigns to offen-
sive language in user comments (Zhuravskaya et al.,
2020). Moderating comments remains a challenge
due to the ever-increasing amount of user-generated
content created daily. One promising approach to
addressing this challenge are techniques from Nat-
ural Language Processing (NLP) that support man-
ual moderation processes by, for example, alerting
human moderators to potentially problematic com-
ments.

Among the many factors that have driven re-
cent progress in NLP, we note in particular (i)
methodological advances in language modeling
and (ii) the availability of annotated data due to
shared tasks. Recent methodological advances can

be traced back to the invention and availability of
deep neural network models. A major contribution
was the invention of the transformer architecture,
which harnesses self-attention mechanisms to ef-
fectively model long-range correlations in series
of tokens (e.g., sentences) (Vaswani et al., 2017).
Based on the transformer architecture, neural net-
work models such as BERT (Devlin et al., 2019;
Rogers et al., 2020) were proposed and trained
in a self-supervised fashion on large unannotated
text corpora. Language representations learned by
BERT turned out to be effective in many down-
stream tasks, leading to new state-of-the-art NLP
systems. While masked language modeling and
next sentence prediction are used as objectives
in self-supervised pretraining to learn representa-
tions in BERT, other pretraining objectives such as
replaced token detection (ELECTRA, Clark et al.
(2020)) have been demonstrated to yield language
representations that can be better suited for various
downstream tasks (Xia et al., 2020). Furthermore,
language representations have been learned in mul-
tilingual language models (such as mBERT) and
in language specific BERT models (Nozza et al.,
2020). Recent German specific language models in-
clude the BERT-based models GBERT (Chan et al.,
2020) and GottBERT (Scheible et al., 2020) as well
as the ELECTRA based model GELECTRA (Chan
et al., 2020).

The second factor driving progress in NLP has
been recurring shared tasks that foster the exchange
of ideas, the development and comparative assess-
ment of methods, as well as the availability of
annotated data (Nissim et al., 2017). In addition
to multilingual shared task campaigns (see, e.g.,
Mandl et al. (2019); Basile et al. (2019)), there ex-
ist language-specific shared task evaluations such
as GermEval which focus on NLP for the German
language. A series of GermEval tasks addressed the
challenge of reliably identifying offensive language
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Frau Barley war mit ihrem dummdreisten
überheblichen Grinsen wirklich nicht zu
ertragen. (TOXIC)

Da dreht sich jemand im Kreis. Die 7
Prozent kann der Vermieter doch auf die
Miete schlagen. Diese starke Position
ergibt sich durch den Markt (Angebot und
Nachfrage), da ist es egal. [...] (ENGAGING,
FACT-CLAIMING)

Figure 1: Samples (Facebook comments) from the
dataset of the GermEval 2021 shared task.

(Wiegand et al., 2018) and distinguishing between
profane, offensive, or abusive language found in
Twitter tweets (Struß et al., 2019). The GermEval
2021 shared task on identifying toxic, engaging,
and fact-claiming comments (Risch et al., 2021)
provided German comments from a Facebook page
of a political talk show of a German television
broadcaster.

In this contribution, we investigate the ability
of ensembles of GBERT and GELECTRA mod-
els to identify toxic, engaging, and fact-claiming
comments. Our work was inspired by previous
studies on German BERT models (Graf and Salini,
2019) and ensemble approaches (Risch and Kres-
tel, 2018, 2020). We study the dependence of
classification performance on the number of en-
semble members and ensemble composition. Fi-
nally, we describe the models that were evaluated
in the GermEval 2021 shared tasks and report per-
formance scores achieved on out-of-sample data.
The implementation details of our experiments are
available online1.

2 Data and tasks

The dataset of the shared task consisted of 3244
annotated Facebook comments and was provided
by the organizers of GermEval 2021 (Risch et al.,
2021). The comments were drawn from a Face-
book page of a political talk show of a German
television broadcaster from February till July 2019
and were anonymized by replacing links to users
by @USER, links to the show by @MEDIUM, and
links to the moderator of the show by @MODER-
ATOR. Four trained annotators labeled the data by

1https://github.com/fhac-fb9-ds/
germeval2021

Figure 2: Venn diagram showing the numbers of
comments that were labeled as toxic, engaging, or
fact-claiming. 33 % of all comments were not assigned
any class, whereas 24 % were attributed to more than
one class.

three categories, indicating toxic, engaging, and
fact-claiming comments (see figure 1).

The shared task consisted of three binary classi-
fication subtasks that aimed at predicting whether
a given comment belonged to a category (class)
or not (Risch et al., 2021). Comments were con-
sidered toxic (subtask 1) when they could violate
the rules of polite behavior or violated democratic
discourse values. Automated identification of such
comments can be particularly valuable for man-
agers of online communities. Comments were con-
sidered engaging (subtask 2) when they were in
line with deliberative principles such as rationality,
reciprocity, and mutual respect. Such comments
might encourage user engagement and could be
made more visible in online communities. Finally,
comments were considered fact-claiming (subtask
3) if they contained assertion of facts and/or pro-
vided evidence by citing external sources. Identify-
ing such comments may constitute a preprocessing
step that could assist community managers to filter
out misinformation and fake news.

We did not observe any major class imbal-
ance (Haixiang et al., 2017) as all three classes
occurred with similar frequencies in the dataset
(35% toxic, 27% engaging, 34% fact-claiming).
However, the Venn diagram (see figure 2) demon-
strated significant overlap between classes where
24% of all comments were attributed to more than
one class. For instance, the large overlap between
the engaging and the fact-claiming classes may
point towards a correlation between these two
classes. Such label correlations can be exploited by
multi-label classification approaches to improve
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classification performance (Zhang and Zhou, 2014).
Thus we pursued a two-fold strategy. (i) In our first
approach, we trained a multi-label classifier to pre-
dict all the possible class attributions for a given
comment. Such models are called multi-label in the
following. (ii) In our second approach, we trained
separate binary classifiers that aimed at distinguish-
ing between toxic and non-toxic, engaging and non-
engaging, or fact-claiming and non-fact-claiming
classes, respectively. This approach of transform-
ing a multi-label classification task into multiple
single-label classification tasks is also known as a
binary relevance transformation (Zhang and Zhou,
2014). We call such models single-label in the
following. Note that in this case, training a size
30 ensemble to classify comments means training
three separate size 30 ensembles, each making pre-
dictions for one of the three binary classification
tasks.

3 Methods

3.1 Preprocessing and data splits

Preprocessing. All data (i.e., training and test data)
was preprocessed as follows. First, all duplicates in
the training data were removed, reducing the 3244
training samples to 3226 unique samples. In a sec-
ond step, all in-word whitespaces were removed
(e.g. transforming the sequence “A K T U E L L !”
into the word “AKTUELL!”) (Paraschiv and Cer-
cel, 2019). Third, emojis were buffered with ad-
ditional whitespaces such that words immediately
followed by an emoji were not tokenized as un-
known and emojis were tokenized separately (e.g.,
transforming the sentence “I always start my day
with a coffee ” into “I always start my day
with a coffee ”) (Risch and Krestel,
2020). Fourth, any leading, trailing or consecutive
whitespaces were removed. Last, all comments
were limited to a maximum length of 200 tokens to
save computational resources and speed up training.
Only 49 out of the 3226 unique sentences in the
training data and 21 out of 944 sentences in the test
data were affected by this step.

Data splits. During model exploration, models
were trained with a 5-fold cross validation scheme
(i.e., with 5 folds, each containing 20% of the ran-
domly shuffled training data). The final models
evaluated by GermEval 2021 were trained on all
training data (i.e., on all folds) to optimize model
fitting. Furthermore, during model exploration as
well as for the final models, 10% of the data in the

training folds was randomly selected to act as an
early stopping set (see section 3.3) that was not
used for training.

3.2 Models

We studied two recent transformer-based German
language models (Chan et al., 2020) called GBERT,
based on the BERT architecture (Devlin et al.,
2019), and GELECTRA, based on the ELECTRA
architecture (Clark et al., 2020). Both models use
a tokenizer with a vocabulary size of 31k cased
words. From the different pretrained versions of
these models, we chose gbert-large2 and gelectra-
large3, both with a hidden states count of 1024.

A classification head was added on top of
the first output vector of both pretrained trans-
former models. In the GBERT architecture, the
mentioned output vector was generated by in-
serting a classification token at the beginning
of every input sequence, which is used for the
next sentence prediction task during pretraining
(Devlin et al., 2019). The classification head con-
sisted of a linear layer with the same hidden size
as the transformer model, followed by a tanh ac-
tivation function and another linear layer (Wolf
et al., 2020). Although the GELECTRA architec-
ture does not use any next sentence prediction task
during pretraining (Clark et al., 2020), a classifica-
tion token is still prepended to the transformer input
and can be used during fine-tuning. The classifica-
tion head of GELECTRA had the same architecture
as that of the GBERT model, except that a GELU
activation (Hendrycks and Gimpel, 2016) was used
instead of a tanh activation (Wolf et al., 2020).

All linear layers of both classification heads were
initialized randomly, except for the first layer of
the GBERT classifier, which was initialized with
the weights learned during the pretraining task. De-
pending on whether the models were single-label
or multi-label classifiers, the final linear layer con-
sisted of either two outputs followed by a softmax
function or three outputs followed by a sigmoid
function.

3.3 Training

Evaluation scores. To evaluate the prediction per-
formance of a model, we determined the F1 score

2https://huggingface.co/deepset/
gbert-large

3https://huggingface.co/deepset/
gelectra-large
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following the definition used throughout the Ger-
mEval shared tasks (Wiegand, 2021). In Ger-
mEval, the F1 score of a binary classifier is de-
termined by calculating precision and recall for
the positive class (e.g., ”toxic”) and for the neg-
ative class (e.g. ”non-toxic”). Precision and re-
call are then averaged over the two classes. The
F1 score is calculated as harmonic mean over
averaged recall and averaged precision. By tak-
ing the arithmetic mean of F1 scores of each bi-
nary classifier, we obtained the macro-F1 score
F1 = 1

3(F1toxic + F1engaging + F1fact). Dur-
ing model exploration, F1 scores were determined
for all five validation folds, and their mean and
standard deviation were determined. We consid-
ered a model to be superior to other models if its
F1 score averaged over all validation folds (of the
cross validation) was larger than those of the other
models.

Training scheme. Each model (i.e., transformer
with classification head) was trained with a batch
size of 24 samples for 10 epochs using the AdamW
optimizer (Loshchilov and Hutter, 2019). We used
a learning rate of η = 5·10−6 with a linear warmup
on the first 30% of the training steps from 0 to η.
Every 40 updates of the gradients, the models were
evaluated on the early stopping data by calculating
the macro-F1 score. If the score did not increase
for two consecutive evaluations the training was
interrupted and the model achieving the largest
F1 score on the early stopping set was used for
evaluation on the validation fold or test data.

Loss functions. When training single-label mod-
els, we used a negative log-likelihood loss function.
Multi-label models were trained by minimizing the
binary cross entropy loss function averaged over
the three classes for every sample in a mini-batch.

Threshold selection. In multi-label models, a
sample (comment) from the dataset was predicted
to belong to those classes for which the respective
class probabilities of the model exceeded a certain
threshold. Since multi-label models can attribute a
sample to three classes, three different thresholds
needed to be determined. We chose these thresh-
olds by evaluating the model for threshold values
between 0 and 1 (exploring this range with a step
size of 0.025) on the data reserved for early stop-
ping and accepting the values achieving the highest
F1 scores for each class separately. In single-label
models, we did not need to chose any thresholds
since the class membership of a sample was pre-
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Figure 3: Dependence of the average macro-F1
score (lines) on ensemble size for different ensem-
ble compositions. Standard deviations are shown
as blue shaded area for the multi-label ensemble
GBERT/GELECTRA. Note that for ensemble sizes
larger than 30, average macro-F1 scores differed be-
tween ensembles only in their third decimal place, a
variation that we considered insignificant.

dicted by identifying the largest output probability
of the two output neurons.

3.4 Ensembling

Training complex models such as GBERT or
GELECTRA on small datasets can lead to over-
fitting. Following the work by Risch and Krestel
(2020), we counteracted this phenomenon by cre-
ating ensembles of models using bootstrap aggre-
gation. Ensemble members differed in the initial
weights of the classification layers and the data
samples randomly selected for early stopping. The
predictions of an ensemble were determined by
averaging the predicted probabilities of the ensem-
ble members (soft majority voting). In single-label
models, a model’s prediction was then determined
by identifying the output neuron associated with the
largest ensemble-averaged output probability. In
multi-label models, a model predicted a sample to
belong to certain classes if ensemble-averaged class
probabilities exceeded optimal thresholds. The op-
timal thresholds were determined by evaluating
each ensemble member for all thresholds on the
early stopping data (see section 3.3) and accepting
the thresholds with the highest macro-F1 score as
the optimal values.

4 Results

Model exploration. We investigated whether
and how classification performance (quantified by
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F1 F1toxic F1engaging F1fact
model exploration

50 GELECTRA
multi-label 0.765 (0.008) 0.730 (0.018) 0.782 (0.018) 0.784 (0.019)
50 GBERT
multi-label 0.760 (0.002) 0.720 (0.006) 0.777 (0.015) 0.782 (0.013)

25+25 GELECTRA/GBERT
multi-label 0.763 (0.007) 0.726 (0.010) 0.780 (0.015) 0.784 (0.015)

25+25 GELECTRA/GBERT
single-label 0.768 (0.006) 0.736 (0.011) 0.782 (0.014) 0.787 (0.013)

final submissions
200 GELECTRA

multi-label 0.717 0.713 0.690 0.748
200+200 GELECTRA/GBERT

multi-label 0.726 0.716 0.699 0.763
30+30 GELECTRA/GBERT

single-label 0.699 0.718 0.658 0.723
corrected scores 0.727 0.717 0.697 0.768

Table 1: F1 scores achieved by different ensembles during model exploration on the validation folds (rows 1–4;
mean and standard deviation over the folds) and F1 scores achieved by the submitted models on the test data as
reported by the GermEval 2021 organizers (rows 5–7; best scores are shown in bold). The corrected scores shown
in the last row were calculated after correcting an error identified after submission.

macro-F1 score) depended on (i) ensemble size,
(ii) ensemble composition, and (iii) on whether
ensemble members can exploit label correlations
(multi-label models) or not (single-label models).
To study the effect of (ii), we compared the classi-
fication performance of different ensemble compo-
sitions. The first ensemble consisted of fine-tuned
multi-label GELECTRA models, while the sec-
ond ensemble consisted of fine-tuned multi-label
GBERT models. In a third ensemble we used equal
parts of fine-tuned multi-label GELECTRA and
GBERT models. To study the effect of (iii), we
compared the third ensemble with a fourth en-
semble which was composed of equal parts of
fine-tuned single-label GELECTRA and GBERT
models. Finally, we investigated the effect of (i) via
a bootstrap experiment following Risch and Krestel
(2020).

The bootstrap experiment was carried out using
a 5-fold cross validation scheme. We trained 100
models each of multi-label GBERT and multi-label
GELECTRA, and 50 models each of single-label
GBERT and single-label GELECTRA on each
cross-validation split. For a given ensemble size,
we created 1000 ensembles by randomly sampling
with replacement from the set of trained models.
Each ensemble made predictions on a validation

fold by soft majority voting. The average macro-F1
score of an ensemble was determined by averaging
the macro-F1 scores obtained on each of the 5 vali-
dation folds. Thus, for a given ensemble size, we
obtained 1000 average macro-F1 scores.

Figure 3 shows the mean of the average macro-
F1 scores obtained for different ensemble sizes and
ensemble compositions. We observed classifica-
tion performance to increase with ensemble size,
irrespective of model composition and of whether
models could or could not exploit label correlations.
Largest increases were found for ensemble sizes up
to 15 ensemble members, which is consistent with
a previous study on a different classification task
(Risch and Krestel, 2020). Moreover, macro-F1
scores continued to increase beyond the ensemble
size of 15.

For a given ensemble size larger than 30, clas-
sification performance between ensembles of the
different compositions varied only in the third dec-
imal of their macro-F1 score, a variation that we
did not consider significant. Ensembles consist-
ing of 100% GELECTRA models, 100% GBERT
models, or 50% GELECTRA and 50% GBERT
models yielded comparable macro-F1 scores. Like-
wise, ensembles consisting of either multi-label or
single-label models showed comparable macro-F1
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scores for a fixed ensemble size. These observa-
tions were confirmed by F1 scores obtained for
ensembles of size 50, reported in table 1 (rows
1–4).

Submitted models. Three ensembles were sub-
mitted and evaluated on the test data of the shared
tasks reflecting the lines of investigation laid out
before. The evaluated ensembles were (1) an en-
semble of 200 multi-label GELECTRA models,
(2) an ensemble of 200 multi-label GELECTRA
and 200 multi-label GBERT models, and (3) an
ensemble of 30 single-label GELECTRA and 30
single-label GBERT models which were trained on
all the training data (see section 3.3). We note that
time and computational constraints limited ensem-
ble sizes.

On the test data of the shared task, ensemble
(2) achieved the largest macro-F1 score of 0.73,
followed by ensemble (1) with 0.72 and (3) with
0.70 (see table 1, rows 5–7). We identified a soft-
ware bug after submission deadline that affected the
scores calculated for ensemble (3) which achieved
a corrected macro-F1 score of 0.73. These results
supported observations made during model explo-
ration that ensemble composition and classification
type did not significantly affect classification per-
formance for ensemble sizes larger than 30.

5 Conclusion

We trained ensembles of fine-tuned German
language models, namely GELECTRA and
GBERT, to classify German toxic, engaging, and
fact-claiming comments in the GermEval 2021
shared task. We investigated whether classifica-
tion performance (quantified by macro-F1 scores)
depended on (i) ensemble size, (ii) ensemble com-
position, or (iii) whether models were trained as
multi-label classifiers (and thus potentially exploit-
ing label correlations) or as single-label classifiers.
We observed that ensemble size had a significant
effect on classification performance, with more en-
semble members leading to better macro-F1 scores,
consistent with previous observations by Risch and
Krestel (2020) on a different dataset. Neither en-
semble composition nor model classification type
(multi- or single-label) showed significant differ-
ent classification performance for the studied pa-
rameters when the ensemble size was larger than
30. Two ensembles achieved the largest macro-F1
score (0.73) on the test data, namely the multi-label
and single-label ensembles consisting of GELEC-

TRA and GBERT models.
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