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Abstract

This paper describes SimpleNER, a model de-
veloped for the sentence simplification task
at GEM-2021. Our system is a monolingual
Seq2Seq Transformer architecture that uses
control tokens pre-pended to the data, allow-
ing the model to shape the generated simpli-
fications according to user desired attributes.
Additionally, we show that NER-tagging the
training data before use helps stabilize the ef-
fect of the control tokens and significantly im-
proves the overall performance of the system.
We also employ pretrained embeddings to re-
duce data sparsity and allow the model to pro-
duce more generalizable outputs.

1 Introduction

Sentence simplification aims at reducing the lin-
guistic complexity of a given text, while preserving
all the relevant details of the initial text. This is
particularly useful for people with cognitive dis-
abilities (Evans et al., 2014), as well as for second
language learners and people with low-literacy lev-
els (Watanabe et al., 2009). Text and Sentence
simplification also play an important role within
NLP. Simplification has been utilized as a prepro-
cessing step in larger NLP pipelines, which can
greatly aid learning by reducing vocabulary and
regularizing of syntax.

In our model, we use control tokens to tune a
Seq2Seq Transformer model (Vaswani et al., 2017)
for sentence simplification. We take character
length compression, extent of paraphrase, and lex-
ical & syntactic complexity as attributes to gauge
the transformations between complex and simple
sentence pairs. We then represent each of these
attributes as numerical measures, which are then
added to our data. We show that this provides a
considerable improvement over as-is Transformer
approaches.

The use of control tokens in Seq2Seq models for
sentence simplification has been explored before
(Martin et al., 2020). But this approach has shown
to add data sparsity to the system. This is because
the model is required to learn the distribution of
the various control tokens and the expected outputs
across the ranges of each control token. To mitigate
this sparsity, we process our data to replace named
entities with respective tags using an NER tagger.
We show that this reduces the model vocabulary
and allows for greater generalization. To further
curb the data sparsity, we make use of pre-trained
embeddings as initial input embeddings for model
training. Our code is publicly available here. 1

2 Background

2.1 Sentence Simplification

Past approaches towards sentence simplification
have dealt with it as a monolingual machine transla-
tion(MT) task (specifically Seq2Seq MT (Sutskever
et al., 2014)). This meant training MT architectures
over complex-simple sentence pairs, either aligned
manually (Alva-Manchego et al., 2020; Xu et al.,
2016) or automatically (Zhu et al., 2010; Wubben
et al., 2012) using large complex-simple repository
pairs such as the English Wikipedia and the Simple
English Wikipedia.

Some implementations also utilize reinforce-
ment learning (Zhang and Lapata, 2017) over the
MT task, with automated metrics such as SARI (Xu
et al., 2016), information preservation, and gram-
matical fluency constituting the training reward.

2.2 Controllable Text Generation

A recent approach towards sentence simplification
involves using control tokens during machine trans-
lation (Martin et al., 2020). For simplification, it

1https://github.com/kvadityasrivatsa/
gem_2021_simplification_task

https://github.com/kvadityasrivatsa/gem_2021_simplification_task
https://github.com/kvadityasrivatsa/gem_2021_simplification_task
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Control Attribute Control Measure Control Token
Amount of compression Compression ratio <NbChars x.xx>
Paraphrasing Levenshtein similarity <LevSim x.xx>
Lexical complexity Avg. third-quartile of log-ranks <WordRank x.xx>
Syntactic complexity Max dependency tree depth <DepTreeDepth x.xx>

Table 1: Control Tokens used for Modelling

encodes and enforces changes in certain attributes
of the text. Similar approaches for controlling gen-
erated text have been explored in other domains:
Filippova (2020) uses control tokens to estimate
and control the amount of hallucination in gener-
ated text, Fan et al. (2018) explored pre-pending
control tokens to the input text for summarization,
providing control over the length of the output, and
customizing text generation for different sources.

Our model makes use of control tokens similar
to Martin et al. (2020) to tailor the generated sim-
plifications according to the extent of changes in
the following attributes: character length, extent of
paraphrasing, and lexical & syntactic complexity.
These attributes are represented by their respective
numerical measures (see 3.1), and then pre-pended
to the complex sentences using in specific formats
(Table 1). Alongside this, we use NER tagging
and pre-trained input embeddings as a method to
curb data sparsity and unwanted named entity (NE)
replacements.

3 System Overview

3.1 Control Attributes

Following Martin et al. (2020), we encode the fol-
lowing attributes during training and attempt to
control them during inference time. Eg:

Complex: ”<NbChars 0.80> <LevSim 0.76>
<WordRank 0.79> it is particularly famous for the
cultivation of kiwifruit .”

Simple: ”It is mostly famous for the growing of
kiwifruit .”

3.1.1 Amount of compression
Compression in sequence length has been shown
to be correlated with the simplicity and readability
of text (Martin et al., 2019). Since compression as
an operation directly involves deletion, controlling
its extent plays a crucial role in the extent of infor-
mation preservation. We make use of the compres-
sion ratio (control token: ‘NbChars’) between the
character lengths of the simple and complex sen-
tences to encode for this attribute.

3.1.2 Paraphrasing
The extent of paraphrasing between the complex
and simple sentences ranges from a near replica of
the source sentence to a very dissimilar and pos-
sibly simplified one. The measure used for this
attribute is Levenshtein similarity (Levenshtein,
1966) (control token: ‘LevSim’) between the com-
plex and simple sentences.

3.1.3 Lexical Complexity
For a young reader or a second language learner,
complex words can decrease the overall readability
of the text substantially. The average word rank
(control token: ‘WordRank’) of a sequence has
been shown to correlate with the lexical complex-
ity of the sentence (Paetzold and Specia, 2016).
Therefore, similar to Martin et al. (2020), we use
the average of the third-quartile of log-ranks of the
words in a sentence (except for stop-words and spe-
cial tokens), to encode for its lexical complexity.

3.1.4 Syntactic Complexity
Complex syntactic structures and multiple nested
clauses can decrease the readability of text, es-
pecially for people with reading disabilities. To
partially account for this, we make use of the
maximum syntactic tree depth (control token:
‘DepTreeDepth’) of the sentence as a measure of
its syntactic complexity. We use SpaCy’s English
dependency parser (Honnibal et al., 2020) to ex-
tract the depth. The deeper the syntax tree of a
sentence, the more likely it is that it involves highly
nested clausal structures.

3.2 NER Replacement

Using control tokens contribute to the overall per-
formance of the model, but it also gives rise to an
added data sparsity. It divides the sentences of the
train set into different ranges of the control tokens.
This results in some control values having little to
no examples, which adds the task of learning and
generalizing over the control token values for the
model. Additionally, the model can learn to ad-
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Raw (Complex) ”Sergio PÃ rez Mendoza ( born January 26 , 1990 in Guadalajara , Jalisco ) ,
also known as ”Checo” PÃ rez , is a Mexican racing driver .”

NER Replaced ”person@1 ( born date@1 in gpe@1 ) , also known as ” person@2 ” , is a
norp@1 racing driver .”

Table 2: NER Tagging input sentence

here to the control requirement, while still failing
to correctly simplify the sentence. Eg:

Source: <NbChars 0.95> <LevSim 0.75>
<WordRank 0.75> oxygen is a chemical element
with symbol o and atomic number 8 .

Prediction: It has the chemical symbol o . It
has the atomic number 8 .

Here, the proper noun ”Oxygen” is replaced by
the pronoun ”it”. Although the model follows the
requirement of bringing down the word rank of
the sentence and remains grammatically sound, it
doesn’t help with the simplification.

To address the issue of data sparsity as well that
of unwanted NE-replacement, we propose NER
mapping the data before training, and replacing the
NE-tokens back after generation. We make use
of the Ontonotes NER tagger (Yu et al., 2020) in
the Flair toolkit (Akbik et al., 2019). We identify
named entities in the complex halves of all three
of the data splits and replace them with one of 18
tags (from the NER tagger) with a unique index
(Table 2). NER replacement for simplification was
previously explored by Zhang and Lapata (2017),
but consisted of fewer classes. The large number
of tags allow for a fine division between different
named-entity types, which helps the model to en-
code the contexts of each of the types better while
still reducing the NE-vocabulary size substantially.

The tagged data is then used for training and sub-
sequent generation on the test set. Then any tags
in the simplified output are located in the saved
NER-mapping and reverted back to the original
token or phrase. This step not only prevents proper
nouns from getting replaced, but also greatly re-
duces the model vocabulary (allowing for greater
generalizability).

3.3 Pre-Trained Embeddings

The vocabulary of a model trained on a corpus like
WikiLarge is quite small, which prevents the model
from predicting better fitting tokens. To address
this, we use FastText’s pre-trained embeddings (Bo-
janowski et al., 2016) (dimensionality: 300) as in-
put embeddings for our model. The embeddings

significantly boost the vocabulary size of usable
content words for the model.

4 Experimental Setup

4.1 Architecture
Our architecture is a Transformer Model (Vaswani
et al., 2017), and we make use of the Transformer
Seq2Seq implementation from FairSeq (Ott et al.,
2019). To understand the impact of each of the
proposed methods, we train a total of four models:

• T: Vanilla Transformer (Vaswani et al., 2017),
with control tokens, used as a baseline model.

• T+Pre: Transformer trained with FastText’s
pretrained embeddings.

• T+NER: Transformer trained on NER
mapped data.

• SimpleNER (T+Pre+NER): Transformer
trained on NER mapped data with FastText’s
pretrained embeddings.

For ease of comparison, all four models were
trained with an input embedding dimensionality
of 300, fully connected layers with a dimensional-
ity of 2048, 6 layers and 6 attention heads on both,
the encoder and the decoder. During training , we
are using Adam optimizer (Kingma and Ba, 2015)
(β1 = 0.9, β2 = 0.999, ε = 10−8), with a learning
rate of 0.00011 and 4000 warm-up updates, while
dropout is set at 0.2.

4.2 Datasets
For training, we make use of the WikiLarge dataset
(Zhang and Lapata, 2017), with 296,402 automat-
ically aligned complex-simple sentence pairs ob-
tained from the English Wikipedia and Simple En-
glish Wikipedia.

For validation and testing, we use the evaluation
sets of the two tracks we participated in, namely:
ASSET (Alva-Manchego et al., 2020) and TurkCor-
pus (Xu et al., 2016). Both have the same source
sentences in their test (359 sentence pairs) and vali-
dation sets (2000 sentence pairs). ASSET provides
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Model test asset val asset test turk val turk
BLEU SARI BLEU SARI BLEU SARI BLEU SARI

T (Baseline) 68.815 36.707 72.561 35.992 71.167 37.801 74.339 37.604
T + Pre 62.488 38.845 71.536 37.700 63.861 38.139 73.627 38.196
T + NER 59.215 39.380 70.433 37.985 58.985 38.996 72.181 38.375
SimpleNER 59.324 39.551 70.202 38.897 59.586 39.777 68.622 38.231

Table 3: Scores obtained by the trained models on different test and validation sets (best scores are bolded)

1. Source ”orton and his wife were happy to have alanna marie orton on july 12 , 2008.”
Baseline (T) ”orton and his wife , dorothy marie orton on july 12 , 2007 .”
SimpleNER ”orton and his wife supported alanna marie orton on july 12 , 2008.”

2. Source ”aracaju is the capital of the state.”
Baseline (T) ”it is the capital city of the country .”
SimpleNER ”aracaju is the capital city of the country .”

3. Source ”yoghurt or yogurt is a milk-based food made by bacterial fermentation of milk.”
SimpleNER ”yogurt is a type of food that is made by bacterial fermentation of product@1.”

4. Source ”entrance to tsinghua is very very difficult.”
SimpleNER ”the entrance to tsinghua is very very simple .”

Table 4: Sample outputs of the baseline(T) and SimpleNER models on the TurkCorpus-testset

10 human-annotated simplifications for each of the
2359 source sentences, whereas TurCorpus pro-
vides 8.

Apart from lower-casing all three splits of the
data, the data pairs of the trainset with token length
lower than 3 were removed, and sentence pairs with
compression ratio (len(target)/len(source)) be-
yond the bounds [0.2, 1.5] were omitted.

4.3 Evaluation Metrics

Our model is evaluated on both BLEU (Papineni
et al., 2002) and SARI (Xu et al., 2016). But as
Martin et al. (2020) points out, BLEU favours di-
rectly replicating the source sentence because of
a high N-Gram similarity between the source and
target sentences in most sentence simplification
datasets. Therefore we only use SARI to rate and
compare the models. We also make use of SARI
to choose the best performing checkpoints on the
validation sets of each of the tracks for evaluation
on their respective test sets.

4.4 Training

All models were trained on 4 Nvidia GeForce GTX
1080 Ti GPUs with 64 GB of vRAM. Training
was carried out for 20 epochs, and took roughly
11 hours for each model. For all four models, we
set the control tokens to NbChars: 0.95, LevSim:
0.75, and WordRank: 0.75. We have omitted

DepTreeDepth as Martin et al. (2020) shows that
using all four tokens brings down the overall per-
formance.

5 Results

We report the BLEU and SARI scores on the test
and validation splits of the ASSET & TurkCorpus
datasets for each of the four models (Table 3). All
three variants outperform the baseline model (T)
across evaluation sets. Using pretrained embed-
dings (T+Pre) and NER tagged data (T+NER) indi-
vidually boosts the baseline SARI scores substan-
tially, with the latter approach providing a larger
increment in the performance. Using both methods
together, further improves the overall SARI score
(SimpleNER). Also note how the general BLEU
score of the models reduce as the SARI score im-
proves, indicating an increasingly dissimilar and
simplified generation.

SimpleNER shows a better retention of named
entities from the source sentence than the baseline
model (Example 1, Table 4). The contrast is clearer
between T+Pre and SimpleNER, as the standalone
use of pretrained embeddings in T+Pre allows for
unwanted switching between two named entities
with similar vector representations (eg. ”2007” &

”2008”). Also, NER tagging prevents the unwanted
shift from proper nouns to pronouns as observed in
the baseline model (Example 2, Table 4).
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We also noted that using NER tagging can ham-
per certain outputs: While decoding, if the model
generates an NER-tag that either has a type or index
mismatch with the original NE token, then the tag
remains in the output even after NER-untagging
(Example 3, Table 4). Also, using pretrained-
embeddings can result in instances where a source
gets replaced with another token having a similar
vector representation. This was particularly ob-
served when some tokens were replaced by their
exact antonyms (Example 4, Table 4).

6 Social Impact

The following is a summary of the response sub-
mitted with our output and model card submission
to the GEM 2021 modelling shared task.

6.1 Real World Use

Our model can be utilized to produce point-to-point
simplifications for people with cognitive disabili-
ties, to read and understand text. Additionally, it
proves helpful for second language learners, espe-
cially in public service centres such as airports or
health clinics. Although the use of NER-mapping
improves our model performance, it can lead to
certain pitfalls. Masking NERs before training as-
sumes that named entities don’t need to undergo
simplification or elaboration. This may be true for
most evaluation datasets like ASSET and TurkCor-
pus, however this isn’t the case for many real world
cases. High-ranked named entities are often part of
domain specific texts, which may require further
explanation to be clearly understood by the general
public.

6.2 Measuring Impact

Elaboration and replacement of NEs are both cru-
cial for simplification and also the pitfalls of our
model. This shows that there is more linguistic
information and knowledge of the named entities
required to build the model to perfection or evalu-
ate its results. Thus, the best suited method would
be a manual evaluation and it could be as simple as
a filling a likert scale on how well the simplification
and elaboration were.

Since this method is inefficient with respect to
time and resources, there is a need for automated
evaluation methods to approximate human judg-
ment. A rudimentary measure to work on could
take into account the NE’s word rank (WR) and
its average similarity (AS) to the other words in its

sentence. Here, a high WR and a low AS would
imply that the sentence does not contextualize the
NE even when it might require elaboration. The
other case would be when the NE has a relatively
low WR and a high AS implying that the sentence
contextualizes the NE aptly.

7 Conclusion

In this paper, we report the performance of four
Seq2Seq Transformer models on the sentence sim-
plification task of GEM 2021 under two tracks: AS-
SET and TurkCorpus. We show that individually
using pre-trained embeddings and NER-replaced
data substantially boosts the performance of a
Transformer model assisted by control tokens. The
NER tagging prevents the model from replacing im-
portant NEs with low rank tokens Also, using pre-
trained embeddings lets the model access a larger
and fine-grained content-word vocabulary for sim-
plification, despite training the model on relatively
small data. When put together, the two approaches
give rise to a much higher overall performance on
the task.

8 Future Work

Some pitfalls to be addressed are: The mismatch
between the NER tags generated at the simplified
end and the original NE tokens could be due to the
exact string matching for NEs, the use of static em-
beddings (FastText) may have caused the unwanted
swaps between highly similar tokens. Using fined-
tuned contextual embeddings may help. Addition-
ally, since simplification datasets like TurkCorpus
and ASSET might utilize different summarization
styles, adding a control token to encode and control
the output style could be explored.
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