
DSC-IITISM at FinCausal 2021: Combining POS tagging with
Attention-based Contextual Representations for Identifying Causal

Relationships in Financial Documents

Gunjan Haldar1⊕, Aman Mittal1⊕, Pradyumna Gupta2⊕

1Department of Mechanical Engineering
2Department of Electronics Engineering

⊕Indian Institute of Technology (ISM), Dhanbad 826004, India

Abstract

Causality detection draws plenty of attention
in the field of Natural Language Processing
and linguistics research. It has essential ap-
plications in information retrieval, event pre-
diction, question answering, financial analysis,
and market research. In this study, we ex-
plore several methods to identify and extract
cause-effect pairs in financial documents us-
ing transformers. For this purpose, we propose
an approach that combines POS tagging with
the BIO scheme, which can be integrated with
modern transformer models to address this
challenge of identifying causality in a given
text. Our best methodology achieves an F1-
Score of 0.9551, and an Exact Match Score of
0.8777 on the blind test in the FinCausal-2021
Shared Task at the FinCausal 2021 Workshop.

1 Introduction

Integrating causality information as text features
can substantially benefit a plethora of applications
such as text mining (Girju and Moldovan, 2002),
event prediction (Wei and Wang, 2019), question
answering (Sharp et al., 2016) and many more. One
of the primary motives of this, which has been ex-
plored in this challenge, is to extract causality in
the financial domain, which can be applied to vari-
ous tasks such as financial services support (Chen
et al., 2020), consumer review (Patil, 2016), stock
movement prediction (Chen, 2021) as well as help
different institutions to gain insights into the finan-
cial sector.

By examining the financial documents carefully,
one can observe that single and multiple causal
events in a given paragraph may exist. Addition-
ally, there can also be the existence of numerous
causal chains in the same. To deal with such cases,
we formulate causality detection and extraction
task as a sequence labeling and modeling prob-
lem and propose an approach using POS tagging
(Dhumal Deshmukh and Kiwelekar, 2020) with

BIO scheme tagging (Liu et al., 2015) integrated
with an ensemble of BERT Large-cased (Devlin
et al., 2018), XLNet Base (Yang et al., 2019), BERT
Large-Cased Whole Word Masking, GPT-2 (Rad-
ford et al., 2019) and RoBERTa Base (Liu et al.,
2019), achieving an F1-Score of 0.9551 and Ex-
act Match score of 0.8777 on Blind test dataset
provided by the workshop.

2 Dataset

The dataset provided (Mariko et al., 2021) (Mariko
et al., 2020) for this challenge1 has been ex-
tracted from 2019 financial documents provided
by Qwam2, consisting of the complete text and
the extracted cause and effect pairs along with off-
set markers. It was also observed that multiple
instances comprised of the same text but different
causality pairs, due to presence of multiple chains
of causal relationships. Total instances present in
the database were 2393 which were split into 2101
training and 292 validation instances.

3 Methodology

3.1 Part-Of-Speech (POS) Tagging

We tokenize each sentence and generate rule-based
part-of-speech (POS) tags (Dhumal Deshmukh and
Kiwelekar, 2020) for each token. Rule-based POS
tagging uses contextual information and a set of
handwritten rules to assign POS tags to tokens in a
sentence.

After tokenizing the data, the tokens are con-
verted into POS tags. The POS tags are enumer-
ated, which are further mapped on the tokenized
sentences. These POS tags are represented in the
form of a one-hot vector. This vector is concate-
nated with the model’s hidden state output of the
last layer, which is then sent to the final linear layer

1http://wp.lancs.ac.uk/cfie/
fincausal2021/

2https://www.qwamci.com/

http://wp.lancs.ac.uk/cfie/fincausal2021/
http://wp.lancs.ac.uk/cfie/fincausal2021/
https://www.qwamci.com/


Token POS Tag BIO Tag
The DT B-E
Sunshine NNP I-E
State NNP I-E
drew VBD I-E
... ... I-E
... ... I-E
older JJR I-E

Token POS Tag BIO Tag
It PRP B-C
is VBZ I-C
consistently RB I-C
one CD I-C
... ... I-C
... ... I-C
taxes NNS I-C

Table 1: Pre-processed Output stored in text format, The above text represents an example instance from the
training set.

of the model. Predictions are performed on the
concatenated vector or tensor.

Tag Description BIO Label
B-E At the Beginning of Effect 3
B-C At the Beginning of Cause 1
I-C Inside of Cause 2
I-E Inside of Effect 4
- Padding 0

Table 2: Tagging Scheme explanation. BIO tag “O”
will be converted to padding.

3.2 BIO Scheme Tagging

To extract the causal relations and positional in-
formation of the words, considering the semantics
of the causal events, we use the BIO tagging (Liu
et al., 2015) scheme i.e. Begin-Inside-Outside tag-
ging with Cause and Effect labels (C-E). BIO tag-
ging scheme will represent whether the token is at
the beginning (B) of the target phrase, inside (I)
of a target phrase and tokens which are not a part
of cause or effect are considered as being outside
(O) of the target phrase and are labelled as padding
(-). Additionally, due to varying sequence length,
extra tokens which are not included in cause and
effect tuples are converted to padding as shown in
Table 2.

3.3 Pre-processing

To begin with, two different modes are given as
input for pre-processing. When the mode is “train-
ing”, the corresponding sentence and cause-effect
tuples in the training data are append to a dictionary,
otherwise when the mode is “test”, sentences in the
test dataset are appended to a dictionary. Each sen-
tence in the paragraph is tokenized, subsequently,
separate tokens and their positional index are stored
in a list.

Further, for the preparation of BIO tags, the in-
dex of the tokenized words are identified in each
sentence using its respective index and stored in a
dictionary. The beginning of cause and effect pairs
are found in the sentence, and this pair is tokenized.
Tokens at the beginning of the cause and effect are
labelled as B-C and B-E respectively. Subsequent
tokens in cause and effect sentences are labelled as
I-C and I-E respectively. These labels along with
the words are stored in a dictionary identified by
their index. The tags are extracted from the dictio-
nary. This process is iterated over all the instances
in the training set.

To end with, each word is concatenated with
its respective POS tags and BIO tags as shown in
Table 1. The pre-processed file is stored in a text
format which is further passed onto the model as
input.

3.4 Transformer Architecture
For the purpose of this challenge, our best ap-
proach utilizes an ensemble developed using BERT
(Bidirectional Encoder Representations from Trans-
formers) Large-Cased model (Devlin et al., 2018),
RoBERTa (Robustly Optimized BERT Pre-training
Approach) (Liu et al., 2019), GPT-2 (Generative
Pre-trained Transformer) (Radford et al., 2019),
BERT Large-Cased Whole Word Masking (Devlin
et al., 2018) (BWM), XLNet (Yang et al., 2019)
by applying the huggingface3 (Wolf et al., 2019)
package.

3.4.1 Models
BERT Large-cased transformer model has been
pre-trained on the English language with a masked
language modeling (MLM) objective distributed
into Masked Language Modelling and Next Sen-
tence Prediction (NSP), which converges to learn

3https://huggingface.co/
bert-large-cased
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Model Epochs MSL? Validation Score† Blind Test†

BERT-base 40 256 0.9197 0.9253
RoBERTa-base 50 256 0.9201 0.9372
GPT-2 20 128 0.9251 0.9422
XLNet-base 50 128 0.9368 0.9466
BERT-large 50 256 0.9389 0.9517
BWM 50 256 0.9327 0.9476

Table 3: Model Comparison by Experimentation; ?Maximum Sequence Length, †F1 Score

Model F1-Score Recall Precision Exact Match
BERT-large + RoBERTa +
XLNet + GPT-2 + BWM 0.9551 0.9580 0.9554 0.8777

Table 4: Best performing method on the official Blind Test of FinCausal-2021

an internal representation that can be utilized to ex-
tract features from downstream tasks. This model
consists of 24 transformer encoder layers with 1024
hidden dimensions with 16 self-attention heads.

BWM model has been pre-trained on the same
language corpus as BERT Large-Cased model but
with a whole word masking technique, wherein all
of the tokens corresponding to a word are masked
at once. The overall masking rate remains the same.
The model was pre-trained on 4 cloud TPUs for
one million steps with a batch size of 256. The
sequence length was limited to 128 tokens for 90%
of the steps and 512 for the remaining 10%. The
optimizer used is Adam with a learning rate of 1e-4,
β1 = 0.9 and β2 = 0.999 and a weight decay of 0.01

RoBERTa is pre-trained with the same objective
as BERT but on 1024 V100 GPUs for 500K steps
with a batch size of 8K and a sequence length of
512. Adam optimizer is used with a learning rate
of 6e-4, β1 = 0.9, β2 = 0.98 and ε = 1e-6, and a
weight decay of 0.01 with dynamic masking where
the model randomly masks 15% of the words in the
input then run the entire masked sentence through
the model and has to predict the masked words.

GPT-2 transformer model takes sequences of
continuous text as input and uses an internal mask-
mechanism to predict the token at any position “i”
by the inputs at position 1 to “i”.

XLNet is a generalized autoregressive pre-
training method enabling learning of bidirectional
contexts.

3.4.2 Training
The pre-processed output file was procured, and
for every instance, the corresponding POS and BIO
tags of each token was extracted and stored in

an array. According to the maximum sequence
length, these arrays were padded. Depending on
the transformer model utilized, [CLS] and [SEP]
tokens were appended to the tokens. For instance,
if the transformer model was BERT Large-Cased,
[CLS] token was appended at the beginning and
[SEP] token at the end and when the transformer
model is XLNet, [CLS] is appended at the end.
Pseudo POS tag ID and BIO tag ID for [CLS] or
[SEP] token was set as “0” and “-100” respec-
tively. All ID sequences were padded with padding
token ID - “0” in POS tag sequence and “-100” in
BIO tag sequence.

Each model consumed on an average 3-4 hours
for training. The configurations of the best models
which are used for the ensemble are reported in
Table 3. All these models have been trained with a
batch size of 64 with cross-entropy loss (Gordon-
Rodriguez et al., 2020) so that only real IDs con-
tribute to the loss function and not the padding IDs.

3.5 Post-processing & Exact Match
Optimization

The received predictions are in the format of tuples
of tokens and their corresponding predicted BIO
tag. The BIO tags are retrieved and stored in a list
with the index of each token in the prediction. Fur-
ther, this process is iterated over all the predicted
instances and recorded. We tried to optimize the
Exact Match metric by selecting the longest cause-
effect pair when multiple causal chains are present
in a given data instance. If the number of padding
tokens was less than a given threshold between two
similar predicted phrases (Cause/Effect), the two
pairs were merged.



Text Cause Effect
The company also recently announced
a quarterly dividend, which was paid on
Tuesday, September 3rd. Shareholders
of record on Thursday, August 15th
were paid a $0.03 dividend. This
represents a $0.12 annualized dividend
and a yield of 3.42%.

The company also recently
announced a quarterly
dividend, which was paid
on Tuesday, September 3rd.

Shareholders of record on
Thursday, August 15th
were paid a $0.03 dividend.

The company also recently
announced a quarterly
dividend, which was paid
on Tuesday, September 3rd.

This represents a $0.12
annualized dividend and a
yield of 3.42%.

If you pay the full RAD there is no
interest (DAP) pay no RAD and you
will pay a DAP which is the interest on
the full amount: $22,160.

pay no RAD you will pay a DAP which
is the interest on the full
amount: $22,160.

If you pay the full RAD there is no interest (DAP)

Table 5: Table representing identical multi-causal chains. Causal chains in the training dataset.

3.6 Ensemble

After each prediction was extracted from different
models present in the ensemble, the mode was cal-
culated to find the most frequently occurring label.
In the presence of a tie-breaker scenario, we select
the label predicted by the best performing single
transformer model, BERT Large-Cased. Further,
after extracting all the tags, these were aligned with
the text to get the actual words bundled together to
form the cause-effect pair.

4 Experimentation and Results

Different models along with custom loss functions
were trained on the given data and local F1 score,
Recall, and Precision were evaluated. Transformer
models including RoBERTa (Robustly Optimized
BERT Pre-training Approach) (Liu et al., 2019),
GPT-2 (Generative Pre-trained Transformer) (Rad-
ford et al., 2019), BERT Base (Devlin et al., 2018),
BERT Large-Cased Whole Word Masking (Devlin
et al., 2018) (BWM), XLNet (Yang et al., 2019)
were experimented with different hyper-parameter
settings. The best performing settings along with
their corresponding scores are reported in Table 3.
The results were evaluated locally, and consider-
ing those metrics, the model performance was ob-
served. To boost up optimization, ensembles of the
aforementioned transformer models were experi-
mented and evaluated.

GPT-2 was trained and experimented with,
but due to expensive computational requirements,
it was trained for 20 epochs. Loss function
while RoBERTa-base transformer model was being

trained on the data couldn’t converge, resulting in a
low metric score; similar behavior was observed in
XLNet. BERT large-cased model outperformed all
these models due to its large architectural layout
when a single shot transformer is concerned. Max-
imum Sequence Length (MSL) is a critical factor
while training a model with limited computational
resources, because having a high MSL means most
of the memory is wasted for padding and not used
for weight update. Subsequently, smaller MSL val-
ues are chosen for transformer models with vast
architecture. Ensembles mentioned in Table 4 gave
a relatively low F1 score when BERT-base was in-
cluded along with other models indicating that the
lower performance of BERT-base single shot exper-
iment could be the prominent dropping factor. The
performance metrics of the top approach is shown
in Table 4.

5 Conclusion

This paper presents our sequence labeling and mod-
eling approach, combining POS tags with BIO
scheme using ensemble optimization strategy com-
prising BERT-large, RoBERTa, XLNet, GPT-2, and
BERT-Large (whole word masking) for causality
detection in financial documents which helped us
achieve the highest Exact Match score of 0.8777,
on the FinCausal-2021 Shared Task leaderboard.
Future works can describe an optimization pipeline
constituting architecturally larger transformer mod-
els. Furthermore, more advanced post-processing
strategies can be investigated to extract multiple
causal relationships in a text.
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