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Abstract

In this paper, we present our approaches for the
FinSim-3 Shared Task 2021: Learning Semantic
Similarities for the Financial Domain. The aim of
this shared task is to correctly classify a list of given
terms from the financial domain into the most rele-
vant hypernym (or top-level) concept in an external
ontology. For our system submission, we evaluate
two methods: a Sentence-RoBERTa (SRoBERTa2)
embeddings model pre-trained on a custom corpus,
and a dual word-sentence embeddings model that
builds on the first method by improving the pro-
posed baseline word embeddings construction us-
ing the FastText model to boost the classification
performance. Our system ranks 2"¢ overall on both
metrics, scoring 0.917 on Average Accuracy and
1.141 on Mean Rank.

1 Introduction

A hypernym or hyperonym is a concept which is superordi-
nate to another one. In computer science, it is often repre-
sented as an IS-A relationship. For example, animal is a hy-
pernym of cat and equity index is a hypernym of S&P 500
Index [Murphy, 2003]. Hypernymy, i.e. the capability to re-
late generic terms or classes to their specific instances, lies
at the core of human cognition [Camacho-Collados et al.,
2018]. Hypernymy modeling has been widely studied in nat-
ural language processing (NLP) for decades. Particularly,
results based on embeddings methods [Henderson, 2017,
Nguyen et al., 2017; Wang and He, 2020; Yu et al., 2015]
show promise but the challenge remains in specializing these
embeddings in particular areas such as the financial domain
because of different aspects of language such as precise terms
(e.g. abbreviations) and specific semantics that are badly or
not covered at all by general-purpose models.

The FinSim 2020 shared task [Maarouf et al., 2020] was
the first task that attempts to combine hypernym classifica-
tion methods in the financial domain. The FinSim-3 Shared
Task 2021: Learning Semantic Similarities for the Financial
Domain iterates on the previous editions by proposing an ex-
tended dataset with more diversified financial concepts.

In this paper, we present our approaches which focus on
domain-specific learning embeddings using as little data as
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possible. Although the shared task permits the use of exter-
nal sources, we limit our training to the Financial Industry
Business Ontology (FIBO)! data as well as the set of prospec-
tuses in English curated and made available by the organizers.
The corpus size for the latter set is estimated to about 10 mil-
lion tokens. We explore two methods: the first is based on a
custom sentence-level embeddings training using SROBERTa
[Reimers and Gurevych, 2019] and a term-definition dataset
compiled from the FIBO website, and the second is a con-
catenated sentence-word embeddings model combining the
custom SRoBERTa embeddings with a FastText> word em-
beddings model trained on the prospectuses set and the con-
structed FIBO dataset.

We also explore and compare empirically the performance
of several classifiers. Our experimental results demonstrate
that while the domain-specific custom embeddings enhance
the classification performance, class imbalances still hinder
the recognition of under-represented classes. We analyze
these results based on the number of labels provided in the
training dataset as well as those extracted from the FIBO web-
site.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the technical details of our proposed ap-
proaches. Section 3 empirically evaluates the performances
of our methods and presents our results. Section 4 provides
the conclusions of our work.

2  Proposed Approaches

We make use of custom corpus and exploit sentence-level and
word-level embeddings in the context of phrase representa-
tion learning. We also test several classifiers in our term clas-
sification approaches. The general framework is shown in
Figure 1. This framework consists of customized corpus col-
lections, sentence and word representation learning methods
and term classification strategies. We will elaborate on each
component below.

"https://spec.edmcouncil.org/fibo/
*https://radimrehurek.com/gensim/models/fasttext.html
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Figure 1: Framework of our proposed approach

2.1 Customized Corpus Collection

General word embeddings are trained on domain-
independent corpus. However, different domains have
their proper semantics. In order to learn domain-specific rep-
resentations for financial data, we base our work on collected
customized corpus. We use the set of English prospectuses
provided by the shared task organizers that contains 203
documents which roughly amounts to an estimated size of 10
million tokens. We augment this set with an extracted corpus
from the FIBO website that we also use to train the sentence
embeddings.

Sentence embeddings already contain contextual informa-
tion. However, they suffer from the same domain special-
ization problem as word embeddings. We choose to work
with a specialized corpus to generate our sentence embed-
dings and use the FIBO website provided by the shared task
organizers. Starting from the predefined tags (Bonds, For-
ward, Funds, Future, MMIs, Option, Stocks, Swap, Equity
Index, Credit Index, Securities restrictions, Parametric sched-
ules, Debt pricing and yields, Credit Events, Stock Corpora-
tion, Central Securities Depository, Regulatory Agency), we
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mine their corresponding FIBO web pages for the following
properties:

¢ Definition

* Explanatory Note

* Generated Description

* Synonym(s)
We also iterate over their children (n+1) instances found un-
der the ’Direct subclasses” web page section and collect their
associated definitions. We do the same for the grandchildren
(n+2) of the predefined tags at which point we stop the re-
cursion. From the collected definitions we create a corpus of
definition/tag pairs whereby each definition is associated to
its corresponding tag. Children and grandchildren definitions
are associated to one of the parent tags we started with. We
stop the recursion at (n+2) because iterating further causes an
overlap between concept definitions related to one or more of
the predefined tags resulting in imprecise tag associations de-
pending on the order of the recursion. Limiting the recursion
at the (n+2) stage effectively prevents noise addition caused
by such overlaps. The final compiled dictionary contains a



total of 2015 definitions. These definitions are used to train
domain-specific sentence representations.

2.2 Phrase Representation Learning

In this component, we combine two representational tech-
niques: word embeddings and sentence embeddings. By con-
catenating both word and sentence vectors for a phrase (i.e.
the group of words that make up a term), we hope to capture
the syntactic and semantic properties of the financial domain
while trying to reduce the ambiguity that comes with domain-
specific representational learning. To achieve this practically,
we pad the word embeddings vector of dimension 300 with
zeroes to obtain a new word vector of size 768 identical to
the size of the sentence embeddings vector without loss of
information stored by the word vector. Then we concatenate
both vectors by performing a term-by-term addition opera-
tion. Our final vector model is of size 768 and combines the
information captured by both the sentence and word embed-
dings vectors.

For both models, The training is performed on an NVIDIA
GeForce RTX 2070 with Max-Q Design 8GB GPU machine.
The construction of each embeddings model is detailed in the
following subsections.

Sentence Representation Learning

U
A

pooling
A
SRoBERTa

Sentence

Figure 2: Basic SentenceTransformer Architecture

We use the version of SRoBERTa provided by Hugging
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Face® and train it from scratch by adopting the method for
training any BERT-like model on the STSBenchmark* for
the semantic similarity task®>. We split our corpus into 70%
train set, 10% dev set and 20% test set. We also adopt the
same model parameters as the STSBenchmark method for our
training:

* Training Batch Size: 8
e Number of Epochs: 4

To specialize our model, we use the extracted FIBO cor-
pus of term definitions described earlier. In terms of pre-
processing for each definition, we transform the text to low-
ercase and segment it into sentences based on newline and
punctuation delimiters. The SentenceTransformer model has
the following architecture depicted in Figure 2. The de-
picted architecture consists of one RoBERTa layer and a
pooling layer. We feed the input sentence or text into the
RoBERTa transformer network. RoOBERTa produces contex-
tualized word embeddings for all input tokens in our text.
Since we want a fixed-sized output representation (vector u),
we need a pooling layer. Different pooling options are avail-
able, the most basic one being mean-pooling: we simply aver-
age all contextualized word embeddings RoBERTa produces.
This gives us a fixed 768 dimensional output vector indepen-
dently of how long our input text is.

For our training set, each definition is duplicated to match
the total number of predefined tags we have. Each duplicate is
then passed as an input sentence to the SentenceTransformer
model along with a label indicating the semantic similarity
with each of the tags. We use a label of 0.8 to indicate a posi-
tive example (i.e. corresponding to a matching definition-tag
pair) and 0.3 for negative examples (i.e. all other duplicate in-
stances of the definition with the remaining mismatched tags).
The labels are chosen to be sufficiently far apart in value to
discriminate especially for ambiguous terms. We feed the
model a total of 317101 definition-label pairs.

Word Representation Learning

We augment the corpus compiled from the FIBO web pages
with the English prospectuses set and use a FastText [Bo-
janowski et al., 2017] model to generate custom domain-
specific word embeddings. Between the two versions of cus-
tom word2vec models with dimensions 100 and 300 provided
by the shared task organizers, the model with dimension 300
outperforms the smaller model. We use this as our starting
point to generate two custom embeddings models, the first
based on word2vec and the second on FastText, both of di-
mension 300, using our extracted corpus and compare their
performance in the classification task. The results are detailed
in Section 3.

2.3 Classification Methods

Sentence and word representations are used as features to
train classifiers for term classification. A term is represented

*https://huggingface.co/sentence-transformers/nli-roberta-base-
v2

“http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

Shttps://github.com/UKPLab/sentence-

transformers/blob/master/examples/training/sts/training_stsbenchmark.py



by the sum of phrase (sentence + word) embeddings for each
word contained in the term. To find the best classifiers, we test
two widely used classification methods: Logistic Regression
and Random Forest. Experimental studies will be discussed
in Section 3.

3 Experiments

In this section we describe the data provided by the shared
task organizers. We then provide details on the empirical ex-
periments we performed and present our final results.

3.1 Data Description

The training data provided by the task organizers contains a
total of 1050 entries where each entry consists of a term and
its corresponding label. A label can be one of the 17 prede-
fined tags. For the test data, there are 326 entries of terms
to be correctly classified into the correct tag. The main diffi-
culty in this classification task lies in the tag distribution: the
chosen labels are not at the same ontological level as Figure
3 demonstrates.
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Figure 3: An Example of Label Ontology Hierarchy

The hierarchy shows that while some labels like Forward,
Future, Option and Swap are on the same level, they are

GovernmentlissuedDebtSecurity
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not aligned with other labels like Bond. The same case can
be made for Central Securities Depository and Regulatory
Agency in the FIBO ontology. The issue indicates that labels
cannot be learned from a simple IS-A relationship.

To tackle this problem, we enlarge the scope of our mining
while collecting data from the FIBO web pages. Instead of
limiting our collections to direct subclasses of the predefined
tags, we search for “Instances” under "Ontological character-
istic” which allows us to enrich our corpus both vertically and
horizontally and expand term relations as much as possible by
capturing their semantic connections.

3.2 Results and Analysis

We design our experiments in order to determine the best
model for each of the components in our proposed framework
approach.

For the sentence embeddings module, we pit our
SRoBERTa model against other well-performing models that
we pre-train using the same setup described in Section 2.2.
The selection of models is done based on our computational
limitations as well as the grid® proposed in the official Sen-
tenceTransformers Documentation. We select paraphrase-
mpnet-base-v2, paraphrase-MiniLM-L6-v2 and paraphrase-
distilroberta-base-v2 as the main competitors to SRoBERTa.
To measure the performance of each custom trained model,
we treat the classification problem like a semantic similarity
task and use cosine similarity to find the best label for each
term embedding. We evaluate model performance based on
the metrics proposed by the shared task organizers. The re-
sults are shown in Table 1.

Model Accuracy | Mean Rank
paraphrase-mpnet-base-v2 0.68 1.93
paraphrase-MiniLM-L6-v2 0.65 244
paraphrase-distilroberta-base-v2 0.63 2.65
SRoBERTa 0.73 1.61

Table 1: Sentence Embeddings Evaluation

The empirical experiment is consistent with the choice of
model since SRoBERTa is specialized in tasks like clustering
or semantic search.

For the word embeddings model selection, we adopt the
same baseline component proposed by the task organizers and
composed of an embeddings module used as a feature vec-
tor and a logistic regression term classifier. The classifier is
fixed in this experiment. The type of word embeddings is the
only variable. The word2vec-100 and word2vec-300 models
are the ones proposed by the task organizers and trained on
the English prospectuses set (which we’ll call Base). The
c-word2vec-300 and c-fasttext-300 models are the models
trained on our custom corpus (which we’ll call Custom) com-
prised of the FIBO term definitions and the English prospec-
tuses. Note that each result is the average of 5 runs and the
train/test ratio is 80%/20%. The results are presented in Table
2.

®https://www.sbert.net/docs/pretrained_models.html



Model Corpus | Accuracy | Mean Rank
word2vec-100 Base 0.76 1.43
word2vec-300 Base 0.77 1.41
c-word2vec-300 | Custom 0.78 1.40
c-fasttext-300 Custom 0.82 1.33

Table 2: Word Embeddings Evaluation

While training on the custom corpus enhances model per-
formance, the results validate our choice of FastText as it
outperforms word2vec due to the model’s capability to retain
subword information which results in better learning.

Finally, in order to improve term classification, we empiri-
cally study the performance of the classifier component by re-
versing the conditions of our previous experiment: we fix the
feature vector to our best word embeddings model (c-fasttext-
300) and vary the classifier. We keep the train/test split at
80%/20% and perform 5 runs. The results are displayed in
Table 3.

Model Accuracy | Mean Rank
Random Forest 0.80 1.45
Logistic Regression 0.82 1.33

Table 3: Classifier Evaluation

From this experimental study, we find that complicated
classifiers like Random Forest achieve worse performances
than linear classifiers, so we select Logistic Regression as the
classifier in our submitted systems. This observation shows
that models that learn linear boundaries tend to perform better
for this type of task.

3.3 System Submissions

In our submitted systems, we use the SRoBERTa model
trained on the extracted corpus from the FIBO web pages.
We submit a first system composed only of SRoOBERTa and
a classifier to study the performance of specialized sentence
representations on this type of task. We use the constructed
vector resulting from the concatenation of both the sentence
model and the c-fasttext-300 word model as feature vector to
the classifier in our second submission to study the effect of
combining sentence and word information in what we refer to
as phrase representation learning. Logistic regression is used
in both submissions as the classifier. The final results are re-
ported in Table 4. ACC is short for Accuracy and MR is short
for Mean Rank.

yseop_I In this submission, we combine SRoOBERTa as a
feature vector with a Logistic Regression classifier. The di-
mension of representation for each term is 768.

yseop_2 In this submission, we concatenate the SRoBERTa
model with the padded c-fasttext-300 to produce a feature
vector of size 768. We feed the resulting feature vector to
a Logistic Regression classifier.

From our submissions, yseop-2 performs best and ranks
274 overall on both Average Accuracy and Mean Rank met-
rics in the shared task.
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Train Data Test Data
System | ACC | MR | ACC | MR
yseop_1 | 0.871 | 1.275 | 0.883 | 1.236
yseop2 | 0.883 | 1.234 | 0.917 | 1.141

Table 4: Final System Submissions

3.4 Data Imbalance

Another issue in this shared task is the problem of data distri-
bution. By examining our system results, we observe that our
framework performs consistently better for some labels than
others. We investigate the reason for the poor performance on
some labels by averaging the accuracy of matched labels, i.e.
labels that were correctly classified as the best choice for an
entry, over 5 runs for our best system. The analysis yields:

 Central Securities Depository: 78.45%
¢ Credit Index: 79.28%

* Bonds: 87.80%

e Credit Events: 60%

* Funds: 84.31%

* Stock Corporation: 66.80%

* Regulatory Agency: 90.76%

* Debt pricing and yields: 97.94%
* Equity Index: 96.25%

* Swap: 75.18%

* Option: 100%

e Stocks: 45.71%

 Future: 88.46%

¢ Securities restrictions: 80%

e Parametric schedules: 82.46%

e MMIs: 18.30%

* Forward: 57.38%

This preliminary analysis reveals that while some labels
like Option and Equity Index are over-expressed (the model
predicts them correctly most of the times), others such as
MMIs and Stocks are severely under-expressed. These re-
sults lead us to examining the composition of our train set
distribution:

* Central Securities Depository: 10.19%
* Credit Index: 12.29%

* Bonds: 5.24%

* Credit Events: 1.71%

* Funds: 2.1%

* Stock Corporation: 2.38%

» Regulatory Agency: 19.52%

* Debt pricing and yields: 5.52%

* Equity Index: 27.24%

* Swap: 3.43%



* Option: 2.29%

e Stocks: 1.62%

* Future: 1.81%

 Securities restrictions: 0.75%
e Parametric schedules: 1.43%
e MMIs: 1.62%

* Forward: 0.86%

The distribution shows a discrepancy in label expression
that may explain the over-prediction of certain labels when-
ever the model makes a wrong prediction. However, the train
data is one source of our learning and is active at the classifi-
cation component of our framework. The other main source
of representation is the extracted corpus collected from FIBO.
We propose to analyze the distribution of label occurrences in
the corpus based on the definitions collected:

 Central Securities Depository: 0.45%
¢ Credit Index: 0.20%

* Bonds: 13.30%

e Credit Events: 4.27%

* Funds: 4.81%

¢ Stock Corporation: 2.18%

* Regulatory Agency: 3.24%

* Debt pricing and yields: 10.72%
* Equity Index: 0.35%

* Swap: 4.57%

* Option: 6.00%

e Stocks: 38.41%

e Future: 2.43%

¢ Securities restrictions: 3.57%

¢ Parametric schedules: 3.82%

e MMIs: 0.74%

e Forward: 0.94%

The last set of results shows the number of times a la-
bel is expressed is not sufficient to guarantee a good model
performance. Some labels that are well expressed are under-
represented in terms of definitions with respect to others. This
effectively splits the data distribution problem in two ways:
the first is balancing uner-represented labels using techniques
such as SMOTE and the second enriching definitions for
some labels to improve predictions using external sources.
Both methods merit further exploration.

4 Conclusion

In this paper, we studied the task of hypernym identification
in the financial domain. We trained a a phrase representation
learning model by specializing and combining a SROBERTa
sentence embeddings model and a FastText word embeddings
model on a relatively small data set. We also enriched the
provided data by collecting term definitions and term rela-
tions for the proposed hypernyms. Our approach shows that

57

it is possible to specialize a domain-specific model by com-
bining sentence and word models with a linear classifier on
a relatively small corpus. It would be interesting to explore
future possibilities by exploiting other domain resources or
enhancing under-represented labels and studying their impact
on domain-specific learning.
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