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Abstract

Visual dialog is challenging since it needs to
answer a series of coherent questions based on
understanding the visual environment. How
to ground related visual objects is one of the
key problems. Previous studies utilize the
question and history to attend to the image
and achieve satisfactory performance, however
these methods are not sufficient to locate re-
lated visual objects without any guidance. The
inappropriate grounding of visual objects pro-
hibits the performance of visual dialog mod-
els. In this paper, we propose a novel ap-
proach to Learn to Ground visual objects for
visual dialog, which employs a novel visual ob-
jects grounding mechanism where both prior
and posterior distributions over visual objects
are used to facilitate visual objects grounding.
Specifically, a posterior distribution over vi-
sual objects is inferred from both context (his-
tory and questions) and answers, and it en-
sures the appropriate grounding of visual ob-
jects during the training process. Meanwhile,
a prior distribution, which is inferred from con-
text only, is used to approximate the posterior
distribution so that appropriate visual objects
can be grounded even without answers during
the inference process. Experimental results on
the VisDial v0.9 and v1.0 datasets demonstrate
that our approach improves the previous strong
models in both generative and discriminative
settings by a significant margin.

1 Introduction

With the development of deep learning, various
vision-language tasks have been introduced and
attracted widespread attention, such as image cap-
tioning (Xu et al., 2015; Anderson et al., 2016,
2018; Cornia et al., 2020; Ghanimifard and Dob-
nik, 2019), visual question answering (Ren et al.,
2015a; Gao et al., 2015; Lu et al., 2016; Anderson
et al., 2018; Li et al., 2019; Huang et al., 2020) and
visual dialog (Das et al., 2017; Chen et al., 2021a;
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H0: a group of women walk 
down a road
H1: what age are the women ? 
they are teenagers
H2: are they all the same race ? 
most of them look to be

Q3: any other people ?

A3-1: only trees
A3-2: i see 1 person in the 
distance
A3-3: no, i see one trunk
A3-4: no, i see one bench 
A3-5: no other people
A3-6: cannot see
A3-7: no i can not see 
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Figure 1: Comparison between different responses
when focusing on different visual objects. We see that
when the model focuses on wrong visual objects it
makes mistakes. (Only the response A3-2 is right.)

Agarwal et al., 2020; Chen et al., 2021b; Qi et al.,
2020). Specifically, visual dialog, which aims to
hold a meaningful conversation (Chen et al., 2021c,
2020b) with a human about a given image, is a chal-
lenging task that requires models to locate related
visual objects in an image and answer the current
question based on the history and the located visual
objects.

In order to answer the question correctly, we
need to accurately locate the question-related vi-
sual objects. Most existing methods utilize kinds
of attention mechanism (Lu et al., 2017; Wu et al.,
2018; Kottur et al., 2018; Gan et al., 2019; Guo
et al., 2019b) to capture the target visual objects.
ReDAN (Gan et al., 2019) and DMAM (Chen
et al., 2020a) use multi-step reasoning based on
dual attention to iteratively update related visual ob-
jects. DAN (Guo et al., 2019b), MCAN (Agarwal
et al., 2020) and LTMI (Nguyen et al., 2020) utilize
multi-head attention mechanisms to manage multi-
modal intersection and obtain weight distributions.
Moreover, there are some approaches (Zheng et al.,
2019; Schwartz et al., 2019; Jiang et al., 2020b;
Guo et al., 2020; Jiang et al., 2020a) using graph-
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based structures to capture related visual objects.
FGA (Schwartz et al., 2019) realizes a factor
graph attention mechanism, which constructs the
graph over all the multi-modal features and esti-
mates their interactions to ground visual objects.
CAG (Guo et al., 2020) focuses on an iterative
question-conditioned context-aware graph to locate
related visual objects. However, the methods men-
tioned above obtain the prior distribution of visual
objects through various interactions of questions,
history and images, and finally use the prior dis-
tribution to obtain the final representation of the
image. The prior distribution of visual objects is
not enough to ground accurate visual objects, thus
obtaining the wrong representation of the image.

In this paper, we propose a method to learn to
ground visual objects in visual dialog. Specifically,
we obtain the posterior distribution over visual ob-
jects by utilizing contexts and answers, while the
prior distribution works without knowing answers
in advance. Then we minimize the distance be-
tween the two distributions. During the training
process, our model is trained to minimize the KL
divergence between the prior distribution and the
posterior distribution so that our model can approx-
imate the posterior distribution accurately using
the prior distribution. Then, during the inference
process, the model grounds visual objects merely
based on the prior distribution (i.e., without any
posterior information). We show that through this
process, the model can effectively learn to ground
visual objects accurately and give informative and
accurate responses by utilizing appropriate visual
objects. We test the effectiveness of our proposed
model on two large-scale datasets: VisDial v0.9
and v1.0 (Das et al., 2017). The contributions of
this work are summarized as follows:

• We explore the importance of answers in
grounding visual objects related to questions
in visual dialog.

• We propose a novel approach to realize learn-
ing to ground visual objects in visual dialog
via bridging the gap between the prior and
posterior distribution over visual objects.

• We conduct extensive experiments and abla-
tion studies on two large-scale datasets Vis-
Dial v0.9 and v1.0. Experimental results show
that our approach can be used to improve pre-
vious visual dialog models in both generative
and discriminative settings.
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Figure 2: Architecture Overview

2 Methodology

Following Das et al. (2017), a visual dialog agent
is given three inputs, i.e., an image i, history
(the caption and question-answer pairs) till round
t − 1: h = (Cap︸︷︷︸

h0

, (q1, a1)︸ ︷︷ ︸
h1

, · · · , (qt−1, at−1)︸ ︷︷ ︸
ht−1

) and

the current question qt at round t, where Cap
is the caption describing the image taken as h0
and h1, . . . , ht−1 are concatenations of question-
answer pairs. The goal of the visual dialog agent is
to generate an answer at to the question qt.

2.1 Model Architecture

In this paper, we focus on training a neural visual di-
alog model with an effective visual objects ground-
ing mechanism. As shown in Figure 2, we simplify
existing visual dialog models into five major com-
ponents:

• The context encoder encodes dialog history
h and the current question qt with an atten-
tion mechanism into a context vector x, and
feeds it into the visual objects manager and
the decoder.

• The visual encoder takes the image i as
input and extract the image features v =
{v1, v2, . . . , vµ} where µ denotes the number
of object proposals for each image. Each ob-
ject proposal is represented by a dv-dimension
feature vector.

• The answer encoder encodes the ground-
truth answer at into a response vector y, and
feeds it into the visual objects manager.

• The visual object manager consists of two
sub-modules: a prior module and a posterior
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Figure 3: Framework of our Learning to Ground Visual Objects. The context encoder encodes the history and
the current question into a context representation x. The visual encoder encodes the image into a region-based
image features v. The answer encoder encodes the ground-truth answer into a response representation y. The
visual object manager takes x, v and y as inputs, and generate a prior distribution p(v|x) over visual objects and
a posterior distribution p(v|x, y) over visual objects, thus generating the new prior visual object features vprior
and the posterior visual object representation vpost. The decoder utilizes the context representation c and the new
visual object representation (vpost at training or vprior at inference) to generate and retrieve a response.

module. Given the previously encoded x and
vµi=1 (and y if available), the visual object
manager is responsible for deciding an ap-
propriate distribution over visual objects and
feeds the weighted visual object features v∗
(together with an attention-based context vec-
tor x) into the decoder.

• The decoder generates and retrieves re-
sponses based on the visual object feature v∗
and the attention-based context vector x.

2.2 Our Approach

When given the context vector x and the visual
object features v = {v1.v2, . . . , vµ}, and response
vector y, the goal of the visual object manager is
to decide an appropriate distribution D over visual
objects and obtain the weighted visual object rep-
resentation v∗ based on the distribution D.

The visual object manager consists of two sub-
modules: a prior module and a posterior module.

The Prior Module. The prior module aims to
calculate the conditional probability distribution
over µ visual objects, denoted by p(v|x):

p(v = vi|x) =
exp(fcv(x, vi))∑µ
j=1 exp(fcv(x, vj))

, (1)

where fcv(·, ·) denotes the interaction function of
the context vector x and the visual object features

vi. For example, fcv(·, ·) can be the dot product,
self-attention or other mechanisms to measure the
association between vi and the context vector x. A
high association means that vi is relevant to x and
thus, vi has a larger weight. Note that p(v|x) is con-
ditioned only on x and thus, it is a prior distribution
over visual objects since it works without knowing
the response. However, there can be different vi-
sual objects that are relevant to the contexts, and
thus, it is difficult to select visual objects simply
based on the prior distribution in training.

The Posterior Module. Motivated by this, in the
posterior module, we define a posterior distribution
over visual objects, denoted by p(v|x, y), by con-
sidering both contexts and responses:

p(v = vi|x, y) =
exp(fcv(fcy(x, y), vi))∑µ
j=1 exp(fcv(fcy(x, y), vj))

,

(2)
where fcy(·, ·) denotes the interaction function of
x and y. For example, the fcy(·, ·) can be an add
operation, fully connected layer and other methods.
Compared with the prior distribution, the posterior
distribution is sharp since the actual visual objects
used in the true response at can be captured.

Bridging the Gap. Clearly, the discrepancy be-
tween prior and posterior distributions introduces
great challenges in training the model: it is desir-
able to ground visual objects based on the posterior
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distribution, which, however, is unknown during
inference. In this paper, we propose to approxi-
mate the posterior distribution using the prior dis-
tribution so that our model is capable of selecting
appropriate visual objects even without posterior
information. For this purpose, we introduce an
auxiliary loss, namely the Kullback-Leibler diver-
gence loss (KLDivLoss), to bridge the gap between
the prior distribution and the posterior distribution.
The KLDivLoss is defined as follows:

LKL =

µ∑
i=1

p(v = vi|x, y)log(
p(v = vi|x, y)
p(v = vi|x)

).

(3)
When minimizing KLDivLoss, the posterior dis-
tribution p(v|x, y) can be regarded as labels and
our model is instructed to use the prior distribution
p(v|x) to approximate p(v|x, y) accurately. As a
consequence, even when the posterior distribution
is unknown in the inference process (since the ac-
tual response at is unknown), the prior distribution
p(v|x) can be effectively utilized to ground appro-
priate visual objects so as to generate and retrieve
proper responses. To the best of our knowledge,
it is the first neural model in visual dialog, which
incorporates the posterior distribution as guidance,
enabling accurate visual object grounding and high-
quality response generation and retrieval.

3 Application of Our Approach

We take the strong baseline LTMI (Nguyen et al.,
2020) as a base model to introduce our approach,
which mainly consists of the following compo-
nents:

Context Encoder and Answer Encoder: We
use two bi-directional LSTM encoders to extract
token-level representations Q ∈ Rλ×dq and y ∈
Rλ×dq of the question qt and the answer at. We
use another bi-directional LSTM encoder to extract
sentence-level representations H ∈ RT×dq of the
history h. λ is the length of questions and answers
with paddings, T is the turn of dialog and dq is the
dimension. Q and H are fused into a context rep-
resentation x with multi-head attention (Vaswani
et al., 2017).

Visual Encoder: Similar to (Anderson et al.,
2018), we extract the image features by using a pre-
trained Faster RCNN (Ren et al., 2015b). We select
µ object proposals for each image, where each ob-
ject proposal is represented by a 2048-dimension

feature vector. We transform the obtained visual
region features by a multi-layer perceptron and ob-
tain the image features I = IµI=0 ∈ Rµ×dq .

Prior Module: We use multi-head atten-
tion (Vaswani et al., 2017) as fcv(·, ·) to manage
the multi-modal interaction. A cross-attention
layer is firstly applied to outputs of the texutal and
visual encoders:

P = softmax(IxT ) ∈ Rµ×λ, (4)

Ix = CrossAttn(I,x) = Px ∈ Rµ×dq , (5)

where the softmax conducts the normalization over
each column of the matrix. We convert the rep-
resentation Î into dq-dimension vectors V. This
conversion is performed by a simple self-attention
computation as follows:

g = softmax(ReLU(ÎW1 +b1)W2 +b2), (6)

where g ∈ Rµ×1, W1, W2, b1, b2 are learned
parameters. We obtain the representation V as
follows:

vprior = gT Î ∈ Rdq . (7)

g is regarded as the prior distribution over visual
objects.

Posterior Module: We simply utilize the add op-
eration as fcy(·, ·) to manage the interaction of x
and y:

xy = x+ y (8)

We replace x in Eq.(6) - Eq.(8) with xy and thus
obtain the posterior distribution G and vpost

Generative and Discriminative Decoder: We
utilize another LSTM as our discriminative and
generative decoders following the previous stud-
ies (Das et al., 2017; Nguyen et al., 2020). Receiv-
ing the representation of context, images and the
candidate answers, the two decoders compute the
score of each candidate answer in different ways.
The objective function of the base model is to min-
imize the negative log-likelihood LG of answer
generated for the generative decoder or the cross-
entropy loss LD for the discriminative decoder. We
utilize the Kullback-Leibler (KL) divergence loss
to narrow the gap. The objective functions of the
student are as follows:

L = LG + λLKL(G,g), (9)

L = LD + λLKL(G,g), (10)

L = LG + LD + λLKL(G,g), (11)



1085

Model
VisDial v0.9 (val) VisDial v1.0 (val)

MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

MN (Das et al., 2017) 52.59 42.29 62.85 68.88 17.06 51.86 47.99 38.18 57.54 64.32 18.60
HCIAE (Lu et al., 2017) 53.86 44.06 63.55 69.24 16.01 59.70 49.07 39.72 58.23 64.73 18.43
CorefNMN (Kottur et al., 2018) 53.50 43.66 63.54 69.93 15.69 - - - - - -
CoAtt (Wu et al., 2018) 54.11 44.32 63.82 69.75 16.47 59.24 49.64 40.09 59.37 65.92 17.86
RvA (Niu et al., 2019) 55.43 45.37 65.27 72.97 10.71 - - - - - -
DVAN (Guo et al., 2019b) 55.94 46.58 65.50 71.25 14.79 - - - - - -
Primary (Guo et al., 2019a) - - - - - - 49.01 38.54 59.82 66.94 16.60
ReDAN (Gan et al., 2019) - - - - - 60.47 50.02 40.27 59.93 66.78 17.40
DMRM (Chen et al., 2020a) 55.96 46.20 66.02 72.43 13.15 - 50.16 40.15 60.02 67.21 15.19
DAM (Jiang et al., 2020c) - - - - - 60.93 50.51 40.53 60.84 67.94 16.65
VDBERT (Wang et al., 2020)� 55.95 46.83 65.43 72.05 13.18 - - - - - -
KBGN (Jiang et al., 2020a) - - - - - 60.42 50.05 40.40 60.11 66.82 17.54

LTMI (Nguyen et al., 2020)† 55.85 46.07 65.97 72.44 14.17 61.61 50.38 40.30 60.72 68.44 15.73
LTMI-LG (Ours) 56.56 46.71 66.69 73.37 13.62 63.23 51.30 41.34 61.61 69.06 15.26
LTMI-LG∗ (Ours) 56.59 46.87 66.92 73.76 13.35 63.53 51.43 41.68 61.96 69.87 14.89

Table 1: Main comparisons on both VisDial v0.9 and v1.0 datasets using the generative decoder. † denotes that
we re-implemented the model using the released code. � denotes that the model utilizes large extra datasets for
training which is unfair compared with other models. ∗ denotes that we train the model using multi-task learning.
Underline indicates the highest performance among previous approaches except for pretraining-based models. Our
approach improves the strong baseline a lot. (t-test, p-value<0.01)

4 Experiments

4.1 Experiment Setup
Datasets and Implementation Details. We con-
duct experiments on the VisDial v0.9 and v1.0
datasets (Das et al., 2017) to verify our approach.
VisDial v0.9 contains 83k dialogs on COCO-
train (Lu et al., 2017) and 40k dialogs on COCO-
val images as the test set, for a total of 1.23M dialog
question-answer pairs. VisDial v1.0 dataset is an
extension of VisDial v0.9 dataset with additional
10k COCO-like images. VisDial v1.0 dataset con-
tains 123k, 2k, and 8k images as train, validation,
and test splits, respectively.

To represent image regions, we use Faster R-
CNN (Ren et al., 2015b) with ResNet-101 (He
et al., 2016) finetuned on the Visual Genome
dataset (Krishna et al., 2017), thus obtaining a
2048-dimension feature vector for each region. Fol-
lowing (Nguyen et al., 2020), we detect µ = 100
objects from each image. Our model is imple-
mented based on PyTorch (Paszke et al., 2017).
In experiments, we use Adam (Kingma and Ba,
2014) optimizer for training, with the mini-batch
size as 32. For the choice of the learning rate, we
employ the warm-up strategy (Goyal et al., 2017).
Specifically, we begin with a learning rate of 0.001,
the learning rate is decreased by 1/4 for every 2
epochs up to 20 epochs. We use 4 Titan-XP GPU
for training. We spend about 4 hours / 1 epoch for
the discriminative setting and 1 hour / 1 epoch for
the generative setting. Our student model is the
same as LTMI, with the total parameters 42.20M.

The λ sets to 1.

Automatic Evaluation. We use a retrieval set-
ting to evaluate individual responses at each round
of a dialog, following (Das et al., 2017). Specif-
ically, at test time, apart from the image, ground
truth dialog history and the question, a list of 100-
candidate answers is also given. The model is eval-
uated on retrieval metrics: (1) Rank of human re-
sponse, (2) Existence of the human response in
top − k ranked responses, i.e., R@k (3) Mean
Reciprocal Rank (MRR) of the human response
and (4) Normalized Discounted Cumulative Gain
(NDCG) for VisDial v1.0.

Human Evaluation. We randomly extract 100
samples for human evaluation (Wu et al., 2018)
and then ask 3 human subjects to guess whether
the last response in the dialog is human-generated
or machine-generated. If at least 2 of them agree
it is generated by a human, we think it is human-
generated (M1). We record the percentage of re-
sponses that are evaluated better than or equal to
human responses (M2), according to the human
subjects’ evaluation.

4.2 Main Results
Baseline methods. In our experiment, compared
methods can be grouped into four types: (1)
Fusion-based models: LF (Das et al., 2017) and
HREA (Das et al., 2017). (2) Attention-based mod-
els: HCIAE (Lu et al., 2017), CoAtt (Wu et al.,
2018), Primary (Guo et al., 2019a), ReDAN (Gan
et al., 2019), CorefNMN (Kottur et al., 2018),
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Model
VisDial v0.9 (val) VisDial v1.0 (test-std)

MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

ReDAN (Gan et al., 2019) - - - - - 57.63 64.75 51.10 81.73 90.90 3.89
MCA (Agarwal et al., 2020) - - - - - 72.73 37.68 20.67 56.67 72.12 8.89
GNN-EM (Zheng et al., 2019) 62.85 48.95 79.65 88.36 4.57 52.82 61.37 47.33 77.98 87.83 4.57
DualVD (Jiang et al., 2020b) 62.94 48.64 80.89 89.94 4.17 56.32 63.23 49.25 80.23 89.70 4.11
FGA (Schwartz et al., 2019) 65.25 51.43 82.08 89.56 4.35 56.90 66.20 52.75 82.92 91.07 3.80
CAG (Guo et al., 2020) 67.56 54.64 83.72 91.48 3.75 56.64 63.49 49.85 80.63 90.15 4.11
KBGN (Jiang et al., 2020a) - - - - - 57.60 64.13 50.47 80.70 90.16 4.08

VisualBERT (Murahari et al., 2020)� - - - - - 74.47 50.74 37.95 64.13 80.00 6.28
VDBERT (Wang et al., 2020)� 70.04 57.79 85.34 92.68 4.04 75.35 51.17 38.90 62.82 77.98 6.69

LTMI (Nguyen et al., 2020)† 66.41 53.36 82.53 90.54 4.03 60.92 60.65 47.00 77.03 87.75 4.90
LTMI-LG (Ours) 67.63 54.69 83.74 91.38 3.75 58.55 64.00 50.63 80.58 90.20 4.12

Table 2: Main comparisons on both VisDial v0.9 and v1.0 datasets using the discriminative decoder. � denotes that
the model utilizes large extra datasets for training which is unfair compared with other models. Underline indi-
cates the highest performance among previous approaches except for the pretraining-based models. Our approach
improves the strong baseline significantly. (t-test, p-value<0.01)

Model w/o Ans w/ Ans with LG

LTMI (Nguyen et al., 2020) 68.6 97.1 82.1
Random 3.6 3.6 -
Human 96.7 99.3 -

Table 3: Accuracy of visual grounding with and with-
out knowing the answer. We randomly sample 1000
samples and ask human annotators to ground the three
most likely objects from the image.

RvA (Niu et al., 2019), DVAN (Guo et al., 2019b)
and DMRM (Chen et al., 2020a), DAM (Jiang
et al., 2020c). (3) The pretraining model: VD-
BERT (Wang et al., 2020) and VisualBERT (Mu-
rahari et al., 2020). (4) Graph-based models:
GNN (Zheng et al., 2019), DualVD (Jiang et al.,
2020b), FGA (Schwartz et al., 2019), KBGN (Jiang
et al., 2020a).

We realize our model LTMI-LG which is based
on the strong baseline LTMI (Nguyen et al., 2020)1.
LTMI is a very strong model which achieves some
the-state-of-the-art results. In general, our ap-
proach brings a large improvement to the strong
baseline LTMI, which shows the effectiveness of
our answer-aware knowledge distillation. We use
t-test and analysis of variance (ANOVA) to analyze
our model and LTMI. The p-values of these two
analytical methods are all less than 0.01, indicating
that the results are significantly different.

As shown in Table 3, we statistic the accuracy of
grounding visual objects of our LTMI-LG, which
is 82.1%. Our answer-aware knowledge distilla-
tion improves the accuracy from 68.6% (LTMI) to

1We reproduce the result for LTMI by their official GitHub
repo (https://github.com/davidnvq/visdial). We apply the de-
fault hyper-parameters as them.

Model NDCG MRR R@1 R@5 R@10 Mean

LTMI 61.61 50.38 40.30 60.72 68.44 15.73
LTMI-Mean 56.66 43.64 32.59 54.66 62.91 17.59
LTMI-Random 56.89 43.79 33.01 54.47 62.76 17.76
LTMI-LG 63.23 51.30 41.34 61.61 69.06 15.26
LTMI-Human 70.10 63.96 50.74 69.29 80.02 8.12

Table 4: Effects of different visual objects distribution.

Model NDCG MRR R@1 R@5 R@10 Mean

MN (Das et al., 2017) - 60.29 46.14 77.68 87.57 4.84
HCIAE (Lu et al., 2017) - 61.96 48.25 78.97 88.43 4.56
CoAtt (Wu et al., 2018) - 62.77 49.38 78.99 88.49 4.56
ReDAN (Gan et al., 2019) - 64.29 50.65 81.29 90.17 4.10
KBGN (Jiang et al., 2020a) 59.08 64.86 51.37 81.71 90.54 4.00
VDBERT (Wang et al., 2020)‡ 56.20 62.25 48.16 79.57 89.01 4.31
VDBERT (Wang et al., 2020)� 63.22 67.44 54.02 83.96 92.33 3.53

LTMI (Nguyen et al., 2020)† 62.72 62.32 48.94 78.65 87.88 4.86
LTMI-LG (Ours) 59.67 65.03 51.69 81.49 90.32 4.02

Table 5: Main comparisons on VisDial v1.0 val datasets
using the discriminative decoder. � denotes that the
model utilizes large extra datasets for training. ‡ de-
notes that the model trains from scratch.

82.1% (LTMI-LG), gaining 13.5% improvement.
As shown in Figure 5, we provide predicted an-
swers by LTMI and our LTMI-LG. Due to the im-
provement of visual grounding, our approach im-
proves the generative and retrieval results of LTMI,
managing to locate visual objects more accurately,
as shown in Table 4. “Mean” denotes We set the dis-
tribution of the visual objects to uniform to make
all visual objects have the same weights. “Ran-
dom” denotes we randomize the distribution in-
batch. “Human” denotes we annotate 100 images
and utilize this distribution to generate responses.
The more appropriate visual objects, the better the
model performance.

Generative Results. As shown in Table 1, we
compare the generative performance among differ-
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Figure 4: Visualization of attention maps generated by LTMI and our approach. Our approach grounds the related
visual objects more accurately than LTMI.

ent methods on the VisDial v1.0 val and VisDial
v0.9 val. With the guidance of the teacher, we train
our LTMI-LG with the ability of accurately ground-
ing visual objects. As a result, our approach im-
prove significantly (nearly 1% on all metrics) com-
pared with LTMI (Nguyen et al., 2020). Comparing
with the state-of-the-art results of different met-
rics, our model improves NDCG for 61.51 to 63.53
(+1.92), MRR from 50.51 to 51.43 (+0.92), R@1
from 40.53 to 41.68 (+1.13), R@5 from 60.84 to
61.96 (+1.12), R@10 from 68.44 to 69.87 (+1.43),
Mean from 15.73 to 14.89 (+0.84) on the VisDial
v1.0 val. Our model also brings a large improve-
ment to LTMI (Nguyen et al., 2020) on the VisDial
v0.9 val. The performance of our model exceeds
the performance of VDBERT (Wang et al., 2020)�

on all the metrics except Mean. We believe data is
an important factor in deep learning (LeCun et al.,
2015). VDBERT (Wang et al., 2020)� works be-
cause it uses a lot of extra data for training. The
reason why our method is effective is that we use
the teacher to teach the student visual grounding,
which can be regarded as a kind of data annotation.

Discriminative Results. As shown in Table 2
and Table 5, we compare our method with pre-
vious works on the VisDial v1.0 test, VisDial v0.9
val and VisDial v1.0 val. Our model improves
significantly compared with LTMI (Nguyen et al.,
2020), improving about +3% on MRR, R@1, R@5
and R@10 on the VisDial v1.0 test. Our approach
also brings a large improvement on the Visdial
v0.9 and achieves the best results on MRR, R@1

Model NDCG MRR R@1 R@5 R@10 Mean

LTMI† 61.61 50.38 40.30 60.72 68.44 15.73

LG-Attn-MSE 63.03 51.14 40.91 61.78 69.43 15.08
LG-Image-MSE 62.80 51.21 41.01 62.02 69.90 14.90

LG-Attn-KL 63.23 51.30 41.34 61.61 69.06 15.26
LG-Image-KL 62.36 51.24 41.19 61.73 69.31 15.13

Attn-KL-Image-MSE 62.73 51.19 40.97 61.80 69.43 15.10

Table 6: Ablation study on VisDial v1.0 val datasets
using the generative decoder.

and R@5 among non-pre-trained models. In a dis-
criminative setting, our approach performs worse
than pre-training models VisualBERT (Murahari
et al., 2020)� and VDBERT (Wang et al., 2020)� be-
cause pre-training models utilize extra large-scale
datasets to train the models which are unfair com-
pared with other models. As shown in Table 5,
VDBERT‡ which trains from scratch performs
worse than our LTMI-LG.

4.3 Ablation Study

In order to transfer knowledge, we need a metric
loss to measure the gap between teachers and stu-
dents. In our main experiments, we utilize the
kullback-leibler (KL) divergence loss to dimin-
ish the gap of the weight distribution between the
student model and the teacher model, the mean
squared loss to diminish the gap of the represen-
tation of images. To compare different losses, we
utilize the mean squared loss for attention maps and
KL loss for the representation of images as shown
in Table 6. We find that KL loss is more suitable for
attention distribution (better for NDCG, MRR and
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Figure 5: Examples of dialogs generated and retrieved by our model and the LTMI baseline. Our model provides
answers that are more accurate than LTMI (green denotes correct answers, and red denotes wrong answers).

R@1) and MSE loss for the representation (better
for R@5, R@10 and Mean). In addition, we use
the attention via KL loss and the representation via
MSE loss for distillation at the same time. The
result is not so satisfactory and we think these two
methods have some redundancy.

4.4 Case Study

As shown in Figure 4, we visualize the learned
attention maps to understand the model. The col-
orful region means higher attention weights. We
draw the bounding boxes of the first three highest
scores. As shown in the top image in Figure 4,
the question “is he standing ?" indicates the man’s
overall posture rather than the local. LTMI grounds
the wrong visual objects while our model grounds
the right objects. As shown in the bottom image
in Figure 4, the question “is his tennis racket up
in the air swinging ?” concerns the racket rather
than the tennis balls. Our model grounds accurately
while LTMI makes mistakes. These examples show
that our LTMI-LG has learned the ability to ground
visual objects via our answer-aware knowledge dis-
tillation.

4.5 Human Study

As shown in Table 7, we conduct human study to
further demonstrate the effectiveness of our model.
Our model achieves the highest scores both on the
metric M1 and M2 compared with LTMI.

5 Related Work

Recent several works (Shuster et al., 2018; Liang
et al., 2021; Yang et al., 2020) explore leverag-
ing visual information to enhance dialogue mod-

LTMI LTMI-LG

Method 1 (M1) 56 66

Method 2 (M2) 61 69

Table 7: Human evaluation on 1000 sampled responses
on VisDial val v1.0. M1: percentage of responses
which are human-generated. M2: percentage of re-
sponses evaluated better than or equal to human re-
sponses.

els. While visual dialog models focus on the in-
tersection of questions, history and images. How
to locate the related visual objects is quite impor-
tant. MN (Das et al., 2017), HCIAE (Lu et al.,
2017), CorefNMN (Kottur et al., 2018), CoAtt (Wu
et al., 2018), RvA (Niu et al., 2019), DVAN (Guo
et al., 2019b) utilize kinds of attention mechanisms
as the backbone to locate the related visual ob-
jects. VisualBERT (Murahari et al., 2020) and
VDBERT (Wang et al., 2020) exploit large extra
datasets to explore in visual dialog via pretraining
language models. GNN-EM (Zheng et al., 2019),
FGA (Schwartz et al., 2019), DualVD (Jiang et al.,
2020b), CAG (Guo et al., 2020) and KBGN (Jiang
et al., 2020a) utilize graph neural networks to ob-
tain the representation of visual objects. However,
most existing visual dialog models condition visual
objects simply on history and questions, which we
regard as a prior distribution over visual objects.
In this paper, we propose an approach to learn to
ground visual objects via bridge the gap between
the prior distribution and the posterior distribution.
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6 Conclusion

In this paper, we propose a novel approach to learn
to ground visual objects for visual dialog, which
employs a novel visual objects grounding mecha-
nism where both prior and posterior distributions
over visual objects are used to facilitate visual ob-
jects grounding. Experimental results on two large-
scale datasets show that our approach improves the
previous models by a significant margin.
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