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Abstract

Multi-modal machine translation (MMT) aims
at improving translation performance by incor-
porating visual information. Most of the stud-
ies leverage the visual information through in-
tegrating the global image features as auxiliary
input or decoding by attending to relevant lo-
cal regions of the image. However, this kind
of usage of visual information makes it dif-
ficult to figure out how the visual modality
helps and why it works. Inspired by the find-
ings of (Caglayan et al., 2019) that entities are
most informative in the image, we propose an
explicit entity-level cross-modal learning ap-
proach that aims to augment the entity repre-
sentation. Specifically, the approach is framed
as a reconstruction task that reconstructs the
original textural input from multi-modal input
in which entities are replaced with visual fea-
tures. Then, a multi-task framework is em-
ployed to combine the translation task and the
reconstruction task to make full use of cross-
modal entity representation learning. The ex-
tensive experiments demonstrate that our ap-
proach can achieve comparable or even better
performance than state-of-the-art models. Fur-
thermore, our in-depth analysis shows how vi-
sual information improves translation.

1 Introduction

Multi-modal machine translation (MMT) aims at
improving the translation performance with the
help of visual information such as image (Specia
et al., 2016; Elliott et al., 2017; Barrault et al., 2018;
Zhang et al., 2020). The assumption behind this
is that images consist of relatively complete infor-
mation compared with textual description and can
provide complementary knowledge to guide trans-
lation (Elliott et al., 2016).

Previous studies mainly focus on integrating the
visual information into neural machine translation
as a global feature or as attention-based local fea-
tures. Benefiting from the similar representation

between visual features (He et al., 2016) and tex-
tual hidden states (Bahdanau et al., 2015), several
attempts have been made to incorporate image fea-
tures as an auxiliary input to exploit its global se-
mantics (Calixto and Liu, 2017; Elliott and Kádár,
2017; Zhou et al., 2018). Some works leverage the
spatial information in the decoding stage by attend-
ing to relevant local regions of the image (Calixto
et al., 2017; Caglayan et al., 2017, 2018; Libovický
and Helcl, 2017; Libovický et al., 2018; Yao and
Wan, 2020; Ive et al., 2019).

However, these sentence-level approaches which
implicitly incorporate image features make it ex-
tremely difficult to figure out how visual features
affect the representation of source-side sentences
or the decision when generating a target-side word.
Furthermore, results from (Elliott, 2018) have
shown that visual information maybe not the rea-
son why MMT models were promoted, and it is
observed that irrelevant images can improve trans-
lation unexpectedly.

Inspired by the findings of (Caglayan et al.,
2019) that entities are most informative in the
image, we propose an entity-level cross-modal
learning approach for multi-modal machine transla-
tion (EMMT). Different from sentence-level cross-
modal semantics fusion approaches, our approach
aims to augment the entity representation explicitly.
We frame the entity-level cross-modal learning ap-
proach as a reconstruction task that reconstructs
the original textual sentence from a degraded multi-
modal input (Lewis et al., 2020). The multi-modal
input is a mixture of a degraded sentence and re-
lated visual objects. The degraded sentence is
generated by erasing the visually depictable entity
words as done by (Caglayan et al., 2019) and filling
the erased position with corresponding visual ob-
jects. Reconstructed from this kind of input, entity
words are learned in a cross-modal way. Then, a
multi-task framework is employed to combine the
translation task and the reconstruction task. Thanks
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to the shared parameters from the reconstruction
model, the translation could make full use of cross-
modal entity representation learning and significant
gains are obtained.

We further take an in-depth analysis to figure
out why the approach works by contrasting the
translation correctness of entity words with several
MMT models. The results show that the translation
accuracy of entity words significantly increases
with the help of visual information.

The major contributions of our work are listed
as follows:

• We propose an entity-level cross-modal learn-
ing approach that explicitly enhances the en-
tity representation.

• We present a multi-task method to implicitly
make full use of visually enhanced entity rep-
resentation to improve text translation.

• Our approach significantly improves the trans-
lation performance compared with strong
baselines and performs on par with or out-
performs the state-of-the-art methods. The
in-depth analysis demonstrates why visual
modality helps obtain better translations and
contributes to a better understanding of multi-
modal machine translation.

2 Our Approach

In this section, we first introduce how our entity-
level cross-modal learning approach explicitly in-
corporates visual information into entity words.
Then, we frame this approach as a reconstruction
task and combine it with the translation task in a
multi-task framework. Finally, we provide three
parameter-sharing schemes to fully exploit the ad-
vantage of this multi-task learning approach.

2.1 Explicit Entity-level Cross-modal Fusion
As the cross-modal learning method is applied
to the entity words, we define the linguistic en-
tity in two granularities: phrase entity and
word entity.

Phrase Entity A phrase entity is a visu-
ally depictable phrase which is a full description of
a visual object image. For example, in Figure 1 the
person in the red bounding box is described as “A
girl” in the sentences X0 and X2. The “girl” is the
object itself. “A” is an adjunct word that quantifies
the “girl”. Both words are meaningful components
to describe a visual object image.

𝑿𝟎    : A girl in a flower dress is running on sand. 

𝑿𝟏    : The young girl is standing on one leg. 

𝑿𝟐    : A girl running with outstretched arms. 

𝑿𝟐,𝑴𝑴𝒘: A <E0> running with outstretched <E1>. 

𝑿𝟐,𝑴𝑴𝒑: <E0> <E0> running with <E1> <E1>. 

<E0><E0>

<E2><E2>

<E1><E1>

<E0>

<E2>

<E1>

Figure 1: An example of a described picture with cap-
tions from three people. It shows how we replace the
entity words with visual objects. The noun phrases
parsed by a NLP toolkit are marked with colors. The
replaced words are marked by “〈E0〉 ” and “〈E1〉 ”.

Word Entity A word entity is the nouns in
a phrase entity. For different people, the
visual object image could be described from any
aspect. As shown in Figure 1, the visual object
“〈E0〉 ” is described as “The young girl” in X1

which is different from X0 and X2. To eliminate
the influence of different adjunct words, we only
take the nouns as the entity words.

Explicit Multi-modal Input Fusion As there
exist two kinds of linguistic entities, we set two re-
placement rules to the explicit cross-modal fusion
method: the phrase-level replacement and the word-
level replacement. The phrase-level replacement
rule erases all words in the phrase entity and
fills the positions with visual object images. For
example, in Figure 1, X2 is the original sentence
in which “A girl” corresponds with the visual ob-
ject marked with “〈E0〉 ”. In its degraded version
X2,MMp, both “A” and “girl” are erased and re-
placed with entity “〈E0〉 ”.

The word-level replacement rule works similarly
to the phrase-level. As illustrated in Figure 1, only
the word entity “girl” and “arms” are erased
and replaced. The final input is a mixture of a de-
graded sentence with several visual object images.

2.2 Cross-modal Learning as Reconstruction

To fully exploit information from both modalities
for entity words, we frame the entity-level cross-
modal learning approach as a reconstruction task.
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𝑋: a girl running with outstretched arms . 

𝑒0 𝑒0 𝑒1 𝑒1 𝑒2 𝑒2 𝑒3 𝑒3 𝑒4 𝑒4 𝑒5 𝑒5 𝑒6 𝑒6 

TranslationReconstruction

𝑋: a girl running with outstretched arms . 𝑌: ein mädchen läuft mit ausgestreckten armen . 

𝑋𝑀𝑀𝑤  
𝑣1 𝑣1 𝑣5 𝑣5 

Figure 2: The EMMT model learns a better representation of the entity word by reconstructing source text from
a degraded multi-modal input. The encoders with the same color are parameter-shared. The two green-dashed
lines between decoders indicate that we can also share the decoder parameters by merge the source and target
vocabularies. The black dashed arrow represents that the reconstructing target language text is also feasible.

As shown in Figure 2, the left model named “Re-
construction” is in a sequence-to-sequence learn-
ing framework. The multi-modal sequence in-
put XMMw is a mixture of an entity-level de-
graded textual sentence and several visual object
images. The vector representations of the sequence
{e0, v1, e2, e3, e4, v5, e6} are from different feature
spaces. The task reconstructs the original textual
sentences X = {x0, x1, . . . , xN} from the de-
graded multi-modal sequences XMMw. The model
can learn entity word information from both the
visual feature space in the encoding stage and the
linguistic feature space in the decoding stage. The
reconstruction model is trained to minimise the
negative log-likelihood function:

LR(θ, ψ) = −
N∑
i

log p(xi|x<i, XMM ) (1)

where XMM is XMMw or XMMp, θ is the param-
eters of the shared encoder, and ψ is the parameters
of the reconstruction decoder.

We also consider reconstructing the target lan-
guage text Y = {y0, y1, . . . , yM}. As shown in
Figure 2, the black dash line points to decoder of
the translation model. To reconstruct the target text
Y , we modify the reconstruction objective function
to:

LR(θ, ψ) = −
M∑
j

log p(yj |y<j , XMM ) (2)

2.3 Multi-task Framework

As illustrated in Figure 2, the architecture of the
reconstruction model is basically the same as the
translation model. The objective function of trans-
lation model is also similar to LR(θ, ψ):

LT (θ, ϕ) = −
N∑
i

log p(yi|y<i, X) (3)

where ϕ is the decoder parameters of the translation
model. To combine the reconstruction task with
the translation task, we mix their objective function
with the parameter w (Elliott and Kádár, 2017):

L(θ, ϕ, ψ) = wLT (θ, ϕ)+ (1−w)LR(θ, ψ) (4)

where w is the probability of updating translation
model parameters in current minibatch. For the
reconstruction task, its probability is 1− w.

2.4 Parameter Sharing Schemes

As described in previous sections and illustrated in
Figure 2, with the help of shared parameters from
the reconstruction model, the translation model
could make full use of cross-modal entity represen-
tation learning and obtain significant gains. Bene-
fiting from the similar design in the model architec-
ture of the two tasks, we investigate two reconstruc-
tion directions which are introduced in subsection
2.2 and design three parameter sharing schemes as
follows.
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Reconstruct Source Text with Respective De-
coders Among all parameter sharing schemes,
the encoder parameters are shared between the re-
construction model and the translation model. The
decoder parameters are optional. In this scheme,
we utilize respective decoders in two models which
means that the decoder parameters are exclusive to
each model. The joint objective is Equation 4. We
use the identifier “SR” to refer to this scheme in
our experiments.

Reconstruct Source Text with Shared Decoder
By merging the source-side and the target-side vo-
cabularies, and sharing embedding layers between
the encoder and the decoder, the parameter-shared
decoder for both reconstruction and translation is
feasible. To distinguish reconstruction from trans-
lation, we provide an additional language identi-
fication token as the first output word during de-
coding.1 With this setting, ψ is the same as ϕ
which means all parameters are shared between
the translation model and the reconstruction model.
Therefore, we adjust the objective function as:

L(θ, ϕ) = wLT (θ, ϕ) + (1− w)LR(θ, ϕ) (5)

We use the identifier “SS” to refer to this scheme.

Reconstruct Target Text with Shared Decoder
Unlike source text reconstruction, the decoder pa-
rameters can be shared easily if the output is in
the same target language. Within this scheme, the
reconstruction task works more like a multi-modal
translation task, as shown by the black dashed line
arrow in Figure 2. The objective function of multi-
task learning is the same with Equation 5. We use
the identifier “T” to refer to this scheme.

3 Experimental Setup

We test our approach on both RNN-based and
Transformer-based models and carry out experi-
ments on English to German (En→ De) translation
task.

Dataset We test our approach on the Multi30K
dataset (Elliott et al., 2016) in which each image is
paired with one English description and one trans-
lated German description. Multi30k was split into
three parts: training, validation, and test, containing
29,000, 1,014, and 1,000 pairs of sentences respec-
tively. We also evaluate our model in the Multi30k

1In our experiments, we use “〈en_sos〉 ” as the language
identification token for English reconstruction decoding and
“〈de_sos〉 ” for German translation decoding.

2017 test set and the ambiguous MSCOCO test set
which contains 1,000 and 461 pairs of sentences
respectively. To figure out the upper bound of our
approaches, we also incorporate the ground truth
bounding boxes of entities. It is reached by using
Flickr30K Entities dataset (Plummer et al., 2015,
2017) which was built from Flickr30K (Young
et al., 2014).

Entity Extraction To extract visually depictable
phrases and detect the corresponding visual objects,
we apply an approach similar to the work (Yin et al.,
2020). First, we employ an advanced natural lan-
guage processing toolkit spaCy to extract noun
phrases in the source-side sentences. For word-
level replacement mentioned in subsection 2.1, we
keep the nouns in a phrase as the entity word. This
affects 32.6% of the words in both the training and
the test set for word-level replacement and 45.1%
for phrase-level replacement. We measure the me-
dians of entity word frequency in the word-level
and the phrase-level replacement. Both of the me-
dians are 2 which means most of the entity words
are low frequency. Then, we employ the visual
grounding toolkit released by Yang et al. (2019) to
detect the visual objects which are related to the ex-
tracted noun phrases. Theoretically, only visually
depictable phrases are detectable. The ground truth
visual bounding boxes and the entity phrases are
given by Flickr30K Entities dataset (Plummer et al.,
2015, 2017). Finally, we apply the ResNet-50 (He
et al., 2016) pre-trained on ImageNet (Russakovsky
et al., 2015) to extract 2,048D global features for
the visual objects.

RNN-based Model For RNN-based models, the
baseline model is an encoder-decoder-based neural
machine translation model with attention (Luong
et al., 2015). The encoder is a single layer 500D
bidirectional RNN with LSTM (Hochreiter and
Schmidhuber, 1997), both decoders in the recon-
struction model and the translation model are single
layer 500D LSTMs, and the embedding layers are
500D. The dropout is set to 0.3 for the encoder,
the decoder, and the attention layer. All model pa-
rameters are initialized sampling from a uniform
distribution u(−0.1,+0.1) and bias vectors are set
to 0. The RNN-based models are trained with the
Adam optimizer with an initial learning rate of
0.002. We set the minibatch size to 40. Models are
selected based on BLEU4 (Papineni et al., 2002)
results of the translation task on the validation data.
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RNN-based Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

NMT 35.9 (0.1) 54.9 (0.1) 28.8 (0.6) 49.5 (0.2) 25.9 (1.0) 45.7 (0.7)

pRCNNs (Huang et al., 2016) 36.5 (0.8) 54.1 (0.7) - - - -
DATT (Calixto et al., 2017) 36.5 55.0 - - - -

Imagination (Elliott and Kádár, 2017) 36.8 (0.8) 55.8 (0.4) - - - -
VMMTC (Calixto et al., 2019) 37.5 (0.3) 55.7 (0.1) 26.1 (6.6) 45.4 (7.3) 21.8 (5.6) 41.2 (6.3)
VMMTF (Calixto et al., 2019) 37.7 (0.4) 56.0 (0.1) 30.0 (0.3) 49.9 (0.3) 25.5 (0.5) 44.8 (0.2)

w
or

d EMMTSR 37.8 (0.2) 56.1 (0.2) 30.1 (0.7) 50.3 (0.1) 27.0 (0.1) 46.4 (0.2)
EMMTSS 38.0 (0.5) 56.2 (0.2) 30.3 (0.5) 50.1 (0.1) 26.1 (0.7) 45.6 (0.7)
EMMTT 36.3 (0.5) 55.0 (0.1) 28.4 (0.1) 48.6 (0.2) 25.3 (0.1) 44.3 (0.4)

ph
ra

se EMMTSR 38.0 (0.1) 56.5 (0.3) 30.2 (0.8) 50.3 (0.4) 26.8 (0.5) 46.1 (0.6)
EMMTSS 37.8 (0.1) 56.1 (0.2) 30.5 (0.5) 50.1 (0.3) 26.0 (0.1) 45.5 (0.4)
EMMTT 36.8 (0.1) 55.0 (0.4) 29.4 (0.2) 49.0 (0.1) 26.3 (0.6) 45.3 (0.7)

Table 1: Experiment results of RNN-based EMMT on the Multi30K 2016/2017 test set and the Ambiguous
MSCOCO 2017 test set. For each model, we report the mean and the standard deviation over 3 independent runs.
Best overall results are bold.

The training procedure is halted if the model does
not improve BLEU4 scores on the validation set
for 10 epochs. We translate test data on the last
saved model.

Transformer-based Model For Transformer-
based models, we set it up with a 128D word
embedding layer and 256D hidden size. The em-
bedding layer is shared between source and target
vocabularies. Both the encoder and the decoder
have Ld = 4 layers, and the number of heads is
4. We set the dropout to 0.2 which gets a similar
baseline model with (Yin et al., 2020). Adam opti-
mizer is applied in the same way with the original
transformer model (Vaswani et al., 2017). Each
training batch contained 2,000 source tokens and
corresponding target sentences and images. The
training was halted after 80,000 steps. All above
Transformer-based settings are basically the same
as the set up in the publication of (Yin et al., 2020)
which we will compare with.

Other Settings We train our models by randomly
selecting from the translation task and the recon-
struction task. The parameter w is the probability
of updating the translation model in the current
minibatch. It is set according to the ratio of the
amount of data used in the translation task and the
reconstruction task. For the Multi30K dataset, we
set 0.5 to keep the balance between two tasks. we
report mean and standard deviation over 3 inde-
pendent runs for all models. Finally, we evaluate
translation quality using the metrics of BLEU4 (Pa-
pineni et al., 2002) and METEOR (Denkowski and
Lavie, 2014).

4 Experimental Results

4.1 Baselines

We compare the proposed models against the fol-
lowing MMT systems. RNN-based models:

• NMT: It is the text-only RNN-based atten-
tional NMT system (Luong et al., 2015) with
default setting.

• pRCNNs (Huang et al., 2016): Visual objects
are respectively encoded with the source sen-
tence. In the decoding phase, the decoder
chooses to attend mostly to the relevant words
in the sequence encoded with the relevant vi-
sual object.

• DATT (Calixto et al., 2017): It is an NMT
model with a doubly attentive decoder. One
of the decoders attends to the relevant region
of the image to help to predict a word.

• Imagination (Elliott and Kádár, 2017): It is
an NMT model with an auxiliary task that
imagines the image from the source sentence
description.

• VMMT (Calixto et al., 2019): The VMMTC

and VMMTF are latent variable models that
interact between visual and textual features.

Transformer-based models:

• Transformer (Vaswani et al., 2017): It is the
text-only Transformer system with default set-
ting in section 3.
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Transformer-based Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

Transformer 38.5 (0.7) 57.5 (0.3) 31.0 (1.0) 51.9 (0.4) 27.5 (0.6) 47.4 (0.1)

DelMMT (Ive et al., 2019) 38.0 55.6 - - - -
MMT-TF (Yao and Wan, 2020) 38.7 55.7 - - - -

GAMMT (Liu et al., 2021) 39.2 57.8 31.4 51.2 26.9 46.0
GMMT (Yin et al., 2020) 39.8 57.6 32.2 51.9 28.7 47.6

w
or

d EMMTSR 39.7 (0.3) 57.5 (0.1) 32.9 (0.2) 51.7 (0.4) 29.1 (0.5) 47.5 (0.2)
EMMTSS 39.4 (0.6) 57.8 (0.5) 32.4 (0.4) 52.1 (0.3) 28.3 (0.7) 47.5 (0.4)
EMMTT 38.7 (0.3) 56.2 (0.5) 31.0 (0.4) 49.6 (0.7) 26.5 (0.7) 44.9 (0.3)

ph
ra

se EMMTSR 39.3 (0.3) 57.4 (0.7) 32.7 (0.9) 51.8 (0.4) 28.7 (0.9) 47.5 (0.6)
EMMTSS 39.0 (0.7) 57.3 (0.5) 32.4 (0.7) 51.6 (0.4) 28.3 (0.2) 47.2 (0.0)
EMMTT 38.5 (0.7) 56.2 (0.2) 30.5 (0.7) 49.7 (0.1) 26.8 (0.8) 45.6 (0.5)

Table 2: Experiment results of Transformer-based EMMT.

Model RNN-based Transformer-based

BLEU METEOR BLEU METEOR

w
or

d EMMTSR 38.0 (0.1) ↑ 0.2 56.1 (0.4) - 0.0 39.9 (0.5) ↑ 0.2 58.0 (0.3) ↑ 0.3
EMMTSS 38.0 (0.0) - 0.0 55.9 (0.2) ↓ 0.3 39.5 (0.6) ↑ 0.1 57.2 (0.3) ↓ 0.6
EMMTT 36.7 (0.2) ↑ 0.4 55.5 (0.4) ↑ 0.5 38.0 (0.3) ↓ 0.7 56.9 (0.4) ↑ 0.7

ph
ra

se EMMTSR 38.1 (0.7) ↑ 0.1 56.6 (0.3) ↑ 0.1 39.4 (0.1) ↑ 0.1 57.3 (0.2) ↓ 0.1
EMMTSS 37.8 (0.3) - 0.0 56.2 (0.4) ↑ 0.1 39.3 (0.1) ↑ 0.3 57.1 (0.1) ↓ 0.2
EMMTT 36.9 (0.2) ↑ 0.1 55.3 (0.4) ↑ 0.3 38.8 (0.6) ↑ 0.3 56.6 (0.5) ↑ 0.4

Table 3: Results of applying ground truth bounding boxes for visual objects which are provided by Flickr30K
Entities. The bolded results exceed the results of applying detected bounding boxes which are reported in Table 1
and Table 2. We highlight in green/red the improvement.

• DelMMT (Ive et al., 2019): The images are
applied in the second decoding stage that re-
fines translations from the first drafts with the
help of visual information.

• MMT-TF (Yao and Wan, 2020): This work
designed a multi-modal self-attention that
links the source sentence representations with
the image feature sequence as the query in the
self-attention.

• GAMMT (Liu et al., 2021): A Gumbel-
attention was proposed to integrate visual in-
formation by the Gumbel-Attention score ma-
trix which selects the text-related parts of the
image features.

• GMMT (Yin et al., 2020): A graph-based and
transformer-based multi-modal encoder takes
the object-level image features and source sen-
tences as graph inputs.

4.2 Results on the En→De Translation Task
As introduced in subsection 2.1 and 2.4, we have
two entity replacement rules and three parameter
sharing schemes in total to set up our models. We

use “word/phrase” as the identifier to mark whether
we apply the word-level replacement or the phrase-
level replacement to the text degradation. The iden-
tifiers “SR/SS/T” are parameter sharing schemes
introduced in subsection 2.4. For example, if we
apply a RNN-based EMMT to reconstruct source
sentences from a degraded multi-modal input in
which its phrases are replaced by visual objects,
and use respective decoders for two models, the
model should be named as EMMTSR and be dis-
played in the “phrase” rows.

Results of RNN-based Models Table 1 shows
the main results of our RNN-based models on the
En→De translation task. We compare our mod-
els with five RNN-based MMT models. Most of
our models outperform the best RNN-based MMT
model VMMTF and achieve great improvement
compared with the text-only baseline model.

Results of Transformer-based Models Table
2 shows the main results of our Transformer-
based models. We compare our models with 4
transformer-based MMT models in which GMMT
(Yin et al., 2020) is the state-of-the-art MMT model.
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Our best model is comparable with or superior to
GMMT. Note that GMMT is graph-based model
with more complicated than ours and our approach
has another advantage that it does not rely on im-
age during test inference. Similar to the results of
RNN-based models, models with target sentence
reconstruction direction are not able to reach up to
best results. We speculate that it is because recon-
structing the target language text from multi-modal
input is much more difficult than reconstructing the
original source language text.

Results on Gold Flickr30K Entities Table 3
shows the results on Flickr30K Entities data set.
Most of the models outperform the models apply-
ing detected visual objects. These results also sug-
gest that models trained on the detected visual ob-
jects approximate the models trained on the ground
truth visual objects.

Overall, the results displayed in Table 1 to Ta-
ble 3 suggest that the word-level replacement and
reconstructing source text with the respective de-
coders are the best settings of our approach.

4.3 Adversarial Evaluation and Ablation
Study

RNN-based BLEU

vo ro rw mlm

w
or

d EMMTSR 37.8 37.4 37.1 36.8
EMMTSS 38.0 37.8 37.6 37.6
EMMTT 36.3 36.3 35.0 35.6

ph
ra

se EMMTSR 38.0 37.2 37.3 36.9
EMMTSS 37.8 37.5 37.6 37.6
EMMTT 36.8 36.2 35.9 35.3

Table 4: Adversarial evaluation and ablation study re-
sults on Multi30K 2016 test set. The best results are
bold, and the worst are underlined.

As pointed out by previous studies that noise is
the major part of visual features in the image-to-
text task. It is necessary to find out whether our
model can eliminate noise and learn useful infor-
mation from visual features. We suppose that our
models benefit from the visual object information,
the multi-task scheme, and the de-noising ability.
To investigate the effectiveness of these compo-
nents, we conduct several experiments to compare
our models with the following variants:

(1) randomized inputs. In this variant, we apply
a random visual object (“ro”) or a random word
(“rw”) (Lewis et al., 2020) to replace the original

visual object in the training stage. The noise in this
scheme is from the feature space of images or the
textual representation space.

(2) masked language model. We replace all en-
tity words with a special token “〈mask〉 ”. In this
way, the reconstruction model degenerates to a
masked language model (“mlm”).

We apply these schemes to our RNN-based mod-
els on the Multi30K test2016 data. We use “vo” to
represent our models on the detected visual objects
which were displayed in Table 1.

As shown in Table 4, most of our models out-
perform the noise input models. It indicates that
our models learn valuable information from visual
objects for improving translation performance. The
results of “mlm” show that the entity-masked multi-
task scheme brings limited benefit to translation
quality.

5 Entity Word Analysis

In this section, we take an in-depth analysis to
find out why our entity-level cross-modal learn-
ing approach works. We intuitively assume that
the approach provides an extra gain to the trans-
lation correctness of entity words. Therefore, we
measure the translation accuracy for different
types of words and subtract the result of the base-
line model from MMT models as the extra gain
which we call the increment. We split all words
into two parts: the entity words which were men-
tioned as word entity in subsection 2.1 and the other
words which correspond to no visual object. Dif-
ferent from sentence-level approaches, our entity-
level MMT models are expected to obtain more
increment for the entity words. It is represented
as lowering the increment difference be-
tween the other words and the entity words.

The measurement is based on the sentence-level
translation results of various MMT models. To
get the word-level translation, we employ the fast-
align (Dyer et al., 2013) toolkit which aligns tokens
from source-side to target-side and concatenates
the training set and the test set to train better align-
ments. The aligned target-side words are consid-
ered to be the translation of the source-side words.
We take the alignment results of reference paral-
lel data as the correct translation and compare it
with the results of translated data from the MMT
models. We pose a contrast among four kinds of
MMT models: 6 of our RNN-based models, 12 of
adversarial models in Table 4, 6 of MLM models
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Figure 3: Experiment results of entity word analysis. “all” words in the Multi30K 2016 test are split into two parts.
The “entity” represents the entity words in the word-level replacement rule. The “other” represents all other words.
Our models are in the red bounding boxes, and former MMT models are in the green bounding boxes.

in Table 4, and 4 of other MMT models in Table 1.

Results on the Detected Visual Objects The re-
sults of models “vo” are shown in Figure 3 with red
bounding boxes. A notable aspect of this figure is
that most of the differences are positive. As
mentioned in subsection 3, entity words are low-
frequency which makes it harder to learn a better
representation. We sort all results in ascending
order, based on their differences. It shows
that all our models come out among the lowest
differences which indicates image informa-
tion helps to narrow the gap of translation quality
between entity words and other words.

Results of Our Multi-task Models As shown
in Figure 3, neither adversarial models (“ro”
and “rw”) nor MLM models get stable lower
differences. No evidence was found that the
de-noising ability or the MLM of our multi-task
scheme was a guarantee for helping the transla-
tions of entity words. It further proves that our
entity-level cross-modal learning approach learns
valuable visual information from visual objects.

Results of Previous Works The translation re-
sults of “DATT”, “VMMTC”, and “VMMTF”
are generated from three times independent runs
of their released codes. The “Imagination”
is reproduced by ourselves. The results in
Figure 3 show no advantage in lowering the
increment differences. The overall con-
trastive analysis results indicate that our entity-level
cross-modal learning approach is effective in opti-
mizing the translation quality of the entity words.

6 Related Work

Previous studies mainly focused on fusing the
multi-modal information into the sentence-level se-
mantics (Huang et al., 2016; Calixto and Liu, 2017;
Calixto et al., 2017; Libovický and Helcl, 2017;
Delbrouck and Dupont, 2017) in the RNN-based
architecture (Bahdanau et al., 2015). Besides above
approaches, Toyama et al. (2016); Calixto et al.
(2019) proposed to apply latent variables as the
unified semantic representations. Ive et al. (2019)
proposed a translate-and-refine approach to gener-
ate a good translation from the first draft by making
better use of the target language and visual context.
There are also works (Wang et al., 2018a,b; Zhao
et al., 2020) show that extra modality information
is useful in a more fine-grained way.

Recently, Yin et al. (2020) proposed a fine-
grained method that employs a graph-based multi-
modal fusion encoder to fuse image and source text
in the entity level. The input sentence and image
are represented as a unified graph. The encoder can
capture the relations among visual objects and lin-
guistic entities. Similar to their model, our model
also explores the fine-grained multi-modal seman-
tics at the entity-level. However, the differences
lie in two aspects: (1) our entity-level cross-modal
learning task is framed as a reconstruction prob-
lem that is simpler than their graph-based model,
and we also investigate word-level and phrase-level
entities. (2) Our model does not rely on images
during the inference stage. Furthermore, our results
are comparable or better than theirs.

Our work is mainly inspired by the image prob-
ing work (Caglayan et al., 2019). This work de-
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grades the textual input by replacing some de-
pictable words with visual information and then
tests whether the image is helpful. The authors
find that the entities are most informative in the im-
age. In our work, we utilize a similar degradation
method to prepare the multi-modal input. We go a
step further to learn an entity-level cross-modal rep-
resentation that is proved to significantly improve
translation performance.

Wang and Xiong (2021) proposed several loss
functions that help their model to capture more
relevant information from visual objects. They also
tried to weaken the functionality of textual modality
to exploit visual information. The differences are
as follows: (1) Their approach needs entity labels
manually annotated from the Flickr30K Entities
dataset. (2) Their model works well in the textual
degradation situation. However, this strategy is not
able to facilitate their model in the general intact-
textual scenarios.

Elliott and Kádár (2017) also applied a multi-
task framework to perform multi-modal transla-
tion. The differences are in the following as-
pects: (1) Their work fuse visual information in the
sentence-level semantics. Our models benefit from
entity-level cross-modal fusion. (2) The image is
grounded from source sentences in their model.
In our approach, the model performs an image-
to-text reconstruction task. (3) Benefiting from
the similar frameworks of the reconstruction task
and the translation task, our multi-task method is
flexible enough to provide three parameter-sharing
schemes.

Our adversarial evaluation in the experiments is
inspired by the work (Elliott, 2018) in which the au-
thors proposed an adversarial approach to measure
the utility of the image in multi-modal translation.
In this work, a random image is fed into the model
instead of the paired one. Then the difference in
performance reflects the importance of visual infor-
mation. We apply a similar adversarial evaluation
to our models by randomizing the visual object
images in the training stage.

To fully exploit visual modality, we degrade the
linguistic context and reconstruct the original text
from both modalities. This strategy leads to a sim-
ilar model framework to the vision-language pre-
trained models (Li et al., 2019; Lu et al., 2019;
Su et al., 2020). However, vision-language pre-
trained models can only initialize the encoder while
our methods provide various models to learn cross-

modal representations in the encoder-decoder ar-
chitecture.

7 Conclusion

In this paper, we have proposed an entity-level
cross-modal learning approach that explicitly incor-
porates visual information into linguistic entities
and is combined with the text-only translation task
in a multi-task framework. Our extensive results
show that our models can achieve comparable or
even better performance than state-of-the-art mod-
els. Furthermore, we take an in-depth analysis to
figure out why the approach works by contrasting
the translation correctness of entity words with mul-
tiple adversarial models and former MMT models.
The results show that the translation accuracy of
entity words significantly increases with the help
of entity-level visual information. Our findings
suggest that images can be utilized explicitly in an
MMT model and better approaches are favored to
leverage the fine-grained object information in the
image.
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A Adversarial Evaluation and Ablation
Study for Reconstruction

RNN-based BLEU

vo ro rw mlm

w
or

d EMMTSR 44.5 43.9 42.4 40.0
EMMTSS 45.2 43.6 2.6 25.1
EMMTT 16.6 15.8 15.7 16.0

ph
ra

se EMMTSR 35.4 23.7 26.5 24.9
EMMTSS 35.2 27.6 2.1 24.2
EMMTT 13.3 10.6 10.3 10.5

Table 5: Adversarial evaluation and ablation study re-
construction results on Multi30K 2016 test set. The
best results are bold, and the worst are underlined.

As shown in Table 5, all our models outperform
the noise input models for the reconstruction task.
These results further support the evidence from the
translation task and indicate that the reconstruc-
tion task is effective. And the gains seem to be
affected by the proportion of visual features we
input. As we can see that the phrase-level replace-
ment schemes seem to enlarge the quality differ-
ence between our models and adversarial models.
It indicates that the less textual information is, the
greater the role of visual information it plays.

The large performance gap between the word-
level replacement rule and the phrase-level is
caused by the unpredictable adjunct words which
were mentioned in subsection 2.1. It is extremely
difficult to predict the adjunct words from the vi-
sual objects. It is the reason why the phrase-level
replacement models get much lower reconstruction
BLEU than word-level. Besides the adjunct words,
the word entities are also included in the phrase
entities. It makes sure that phrase-level schemes
get similar translation performance to word-level.



1080

Src: a woman texts on her phone while surrounded by umbrellas.

Ref: eine frau tippt auf ihrem handy, umgeben von regenschirmen.

NMT: eine frau schreibt auf ihrem handy, während sie umgeben von

    schirmen umgeben ist.

vo.wSR: eine frau textet mit regenschirmen auf ihrem handy.

ro.wSR: eine frau schreibt auf ihrem handy, während er von schirmen 

    umgeben ist.

rw.wSR: eine frau telefoniert mit ihrem handy, während er von 

    schirmen sie ansieht.

Src: a man in green jumps serveral motorbikes on his own motorbike.

Ref: ein mann in grün springt auf seinem motorrad über mehrere andere 

        motorräder.

NMT: ein grün gekleideter mann springt mit seinem motorrad auf seinem

        motorrad.

vo.wSR: ein mann in grüner kleidung springt mit dem motorräder auf 

        seinem motorrad.

ro.wSR: ein grün gekleideter mann springt auf seinem eigenen motorrad.

rw.wSR: ein mann in grün springt mit seinem skateboard auf der nase.

Umbrellas → regenschirmen(as reference), schirmen

motorbike → motorrad, motorbikes→motorräder

Src: a woman in a white shirt works behind the counter at a cafe.

Ref: eine frau in einem weißen hemd arbeitet hinter dem tresen in einem café.

NMT: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

vo.wSR: eine frau in weißem hemd arbeitet hinter der theke in einem café.

ro.wSR: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

rw.wSR: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

shirt → hemd

Src: a man crouches while doing chores, as pigeons wander in the background.

Ref: ein mann bückt sich und macht hausarbeiten während im hintergrund tauben 

vorbeilaufen.

NMT: ein mann hockt und macht dabei mit dem maul im hintergrund.

vo.wSR: ein mann bückt sich, während er mit der weihnachtszeit im hintergrund mit tauben.

ro.wSR: ein mann kauert beim salto im hintergrund beim salto im hintergrund.

rw.wSR: ein mann hockt während eines festumzugs im hintergrund.

pigeons → tauben

Figure 4: Case #4631909374. An example of under-translated entity word “pigeon”. Our model “vo.wSR” cor-
rectly translates the “pigeon” to “tauben”.

Src: a woman texts on her phone while surrounded by umbrellas.

Ref: eine frau tippt auf ihrem handy, umgeben von regenschirmen.

NMT: eine frau schreibt auf ihrem handy, während sie umgeben von

    schirmen umgeben ist.

vo.wSR: eine frau textet mit regenschirmen auf ihrem handy.

ro.wSR: eine frau schreibt auf ihrem handy, während er von schirmen 

    umgeben ist.

rw.wSR: eine frau telefoniert mit ihrem handy, während er von 

    schirmen sie ansieht.

Src: a man in green jumps serveral motorbikes on his own motorbike.

Ref: ein mann in grün springt auf seinem motorrad über mehrere andere 

        motorräder.

NMT: ein grün gekleideter mann springt mit seinem motorrad auf seinem

        motorrad.

vo.wSR: ein mann in grüner kleidung springt mit dem motorräder auf 

        seinem motorrad.

ro.wSR: ein grün gekleideter mann springt auf seinem eigenen motorrad.

rw.wSR: ein mann in grün springt mit seinem skateboard auf der nase.

Umbrellas → regenschirmen(as reference), schirmen

motorbike → motorrad, motorbikes→motorräder

Src: a woman in a white shirt works behind the counter at a cafe.

Ref: eine frau in einem weißen hemd arbeitet hinter dem tresen in einem café.

NMT: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

vo.wSR: eine frau in weißem hemd arbeitet hinter der theke in einem café.

ro.wSR: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

rw.wSR: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

shirt → hemd

Src: a man crouches while doing chores, as pigeons wander in the background.

Ref: ein mann bückt sich und macht hausarbeiten während im hintergrund tauben 

vorbeilaufen.

NMT: ein mann hockt und macht dabei mit dem maul im hintergrund.

vo.wSR: ein mann bückt sich, während er mit der weihnachtszeit im hintergrund mit tauben.

ro.wSR: ein mann kauert beim salto im hintergrund beim salto im hintergrund.

rw.wSR: ein mann hockt während eines festumzugs im hintergrund.

pigeons → tauben

Figure 5: Case #3884010975. An example of entity word “shirt”. Our model “vo.wSR” correctly translates the
“shirt” to “hemd”.

Src: a woman texts on her phone while surrounded by umbrellas.

Ref: eine frau tippt auf ihrem handy, umgeben von regenschirmen.

NMT: eine frau schreibt auf ihrem handy, während sie umgeben von

    schirmen umgeben ist.

vo.wSR: eine frau textet mit regenschirmen auf ihrem handy.

ro.wSR: eine frau schreibt auf ihrem handy, während er von schirmen 

    umgeben ist.

rw.wSR: eine frau telefoniert mit ihrem handy, während er von 

    schirmen sie ansieht.

Src: a man in green jumps serveral motorbikes on his own motorbike.

Ref: ein mann in grün springt auf seinem motorrad über mehrere andere 

        motorräder.

NMT: ein grün gekleideter mann springt mit seinem motorrad auf seinem

        motorrad.

vo.wSR: ein mann in grüner kleidung springt mit dem motorräder auf 

        seinem motorrad.

ro.wSR: ein grün gekleideter mann springt auf seinem eigenen motorrad.

rw.wSR: ein mann in grün springt mit seinem skateboard auf der nase.

Umbrellas → regenschirmen(as reference), schirmen

motorbike → motorrad, motorbikes→motorräder

Src: a woman in a white shirt works behind the counter at a cafe.

Ref: eine frau in einem weißen hemd arbeitet hinter dem tresen in einem café.

NMT: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

vo.wSR: eine frau in weißem hemd arbeitet hinter der theke in einem café.

ro.wSR: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

rw.wSR: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

shirt → hemd

Src: a man crouches while doing chores, as pigeons wander in the background.

Ref: ein mann bückt sich und macht hausarbeiten während im hintergrund tauben 

vorbeilaufen.

NMT: ein mann hockt und macht dabei mit dem maul im hintergrund.

vo.wSR: ein mann bückt sich, während er mit der weihnachtszeit im hintergrund mit tauben.

ro.wSR: ein mann kauert beim salto im hintergrund beim salto im hintergrund.

rw.wSR: ein mann hockt während eines festumzugs im hintergrund.

pigeons → tauben

Figure 6: Case #3646927481. An example of entity words “motorbike” and “motorbikes”. Our model “vo.wSR”
successfully separates similar words.

Src: a woman texts on her phone while surrounded by umbrellas.

Ref: eine frau tippt auf ihrem handy, umgeben von regenschirmen.

NMT: eine frau schreibt auf ihrem handy, während sie umgeben von

    schirmen umgeben ist.

vo.wSR: eine frau textet mit regenschirmen auf ihrem handy.

ro.wSR: eine frau schreibt auf ihrem handy, während er von schirmen 

    umgeben ist.

rw.wSR: eine frau telefoniert mit ihrem handy, während er von 

    schirmen sie ansieht.

Src: a man in green jumps serveral motorbikes on his own motorbike.

Ref: ein mann in grün springt auf seinem motorrad über mehrere andere 

        motorräder.

NMT: ein grün gekleideter mann springt mit seinem motorrad auf seinem

        motorrad.

vo.wSR: ein mann in grüner kleidung springt mit dem motorräder auf 

        seinem motorrad.

ro.wSR: ein grün gekleideter mann springt auf seinem eigenen motorrad.

rw.wSR: ein mann in grün springt mit seinem skateboard auf der nase.

Umbrellas → regenschirmen(as reference), schirmen

motorbike → motorrad, motorbikes→motorräder

Src: a woman in a white shirt works behind the counter at a cafe.

Ref: eine frau in einem weißen hemd arbeitet hinter dem tresen in einem café.

NMT: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

vo.wSR: eine frau in weißem hemd arbeitet hinter der theke in einem café.

ro.wSR: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

rw.wSR: eine frau in einem weißen oberteil arbeitet hinter der theke in einem café.

shirt → hemd

Src: a man crouches while doing chores, as pigeons wander in the background.

Ref: ein mann bückt sich und macht hausarbeiten während im hintergrund tauben 

vorbeilaufen.

NMT: ein mann hockt und macht dabei mit dem maul im hintergrund.

vo.wSR: ein mann bückt sich, während er mit der weihnachtszeit im hintergrund mit tauben.

ro.wSR: ein mann kauert beim salto im hintergrund beim salto im hintergrund.

rw.wSR: ein mann hockt während eines festumzugs im hintergrund.

pigeons → tauben

Figure 7: Case #280007961. An example of entity word “umbrellas”. Our model “vo.wSR” gets the same result
as the reference.


