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Abstract

Fact verification based on structured data is
challenging as it requires models to under-
stand both natural language and symbolic op-
erations performed over tables. Although pre-
trained language models have demonstrated
a strong capability in verifying simple state-
ments, they struggle with complex statements
that involve multiple operations. In this pa-
per, we improve fact verification by decom-
posing complex statements into simpler sub-
problems. Leveraging the programs synthe-
sized by a weakly supervised semantic parser,
we propose a program-guided approach to con-
structing a pseudo dataset for decomposition
model training. The subproblems, together
with their predicted answers, serve as the in-
termediate evidence to enhance our fact verifi-
cation model. Experiments show that our pro-
posed approach achieves the new state-of-the-
art performance, an 82.7% accuracy, on the
TABFACT benchmark.

1 Introduction

Fact verification aims to validate if a statement
is entailed or refuted by given evidence. It has
become crucial to many applications such as de-
tecting fake news and rumor (Rashkin et al., 2017;
Thorne et al., 2018; Goodrich et al., 2019; Vaibhav
et al., 2019; Kryscinski et al., 2020). While existing
research mainly focuses on verification based on
unstructured text (Hanselowski et al., 2018; Yoneda
et al., 2018; Liu et al., 2020; Nie et al., 2019), a re-
cent trend is to explore structured data as evidence,
which is ubiquitous in our daily life.

Verification performed with structured data
presents research challenges of fundamental inter-
ests, as it involves both informal inference based on
language understanding and symbolic operations
such as mathematical operations (e.g., count and
max). While all statements share the same set
of operations, complex statements, which involve
multiple operations, are more challenging than

Date Venue Attendance

march 2009 east end park 2736

april 2009 firhill 4909

april 2009 mcdiarmid park 2830

april 2009 cappielow 3323

The firhill venue had the highest attendance.  

d1: What is the highest 
attendance ?
d2: What is the attendance 
of firhill venue?

Statement

Decomposition Model

Intermediate Evidence
e1: The highest attendance is 4909.
e2: The attendance of firhill venue is 4909.

Table

Entailed

Subproblem Solver

Figure 1: Overview of the proposed approach. An ex-
ample of executable program parsed from the statement
is: eq{max{all_rows; attendance};hop{filter_eq
{all_rows; venue; firhill}; attendance}}.

simple statements. Pre-trained models such as
BERT (Devlin et al., 2019) have presented supe-
rior performances on verifying simple statements
while still struggling with complex ones: a perfor-
mance gap exists between the simple and complex
tracks (Chen et al., 2020).

In this paper, we propose to decompose com-
plex statements into simpler subproblems to im-
prove table-based fact verification, as shown in a
simplified example in Figure 1. To avoid manu-
ally annotating gold decompositions, we design
a program-guided pipeline to collect pseudo de-
compositions for training generation models by
distinguishing four major decomposition types and
designing templates accordingly. The programs we
used are parsed from statements with a weakly su-
pervised parser with the training signals from final
verification labels. Figure 1 shows a statement-
program example. We adapt table-based natural
language understanding systems to solve the de-
composed subproblems. After obtaining the an-
swers to subproblems, we combine them in a pair-
wise manner as intermediate evidence to support
the final prediction.

We perform experiments on the recently pro-
posed benchmark TABFACT (Chen et al., 2020)
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and achieve a new state-of-the-art performance, an
82.7% accuracy. Further studies have been con-
ducted to provide details on how the proposed mod-
els work.

2 Method

2.1 Task Formulation and Notations
Given an evidence table T and a statement S, we
aim to predict whether T entails or refutes S, de-
noted by y ∈ {1, 0}. For each statement S, the
executable program derived from a semantic parser
is denoted as z. An example of program is given
in Figure 1. Each program z = {opi}Mi=1 con-
sists of multiple symbolic operations opi, and each
operation contains an operator (e.g., max) and argu-
ments (e.g., all_rows and attendance). A complex
statement S can be decomposed into subproblems
D = {di}Ni=1, with the answers being {ai}Ni=1. Us-
ing combined problem-answer pairs as intermedi-
ate evidence E = {ei}Ni=1 where ei = (di, ai), our
model maximizes the objective log pθ(y|T, S,E).

2.2 Statement Decomposition
Constructing a high-quality dataset is key to the
decomposition model training. Since semantic
parsers can map statements into executable pro-
grams that not only capture the semantics but also
reveal the compositional structures of the state-
ments, we propose a program-guided pipeline to
construct a pseudo decomposition dataset.

2.2.1 Constructing Pseudo Decompositions
Program Acquisition. Following Chen et al.
(2020), we use latent program algorithm (LPA)
to parse each statement S into a set of candidate
programs Z = {zi}Ki=1. To select the most seman-
tically consistent program z∗ among all candidates
and mitigate the impact of spurious programs, we
follow Yang et al. (2020) to optimize the program
selection model with a margin loss, which is de-
tailed in Appendix A.1.

By further removing programs that are label-
inconsistent or cannot be split into two isolated
sub-programs from the root operator, we obtain
the remaining (T, S, z) triples as the source of data
construction1.

Decomposition Templates. Programs are for-
mal, unambiguous meaning representations for the
corresponding statements. Designed to support

1These triples do not involve any tables or statements in
the dev/test set of the dataset used in this paper.

Conjunction

S rayo earns 36 points and ferrol earns 41 points

z and { eq { hop { filter_eq { all_rows ; club ; rayo } ; points } ; 36 } ; 
eq { hop { filter_eq { all_rows ; club ; ferrol } ; points } ; 41 } }

d1 
d2

rayo earns 36 points .
ferrol earns 41 points .

Superlative

S princes park venue recorded the highest crowd participation

z eq { hop { argmax { all_rows ; crowd } ; crowd } ; 
hop { filter_eq { all_rows ; venue ; princes park } ; crowd } }

d1 
d2

what is the highest crowd ?
what is the crowd of princes park ?

Comparative

S daniel had a longer react than felix

z greater { hop { filter_eq { all_rows ; athlete ; daniel } ; react } ; 
hop { filter_eq { all_rows ; athlete ; felix} ; react } }

d1
d2  

what is the react of daniel ?
what is the react of felix ?

Uniqueness

S itf 25k was only the tier on may 8th

z and { only { filter_eq { all_rows ; date ; may 8th} } ; 
eq { hop { filter_eq { all_rows ; date ; may 8th} ; tier } ; itf 25k } }

d1
d2  

how many tier on may 8th ?
itf 25k was the tier on may 8th .

Figure 2: Decomposition templates.

automated inference, the program z encodes the
central feature of the statement S and reveals its
compositional structures. Our statement decom-
position is based on the structure of the program.
Specifically, we first extract program skeleton zs by
omitting arguments in the selected program z, then
we group the (T, S, z) triples by zs to identify four
major decomposition types: conjunction2, com-
parative, superlative, and uniqueness.

Some simple templates associated with each de-
composition type are designed, which contain in-
structions on how to decompose the statement, and
this manual process only takes a few hours. In
this way, we can construct pseudo decompositions,
including sub-statements and sub-questions, by fill-
ing the slots in templates according to the original
statements or program arguments. Templates and
decomposition examples can be found in Figure 2.
Each sample in our constructed pseudo dataset is
denoted as a (S, c,D′) triple, where c indicates one
of the four types and D′ is a sequence of pseudo
decompositions.

Data Augmentation. With the (T, S, z) triples,
we perform data augmentation. Since some entity
mentions in S and z can be linked to cells in T , we
can randomly replace the linked entities in S and
z with different values in the same column of T .
For example, in Figure 1, we can replace the linked

2The conjunction type has overlap with the other three
types in the cases that the sub-statements connected by con-
junctions can be further decomposed.
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entity “firhill” with another randomly selected en-
tity “cappielow”. Another augmentation strategy
is inverting superlative and comparative. For the
examples belong to superlative and comparative,
we replace the original superlative or comparative
in statements with its antonym, such as higher→
lower and longest→ shortest. In this way, we gen-
erate another 3k pseudo statement-decomposition
pairs. In total, the final decomposition dataset used
for generation model training includes 9,696 sam-
ples. More statistics are available in Appendix A.2.

2.2.2 Learning to Decompose
Decomposition Type Detection. Given a state-
ment S, we train a five-way classifier based on
BERT to identify whether the statement is decom-
posable and if yes, which decomposition type it
belongs to. In addition to the four types mentioned
in the previous section, we add an atomic category
by involving additional non-decomposable sam-
ples. Only the statements not assigned with atomic
labels can be used for decomposition.

Decomposition Model. We finetune the GPT-
2 (Radford et al., 2019) on the pseudo dataset for
decomposition generation. Specifically, given the
(S, c,D′) triple, we train the model by maximizing
the likelihood J = log pθ(D

′|S, c). We provide
the model with gold decomposition type c during
training and the predicted type ĉ during testing.
Only informative and well-formed decompositions
are involved in the subsequent process to enhance
the downstream verification. In case some sub-
statements need further decomposition, it can be
implemented by resending them to our pipeline3.

2.3 Solving Subproblems

We adapt TAPAS (Eisenschlos et al., 2020), a
SOTA model on table-based fact verification and
QA task, to solve the decomposed subproblems.
Verifying sub-statements is formulated as a binary
classification with the TAPAS model fine-tuned
on the TABFACT (Chen et al., 2020) dataset. To
answer each sub-question, we use the TAPAS fine-
tuned on WikiTableQuestions (Pasupat and Liang,
2015) dataset. We combine the subproblems and
their answers in a pairwise manner to obtain the in-
termediate evidence E = {ei}Ni=1 = {(di, ai)}Ni=1,
an example evidence is shown in Figure 1.

3In most cases, there is no need to perform iterative de-
composition, and we leave finer-grained decomposition for
future research.

2.4 Recombining Intermediate Evidence
Downstream tasks can utilize the intermediate ev-
idence in various ways. In this paper, we train a
model to fuse the evidence E together with the
statement S and table T for table-based fact veri-
fication4. Specifically, we jointly encode S and T
with TAPAS to obtain the concentrated representa-
tion hST . We encode multiple evidence sentences
with another TAPAS following the document-level
encoder proposed in Liu and Lapata (2019) by in-
serting [CLS] token at the beginning of every sin-
gle sentence ei and taking the corresponding [CLS]
embedding hei in the final layer to represent ei.

We employ a gated attention model to obtain ag-
gregated evidence representation hevd and predict
the final label as follows:

hevd =

N∑
i=0

aihei , ai = σ(hT
ST hei)

y = σ(W ([hevd ⊕ hST ]))

whereW are trainable parameters, σ is the sigmoid
function, and ⊕ indicates concatenation.

3 Experiments

Setup. We conduct our experiments on a large-
scale table-based fact verification benchmark TAB-
FACT (Chen et al., 2020). The test set contains a
simple and complex subset according to difficulty.
A small test set is further annotated with human
performance. Following the previous work, we use
accuracy as the evaluation metric. Details of the
data are listed in Appendix A.3.

Implementation Details. During fine-tuning the
GPT-2 model to generate decomposition, we
run the model with a batch size of 5 for 30
epochs using Adam optimizer (Kingma and Ba,
2015) with a learning rate of 2e-6. We opti-
mize the model for final verification prediction
using Adam optimizer with a learning rate of 2e-
5 and a batch size of 16. It usually takes 11
to 14 epochs to converge. Our code is avail-
able at https://github.com/arielsho/
Decomposition-Table-Reasoning.

Main Results. We compare our model with
different baselines on TABFACT, including
LPA (Chen et al., 2020), Table-BERT (Chen
et al., 2020), LogicalFactChecker (Zhong et al.,
2020), HeterTFV (Shi et al., 2020), SAT (Zhang

4For the non-decomposable statements, we put “no evi-
dence” as the placeholder.

https://github.com/arielsho/Decomposition-Table-Reasoning
https://github.com/arielsho/Decomposition-Table-Reasoning
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Model Val Test Simple Complex Small

Human - - - - 92.1

LPA 57.7 58.2 68.5 53.2 61.5
Table-BERT 66.1 65.1 79.1 58.2 68.1
LogicalFactChecker 71.8 71.7 85.4 65.1 74.3
HeterTFV 72.5 72.3 85.9 65.7 74.2
SAT 73.3 73.2 85.5 67.2 -
ProgVGAT 74.9 74.4 88.3 67.6 76.2
TAPAS-BASE 79.1 79.1 91.4 73.1 81.2
TAPAS-LARGE 81.5 81.2 93.0 75.5 84.1

OURS-BASE 80.8 80.7 91.9 75.1 82.5
OURS-LARGE 82.7 82.7 93.6 77.4 84.7

Table 1: The accuracy (%) of models on TABFACT.

Type TAPAS-BASE OURS-BASE

Conj. (15%) 79.9 82.6
Sup. (13%) 81.3 82.4
Comp. (13%) 69.1 72.1
Uniq. ( 6 %) 70.4 74.4
Atomic (53%) 81.7 82.5

Table 2: Decompositions improve the perfor-
mance on test set over 4 decomposition types.

BLEU-4 on Dev Human Val

Our Decomp. 56.75 68%
w/o data aug 48.42 56%
w/o type info 54.74 63%

Table 3: Evaluation of decomposition quality.

train val test simple complex

Our Decomp. 41.6 46.3 46.7 20.2 59.5
w/o data aug 35.2 39.1 39.4 16.3 50.7

Table 4: Percentage of valid decomposition on all splits
in TABFACT.

et al., 2020), ProgVGAT (Yang et al., 2020), and
TAPAS (Eisenschlos et al., 2020). Details of the
compared systems can be found in Appendix A.4.

Table 1 presents the test accuracy of our BASE

model and LARGE model, which are built upon
TAPAS-BASE and TAPAS-LARGE, respectively.
Results show that our model consistently outper-
forms the TAPAS baseline (80.7% vs. 79.1% for
the base and 82.7% vs. 81.2% for the large model)5.
We show in Table 2 that our decomposition model
decomposes roughly 47% of the total TABFACT

test cases, and our model outperforms the TAPAS
model over all types of decomposed statements.

Evaluation of Decompositions. We use both an
automated metric and human validation to evaluate
the decomposition quality. For the automated met-
ric, we randomly sample 1,000 training cases from
the pseudo decomposition dataset as the hold-out
validation set, based on which we use BLEU-4 (Pa-
pineni et al., 2002) to measure the generation qual-
ity. We also sample 100 decomposable cases from
the TABFACT test set and ask three crowd work-
ers to judge whether the model produces plausible
decompositions. The ablation results in Table 3 in-
dicate that data augmentation and the use of type in-

5We also conduct significance tests over both the base and
large models (the proposed model vs. TAPAS), with the one-
tail t-test. For the base model, the p-value is 4.7e-6 and for the
large model, 3.2e-7.

formation improve the decomposition quality, and
the BLEU-4 score on the pseudo decomposition
dataset well reflects the human judgements.

Since we remove the defective decompositions
to reduce noise in the verification task, the number
of decomposed cases involved by our final verifi-
cation model varies according to the decomposi-
tion quality. We provide the percentages of valid
decompositions on all data splits of TABFACT in
Table 4. The results show that our decompositions
do not completely align with the simple/complex
split provided in TABFACT, and data augmentation
can improve the number of valid decomposition by
around 7%. On the downstream verification task,
a lower-quality decomposition (39.4%) yields a
0.4% performance drop compared to our proposed
decomposition model (46.7%).

4 Related Work

Existing work on fact verification is mainly based
on evidences from unstructured text (Thorne et al.,
2018; Hanselowski et al., 2018; Yoneda et al., 2018;
Thorne et al., 2019; Nie et al., 2019; Liu et al.,
2020). Our work focuses on fact verification based
on structured tables (Chen et al., 2020). Unlike
the previous work (Chen et al., 2020; Zhong et al.,
2020; Shi et al., 2020; Zhang et al., 2020; Yang
et al., 2020; Eisenschlos et al., 2020), we propose a
framework to verify statements via decomposition.

Sentence decomposition takes the form of Split-
and-Rephrase proposed by Narayan et al. (2017) to
split a complex sentence into a sequence of shorter
sentences while preserving original meanings (Aha-
roni and Goldberg, 2018; Botha et al., 2018; Guo
et al., 2020). In QA task, question decomposition
has been applied to help answer multi-hop ques-
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tions (Iyyer et al., 2016; Talmor and Berant, 2018;
Min et al., 2019; Wolfson et al., 2020; Perez et al.,
2020). Our work mainly focuses on decompos-
ing statements for table-based fact verification with
pseudo supervision from programs.

5 Conclusion

In this paper, we propose a framework to better
verify the complex statements via decomposition.
Without annotating gold decompositions, we pro-
pose a program-guided approach to creating pseudo
decompositions on which we finetune the GPT-2
for decomposition generation. By solving the de-
composed subproblems, we can integrate useful
intermediate evidence for final verification and im-
prove the state-of-the-art performance to an 82.7%
accuracy on TABFACT.
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A Appendix

A.1 Program Selection

We fine-tune the BERT (Devlin et al., 2019) to
model pθ(z|S), the probability of program z being
semantically consistent with S. Since the gold pro-
grams are not available, we use the final verification
labels as weak supervision. To mitigate the impact
of spurious programs, i.e., programs execute to cor-
rect answers with incorrect operation combinations,
we follow Yang et al. (2020) to optimize the model
with a margin loss:

J=max
(
p(z−|S)− p(z+|S)+γ, 0

)
where z− and z+ denote the label-inconsistent and
label-consistent programs with the highest proba-
bility, respectively. γ is the parameter to control
the margin. The margin loss can encourage select-
ing one program that is most semantically relevant
to the statement while maintaining a margin be-
tween the positive (label-consistent) and the nega-
tive (label-inconsistent) programs.

A.2 Statistics of Pesudo Dataset

We have 9,696 pseudo statement-decomposition
pairs in total, and the number of samples belong
to four decomposition types is given in Table 5.
To train the decomposition type detection model,
we add an additional atomic category with 1,739
statements.

Decomp. Type # of samples

Conjunctive 1,798
Superlative 2,452

Comparative 4,528
Uniqueness 918

Table 5: Statistics of pseudo decomposition dataset.

A.3 Statistics of TABFACT Dataset

The statistics of TABFACT (Chen et al., 2020) can
be found in Table 6, a large-scale table-based fact
verification benchmark dataset on which we evalu-
ate our method. The test set is further split into a
simple set and a complex set, which include 4,171
and 8,608 sentences, respectively. A small test set
with 1,998 samples are provided for human perfor-
mance evaluation.

Split Sentence Table Row Col

Train 92,283 13,182 14.1 5.5
Val 12,792 1,696 14.0 5.4
Test 12,779 1,695 14.2 5.4

Table 6: Statistics of TABFACT.

A.4 Compared Systems
• LPA (Chen et al., 2020) derives a program

for each statement by ranking the synthesized
program candidates and takes the program
execution results as predictions.

• Table-BERT (Chen et al., 2020) takes a lin-
earized table and a statement as the input of
BERT for fact verification.

• LogicalFactChecker (Zhong et al., 2020) uti-
lizes the structures of programs to prune ir-
relevant information in tables and modularize
symbolic operations with module networks.

• HeterTFV (Shi et al., 2020) is a graph-based
reasoning approach to combining linguistic
information and symbolic information.

• SAT (Zhang et al., 2020) is a structure-aware
Transformer that encodes structured tables by
injecting the structural information into the
mask of the self-attention layer.

• ProgVGAT (Yang et al., 2020) leverages the
symbolic operation information to enhance
verification with a verbalization technique and
a graph-based network.

• TAPAS (Herzig et al., 2020; Eisenschlos et al.,
2020) is the previous SOTA model on TAB-
FACT which extends BERT’s architecture to
encode tables and is jointly pre-trained with
text and tables.


