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Abstract

Temporal language grounding (TLG) aims to
localize a video segment in an untrimmed
video based on a natural language descrip-
tion. To alleviate the expensive cost of man-
ual annotations for temporal boundary labels,
we are dedicated to the weakly supervised
setting, where only video-level descriptions
are provided for training. Most of the ex-
isting weakly supervised methods generate a
candidate segment set and learn cross-modal
alignment through a MIL-based framework.
However, the temporal structure of the video
as well as the complicated semantics in the
sentence are lost during the learning. In
this work, we propose a novel candidate-
free framework: Fine-grained Semantic Align-
ment Network (FSAN), for weakly supervised
TLG. Instead of view the sentence and can-
didate moments as a whole, FSAN learns
token-by-clip cross-modal semantic alignment
by an iterative cross-modal interaction mod-
ule, generates a fine-grained cross-modal se-
mantic alignment map, and performs ground-
ing directly on top of the map. Extensive
experiments are conducted on two widely-
used benchmarks: ActivityNet-Captions, and
DiDeMo, where our FSAN achieves state-of-
the-art performance.

1 Introduction

Given an untrimmed video and a natural language
sentence, Temporal Language Grounding (TLG)
aims to localize the temporal boundaries of the
video segment described by a referred sentence.
TLG is a challenging problem with great impor-
tance in various multimedia applications, e.g.,
video retrieval (Shao et al., 2018), visual question
answering (Tapaswi et al., 2016; Antol et al., 2015;
Yu et al., 2020), and visual reasoning (Yang et al.,
2018). Since its first proposal (Gao et al., 2017;
Hendricks et al., 2017), tremendous success has
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Figure 1: Illustration of fine-grained semantic align-
ment map for temporal language grounding.

been made on this problem (Wu and Han, 2018;
Chen et al., 2018; Ge et al., 2019; Yuan et al.,
2018; Zhang et al., 2019a; He et al., 2019; Wang
et al., 2019; Zhang et al., 2020b; Ning et al., 2021).
Despite the achievements with supervised learn-
ing, the temporal boundaries for every sentence
query need to be manually annotated for training,
which is expensive, time-consuming, and poten-
tially noisy. On the other hand, it is much easier to
collect a large amount of video-level descriptions
without detailed temporal annotations, since video-
level descriptions naturally appear with videos si-
multaneously on the Internet (e.g., YouTube). To
this end, some prior works are dedicated to weakly
supervised setting, where only video-level descrip-
tions are provided, without temporal labels.

Most of the previous weakly supervised meth-
ods follow a Multiple Instance Learning (MIL)
paradigm, which samples matched and non-
matched video-sentence pairs, and learn a match-
ing classifier to implicitly learn the cross-modal
alignment. However, during the matching classi-
fication, the input sentence is often treated as a
single feature query, neglecting the complicated
linguistic semantics. VLANet (Ma et al., 2020)
treats tokens in the input sentence separately, and
performs cross-modal attention on token-moment
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pairs, where the moment candidates are carefully
selected by a surrogate proposal selection module
to reduce computation cost. SCN (Lin et al., 2020)
proposes to generate and select moment candidates
and performs semantic completion for the sentence
to rank selected candidates. Nevertheless, the gen-
eration and selection process of moment candidates
also involves high computational costs. In addition,
the moment candidates are considered separately,
while the temporal structure of the video is also im-
portant for grounding. Figure 1 shows an example
to localize the query “person takes a phone off a
desk” in the given video. If the model views the
sentence as a whole and performs matching classifi-
cation, it is hard to learn undistinguished words like
“off” during the training. However, the neglected
words may play important roles to determine the
temporal boundaries of the described moment.

In this paper, we propose a novel framework
named a Fine-grained Semantic Alignment Net-
work (FSAN), for weakly supervised temporal lan-
guage grounding. The core idea of FSAN is to
learn token-by-clip cross-modal semantic align-
ment presenting as a token-clip map, and ground
the sentence on video directly based on it. Specifi-
cally, given an untrimmed video and a description
sentence, we first extract their features by visual
encoder and textual encoder independently. Then,
an Iterative Cross-modal Interaction Module is de-
vised to learn the correspondence between visual
and linguistic representations. To make temporal
predictions for grounding, we further devise a se-
mantic alignment-based grounding module. Based
on the learned cross-modal interacted features, a
token-by-clip semantic alignment map is generated,
where the (i, j)-th element on the map indicates rel-
evance between the i-th token in the sentence and
j-clip in the video. Finally, an alignment-based
grounding module predicts the grounding result
corresponding to the input sentence.

Instead of aggregating sentence semantics into
one representation and generating video moment
candidates, FSAN learns a fine-grained cross-
modal alignment map that helps to retain both the
temporal structure among video clips and the com-
plicated semantics in the sentence. Furthermore,
the grounding module in FSAN makes predictions
mainly based on the cross-modal alignment map,
which alleviates the computation cost of candidate
moment representation generation. We demon-
strate the effectiveness of the proposed method

90

on two widely-used benchmarks: ActivityNet-
Captions (Krishna et al., 2017) and DiDeMo (Hen-
dricks et al., 2017), where state-of-the-art perfor-
mance is achieved by FSAN.

2 Related Work

2.1 Temporal Language Grounding

Temporal language grounding is proposed (Gao
et al., 2017; Hendricks et al., 2017) as a new chal-
lenging task, which requires deep interactions be-
tween two visual and linguistic modalities. Pre-
vious methods have explored this task in a fully
supervised setting (Gao et al., 2017; Hendricks
et al., 2017; Chen et al., 2018; Ge et al., 2019; Xu
et al., 2019; Chen and Jiang, 2019; Yuan et al.,
2018; Zhang et al., 2019b,a; Lu et al., 2019). Most
of them follow a two-stage paradigm: generating
candidate moments with sliding windows and sub-
sequently matching the language query. Reinforce-
ment learning has also been leveraged for temporal
language grounding (He et al., 2019; Wang et al.,
2019; Cao et al., 2020).

Despite the boom of fully supervised methods,
it is very time-consuming and labor-intensive to
annotate temporal boundaries for a large number
of videos. And due to the annotation inconsistency
among annotators, temporal labels are often am-
biguous for models to learn. To alleviate the cost
of fine-grained annotation, weakly supervised set-
ting is explored lately (Mithun et al., 2019; Gao
etal., 2019; Lin et al., 2020; Ma et al., 2020; Zhang
et al., 2020c). TGA (Mithun et al., 2019) exploits
maps video candidate features and query features
into a latent space to learn cross-modal similarity.
In (Ma et al., 2020), a video-language attention net-
work is proposed to learn cross-modal alignment
between language tokens and video segment candi-
dates. Differently, our FSAN gets rid of the trouble
of generating candidates and learns fine-grained
token-by-clip semantic alignment.

2.2 Transformer in Language and Vision

Since it is first proposed by Vaswani et al. (Vaswani
et al., 2017) for machine translation, transformer
has become a prevailing architecture in NLP. The
basic block of transformer is the multi-head atten-
tion module, which aggregates information from
the whole input in both transformer encoder and
decoder module. Transformer demonstrates su-
perior performance in language model pretrain-
ing methods (Devlin et al., 2019; Radford et al.,
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Figure 2: The architecture of FSAN. It consists of four main components: (1) a text encoder, (2) a visual encoder,
(3) an iterative cross-modal interaction module, and (4) a proposal module.

2018; Yang et al., 2019), and achieves competi-
tive performance on diverse NLP problems. Re-
cently, transformer has been introduced to various
computer vision tasks, such as image classifica-
tion (Chen et al., 2020b), image generation (Par-
mar et al., 2018), object detection (Carion et al.,
2020), semantic segmentation (Wang et al., 2021a),
tracking (Wang et al., 2021b), efc. Comparing to
CNN, the attention mechanism learns more global
dependencies, therefore, transformer also shows
great performance in low-level tasks (Chen et al.,
2020a). Transformer has also been proved effective
in multi-modal area, including multi-modal repre-
sentations (Zhang et al., 2020a; Tan and Bansal,
2019; Su et al., 2020; Sun et al., 2019) and applica-
tions (Shi et al., 2020; Ju et al., 2020; Liang et al.,
2020). Inspired by the great success, we devise
an iterative cross-modal interaction module mainly
based on the multi-head attention mechanism.

3  Our Approach

Given an untrimmed video and a text-sentence
query, a temporal grounding model aims to localize
the most relevant moment in the video, represented
by its beginning and ending timestamps. In this pa-
per, we consider the weakly supervised setting, i.e.,
for each video V/, a textual query S is provided for
training. The query sentence describes a specific
moment in the video, yet the temporal boundaries
are not provided for training. In the inference stage,
the weakly trained model is required to predict the
beginning and ending timestamps of the video mo-
ment that corresponds to the input sentence S.

We present a novel framework named Fine-
grained Semantic Alignment Network (FSAN) for
the temporal language grounding problem. As
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shown in Figure 2, given a video and text query,
we first encode them separately. The resulting rep-
resentations then interact with each other through
an iterative cross-modal interaction module. The
outputs are used to learn a Semantic Alignment
Map (SAP) between the two modalities. Finally,
the SAP is fed into an alignment-based grounding
module to predict scores for all possible moments.

In the following subsections, we will first intro-
duce the visual and language encoder, then describe
the Iterative Cross-Modal Interaction Module. Fi-
nally, we will elaborate on the semantic alignment
map and the grounding module based on it.

3.1 Input Representation

Language Encoder. We use a standard trans-
former encoder (Vaswani et al., 2017) to extract the
semantic information for the input query sentence
S. Each token in the input query is first embedded
using GloVe (Pennington et al., 2014). The result-
ing vectors are mapped to dimension of ds by a
linear layer and fed into a transformer encoder to
obtain context-aware token features S = {w;}\°,,
where N is the number of tokens and wy, € RY
denotes the feature of k-th token in the sentence.

Video Encoder. For the input videos, we extract
visual features using a pretrained feature extractor
and then apply a temporal pooling on frame fea-
tures to divide it into IV, clips. Hence the video can
be represented by V' = {v; };V:”P where v; € RY"
denotes the feature of j-th video clip, and d,, = d
is the dimension of visual feature. Experimental
results illustrate that the computation cost is con-

siderably reduced by the temporal pooling.



3.2 Iterative Cross-Modal Interaction
Module

Inspired by the great success of transformer en-
coder on vision-language pretraining (Li et al.,
2020; Tan and Bansal, 2019), we devise an Iter-
ative Cross-modal Interaction Module (ICIM) to
learn the semantic relevance between visual and
textual representations. The module is composed
of a stack of 6 layers, and each layer consists of
cross-modal attention, inner-modal attention, and
feed-forward layers. The core component for cross-
modal interaction is the multi-head attention, which
is also vital in the transformer structure. Formally,
given two sequences of d-dimensional features
X =[xy, ,zn,]and Y = [y1,--- ,yn,], the
calculation of multi-head attention is as follows:

Qi=WFX K, =WEY,V,=W)Y,

(QiKT) M
A= SV
softmazx( N )
MAX,Y)=WM(A]|As||- - |Am), 2)

where A; is output the i-th of m attention heads.
The final output M A(X,Y") of multi-head atten-
tion is of same dimension as the input X.

For the textual representation S € RV« xd% and
visual representation V' € RV=*4" input to the
iterative cross-modal interaction module, we first
adopt cross-modal attention, i.e.,

S' = LN(MA(S,V) + S), )

S" = LN(FFN(S')+ 8,

V' = LN(MA(V,S)+ V), @
— LN(FFN(V')+ V"),

where LN denotes layer normalization and F'F'IN
denotes feed-forward layer. To retain the temporal
structure of the video and the grammar of the sen-
tence, we add learnable positional encodings to the
input of each modality. Through the above atten-
tion operation, the features of different modalities
are able to freely interact with the other modality
to learn a fine-grained semantic alignment.

To model the inner-modal context after cross-
modal interaction, we further apply an inner-modal
attention, which is similar with the calculation in
Equation (3) and (4), except that the multi-head
attention is applied only on single-modal represen-
tation, i.e., self-attention on single-modal features.
After 6 iterations of cross-modal interaction and
inner-modal modeling, the enhanced features s”
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and V" are fed into subsequent proposal module
to predict a cross-modal semantic alignment map,
and perform grounding based on it.

3.3 Semantic Alignment Map

After iterative cross-modal and inner-modal atten-
tion in ICIM, the correspondence can be fully ex-
plored between each pair of textual tokens and
video clips. Therefore, a token-by-clip Semantic
Alignment Map (SAP) P with size Ny x N, can
be learned for temporal grounding. Formally,

P = SAP(V,S)

nT (5)
= Norm(W?*S§

W',
where W* € R%*% and W? ¢ R%*d are
learnable parameters, - denotes dot product, and
Norm(-) denotes max-min normalization opera-
tion along the visual axis. Note that the normaliza-
tion operation is important here to avoid a trivial
distribution, i.e., the semantic alignment map P is
invariant to different sentence and video inputs.

The value of the (i, j)-th element on the SAP P,
represents the relevance between the i-th textual
token and the j-th video clip. However, the SAP
can learn the cross-modal relationship only with
supervision that indicates semantic alignment. To
this end, we adopt a video-level matching loss,
which is calculated as:

L' =max(0,5 — S(V,8) +S(V,87), (6)

where S(V,.S) is the matching score function be-

tween video V' and sentence S, which is defined as:

EiE[O,NS] max;e|o,n,] £
N, ’

S(V,8) = )
where S~ is a non-matching description sentence
randomly sampled from the dataset.

Some same textual expressions may appear in
both the positive description and the negative one,
confusing the model in the matching classification
procedure. To this end, we mask the repeated to-
kens on the semantic alignment map P~ of the
input video V' and the sampled sentence S™.

3.4 Alignment-Based Grounding Module

The elements on the semantic alignment map in-
dicate relevance between video clips and textual
tokens, which leads to the idea of a fine-grained
alignment-based grounding module. The core idea



is that if a specific clip v; is part of the described
moment V; ., where V. denotes the video seg-
ment from the s-clip to e-th clip. The semantic of
v; tends to be highly relevant with all tokens in the
description. While if v; is out of the correct mo-
ment, at least one token in query is irrelevant to it.
Therefore, we score all possible temporal segments
formed with video clips by the relevance scores of
clips both in and out the segment. Considering the
clips in the segment as positive clips, and those not
in it as negative clips. Then the relevance score of
V.. and the query is then defined as:

SC;s.e = Score(Vye)
_ Zie[O,Ns] Zje[s,e] Pz‘j
Ns(e —s+ 1)
Zje[][s,e} miniE[O,Ns] H,j
Nv — (8 — s+ 1) ’

®)

where E[s, e] denotes the aggregation of negative
clips, i.e., the complementary set of V.. The
higher the average scores among positive clips for
each token, the more possible that V[,  is relevant
to the query. While the lower the average response
of negative clips, the less possible that Vi, ) is
redundant. Through the two-fold filtering, the mo-
ment that is more relevant with all tokens in the
query will be given a higher score, and therefore
more likely to be proposed as the grounding result.

Although the contrastive loss in Equation (6)
enables the model to learn the cross-modal seman-
tic alignment, the temporal discrimination can not
be learned under coarse video-level supervision,
which is vital for grounding. To provide fine-level
temporal supervision for the fine-grained cross-
modal alignment, we further devise a novel two-
fold loss on the semantic alignment map P, includ-
ing an inner-sample loss and an outer-sample loss.
Specifically, the inner-sample loss aims to enhance
the grounded moment on the fine-level alignment
map P. We promote the weakest response among
clips in all possible segments, with a weight repre-
senting the confidence of the prediction:

i Zie[O,NS] log(minje[&e] P, )
Lie=— ,
2 Ns

L= > ) SC.Lime

s€[0,Ny] e€[0,Ny]

(&)
(10)

On the other hand, the outer-sample loss aims to
suppress complementary part of the video by low-

93

Benchmark Num. of  Num. of Vocab
Videos Descriptions Size

ActivigNel- | 950 51567 15406

Captions

DiDeMo 10464 41 206 7523

Charades-STA | 6670 16128 1289

Table 1: Statistics of TLG benchmarks.

ering its weakest response of each clip:

2 jelys,e) log(miniefo,n,] Pij)
Ny, —(e—s+1) ’

t
E SCseLoe".
s€[0,Ny] e€[0,Ny]

LSe= an

L° 12)

At the beginning of training, the model is un-
certain about the grounding results, therefore, the
weight SC . varies a little among moment options.
As the training continues, the model can give pos-
itive moment higher scores easily, hence the loss
weight will be larger for positive moments and
smaller for negative ones. Therefore, the model
will not deviate much from the correct solution.

3.5 Training and Inference

The overall training objective is an aggregation of
aforementioned losses, given by:

L= ML A XL+ X3L°, (13)
where )\, are hyper-parameters, and satisfy the con-
dition Ay + Ao + A3 = 1.

During the inference, the moment with the high-
est score SC . is selected as the grounding result.

4 Experiments

4.1 Datasets and Metrics

ActivityNet-Captions. The ActivityNet-Captions
dataset (Krishna et al., 2017) is developed
based on ActivityNet dataset (Heilbron et al.,
2015) ,which contains 20 000 untrimmed videos
and corresponding language descriptions. The
released ActivityNet-Captions dataset contains
37421 moment-description pairs for training, and
17505, 17031 in val_1 and val_2 sets, respectively.
Following SCN (Lin et al., 2020), we use val_1 as
validation set and val_2 as test set.

DiDeMo. The Distinct Describable Mo-
ments (DiDeMo) dataset is first proposed in (Hen-
dricks et al., 2017). It contains over 10k videos



Method | R@1 R@5 mloU
fully supervised methods
MCN (2017) 28.10 78.21 41.08
TGN (2018) 28.23 79.26 42.97
MAN (2019a) 27.02 81.70 41.16
I°N (2021) 29.00 73.09 44.32
weakly supervised methods
Random 375 225 22.64
TGA (2019) 12.19 39.74 2492
WSLLN (2019) | 19.40 53.10 25.40
VLANet (2020) | 19.32 65.68 25.33
FSAN 19.40 57.85 31.92

Table 2: Performance comparison on DiDeMo
dataset. The best and second best numbers are
highlighted in bold and underlined, respectively.

selected from Flickr, and all of them are trimmed
to a maximum of 30 seconds and equally divided
into six 5-second segments. Therefore, there are
only 21 possible moment candidates for each video.
The DiDeMo dataset is randomly split into training,
validation and test set containing 33 005, 4 180 and
4021 video-sentence pairs, respectively. For each
video, at least 4 annotators are assigned to label
text description boundaries.

We exclude the Charades-STA (Gao et al., 2017)
dataset because of its limited scale. Charades-
STA (Gao et al., 2017) contains about 6k videos,
and the contents are mainly indoor activities. How-
ever, as shown in Table 1, comparing to other
datasets, Charades-STA is limited in terms of to-
tal video amount, number of video-sentence pairs,
and vocabulary size. The vocabulary size is criti-
cal to enriching the linguistic semantics, hence the
semantic diversity is limited in the dataset.
Evaluation Metrics. We follow the settings
of previous methods (Mithun et al., 2019; Lin
et al,, 2020). For the ActivityNet-Captions
dataset, we report results for intersection-over-
union (IoU)€{0.5,0.3,0.1} and Recall@{1,5}. On
the DiDeMo dataset, considering the limited num-
ber of candidates (21) and variance among different
annotators, we measure the performance with met-
rics: Rank@1, Rank@5, and mean intersection
over union (mloU). Here Rank @k means the per-
centage of samples where ground truth moment la-
beled by different annotators are on average ranked
higher than k. Following (Hendricks et al., 2017),
we discard the worst-ranked ground truth label to
reduce the influence of outliers.
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4.2 Implementation Details

For fair comparison, we utilize released visual fea-
tures as previous methods (Mithun et al., 2019; Lin
et al., 2020). For videos in ActivitiNet-Captions,
we adopt C3D (Tran et al., 2015) features. For
DiDeMo, we adopt VGG (Simonyan and Zisser-
man, 2014) features. Note that we report the per-
formance of baseline models using the same fea-
tures as ours. The dimension of these features
are reduced from 4096 to 500 using PCA. The loss
weights in to train FSAN are set to 1/3 equally. The
hidden dimensions are set to 512 for all datasets.
We adopt adam algorithm with an initial learning
rate of 0.0001. The batch size is set to 128 for all
datasets, and the dropout rate is set to 0.1. The
code of FSAN is implemented in pytorch, and is
trained on one RTX 3090 GPU.

4.3 Comparisons with State-of-the-art
Methods

We compare the proposed FSAN with multiple
baselines, including 1) recently published fully su-
pervised state-of-the-arts methods: MCN (Hen-
dricks et al., 2017), ABLR (Yuan et al., 2019),
DEBUG (Lu et al., 2019), CMIN (Zhang et al.,
2019b), 2D-TAN (Zhang et al., 2020b), TGN (Chen
etal., 2018), MAN (Zhang et al., 2019a), I>N (Ning
et al., 2021); and 2) some representative weakly
supervised methods: TGA (Mithun et al., 2019),
SCN (Lin et al., 2020), WSLLN (Gao et al., 2019),
VLANet (Ma et al., 2020).

Experiments on DiDeMo. Table 2 illustrates the
performance comparisons on the DiDeMo dataset.
It can be observed from the numbers that FSAN
outperforms TGA and WSLLN on all three met-
rics. And comparing to VLANet, FSAN performs
overall better, except for R@5. This may be due
to the surrogate proposal selection module intro-
duced in VLANet (Ma et al., 2020), which in fact
performs a two-stage candidate selection and gets
rid of temporally overlapped candidates.
Experiments on ActivityNet-Captions. Table 3
illustrates the performance comparisons on the
ActivitiNet-Captions dataset. It can be observed
that FSAN surpasses previous weakly super-
vised methods on all metrics. Especially, the
FSAN gains about 7% relative improvement on
R@1 with IoU=0.1 over SCN. This is because
the average length of videos in the ActivityNet-
Captions dataset is relatively long, and the candi-
date generation-selection-criterion framework of



Method Rel R@5
IoU=0.1 IoU=0.3 IoU=0.5 | IoU=0.1 IoU=0.3 IoU=0.5
fully supervised methods
ABLR (2019) 73.30 55.67 36.79 - - -
DEBUG (2019) - 55.91 39.72 - - -
CMIN (2019b) - 63.61 43.40 - 80.54 67.95
2D-TAN (2020b) - 58.75 44.05 - 85.65 76.65
weakly supervised methods

Random 38.23 18.64 7.63 75.74 52.78 24.49
WSLLN (2019) 754 42.8 22.7 - - -
SCN (2020) 71.48 47.23 29.22 90.88 71.45 55.69
FSAN 78.45 55.11 29.43 92.59 76.79 63.32

Table 3: Performance comparison on ActivityNet-Captions dataset. The best and second best
numbers are highlighted in bold and underlined, respectively. And “-” means the result on the

metric is not reported in the original paper.

Settings Rel R@5 mloU
IoU=0.1 IoU=0.3 1IoU=0.5 | IoU=0.1 IoU=0.3 IoU=0.5

w/o grounding module 82.58 47.99 21.09 86.34 52.60 2285 | 34.57

w/0 loss on SAP 65.59 46.08 26.31 88.92 66.11 36.72 30.15

w/o cross-modal attention | 74.51 43.36 27.03 81.02 65.37 53.41 32.68

w/o inner-modal attention 76.75 50.40 28.71 91.39 71.89 50.81 34.18

full model 78.45 55.11 29.43 92.59 76.79 63.32 | 36.10

Table 4: Ablation studies on ActivityNet-Captions dataset.

SCN suffers from the limited number of candidates.

4.4 Ablation Study

To investigate the importance of each component
in FSAN, we conduct ablation experiments. Re-
sults are shown in Table 4 and we give detailed
discussions in the next subsections. Note that for
comparison, mean intersection-over-union (mloU)
is not reported in the previous subsection, which
calculates the average IoU of rank 15¢ predictions.
However, we report and compare mloU among
FSAN variants in this section.

Impact of Grounding Module. To validate the
effectiveness of the alignment-based grounding
module, we devise a common yet competitive pre-
diction layer upon the visual branch output of ICIM.
Specifically, we apply an attention pooling on the
text-aware visual features V', then apply a three-
layer MLP to predict matching score for all possi-
ble temporal segments. Results are shown in the
1% row in Table 4. It can be observed that without
the grounding module based on the semantic align-
ment map, the performance drops rapidly on strict
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IoU metrics (IoU=0.5, 0.3), which demonstrates
the temporal precision improvement by introducing
the token-by-clip alignment map.

Impact of Loss on SAP. The 2" row in Table 4
shows the result without inner-sample loss and
outer-sample loss. Under this setting, the ground-
ing performance drops on all metrics compared
to full FSAN. The explanation is that without the
two losses refining SAP, the FSAN is trained only
by the video-level matching loss £, Hence the
model can learn video-level coarse semantic align-
ment, while neglecting token-wise sentence seman-
tics as well as the temporal structure of the video.

Impact of ICIM. We study the role of cross-
modal attention and inner-modal attention in the
iterative cross-modal interaction module. It can be
observed in the 3*" and 4" rows in Table 4 that
both of them contribute to the grounding perfor-
mance. Concretely, without inner-modal attention,
mloU drops by 1.92%. While without cross-modal
attention, mloU drops by 3.42%. These results
demonstrate the importance of both two attention
mechanisms in capturing temporal context among
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Figure 3: Visualization of the semantic alignment map and grounding results by FSAN. The rows and columns on
the map correspond to text tokens and video clips, respectively. The green boxes on the map refer to the ground
truth temporal region, while the red boxes refer to output of FSAN.

video clips, sentence structure among tokens, and
token-by-clip cross-modal semantic alignment.

4.5 Analysis and Visualization

We also visualize some examples of the grounding
result of FSAN in ActivityNet-Captions dataset.
as shown in Figure 3. For each video-sentence
pair, we visualize the token-clip semantic align-
ment map, as well as the ground truth and predicted
temporal boundaries.

In the first example, the description sentence
is long and complicated, consisting of three se-
quential activities (stop, raise and exercise up and
down). FSAN achieves high IoU (0.88) on this
difficult case, which indicates the strong ability of

96

FSAN to learn fine-grained semantics from both
visual and linguistic modalities. The second exam-
ple shows the ability of FSAN to not only detect
objects and their actions in video, but also under-
stand abstract descriptions for video (credits, text).
To better understand abstract descriptions is one
of the key points for TLG to develop from action
localization. In addition, in the second example,
the main action shave is blocked in some frames,
which is challenging for grounding. Though the
blocking reflects in the visualized alignment map,
FSAN manages to locate the complete moment.

To further analyze the performance of FSAN, we
plot a graph showing how the performance varies
as video length grows. As shown in Figure. 4, the
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Figure 4: Visualization of the performance variation
under different video length. blue points indicate indi-
vidual videos, and the red line indicates the mIoU of
videos in the corresponding length interval.

performance of FSAN is relatively stable when
video length grows, with a trend of weakening. For
example, the mloU for shortest videos (2-12s, 130
cases) and longest videos (>230s, 140 cases) are
42.99 and 34.68, respectively.

5 Conclusion

In this paper, we present a novel framework for
temporal language grounding, namely Fine-grained
Semantic Alignment Network (FSAN). To capture
fine-level video-language semantic alignment, we
devise an iterative cross-modal interaction module,
which enables single-modal representations to in-
teract with each other. Furthermore, we propose to
perform temporal grounding based on a semantic
alignment map, which alleviates the generation of
video candidates. We conduct experiments on two
widely-used benchmarks: ActivityNet-Captions
and DiDeMo, and achieve state-of-the-art perfor-
mance on both datasets, which demonstrates the
effectiveness of our proposed FSAN.
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