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Abstract

To be good conversational partners, natural
language processing (NLP) systems should
be trained to produce contextually useful ut-
terances. Prior work has investigated train-
ing NLP systems with communication-based
objectives, where a neural listener stands in
as a communication partner. However, these
systems commonly suffer from semantic drift
where the learned language diverges radically
from natural language. We propose a method
that uses a population of neural listeners to reg-
ularize speaker training. We first show that
language drift originates from the poor uncer-
tainty calibration of a neural listener, which
makes high-certainty predictions on novel sen-
tences. We explore ensemble- and dropout-
based populations of listeners and find that the
former results in better uncertainty quantifica-
tion. We evaluate both population-based objec-
tives on reference games, and show that the en-
semble method with better calibration enables
the speaker to generate pragmatic utterances
while scaling to a large vocabulary and gener-
alizing to new games and listeners.1

1 Introduction

To be good conversational partners, language mod-
els (LMs) should learn to produce fluent utterances
that serve the needs of their listeners (Grice, 1975).
However, they are often trained to capture the sta-
tistical, rather than communicative, properties of
language via supervised learning (Bengio et al.,
2003; Radford et al., 2019). Consider the reference
game (Lewis, 1969) in Figure 1, where the goal
of the speaker is to disambiguate a target image
from distractor images. A naive LM may generate
the literal description “the red shape”; this is se-
mantically accurate, but fails to disambiguate the
referent among its context. A more pragmatically
useful description is “the red square”.

1The accompanying code can be found here:
https://github.com/rosewang2008/calibrate_your_listeners.

(a) Communication-based objectives, where a speaker is
trained with a listener reward model.

(b) Traditional LM objectives, where a speaker is trained
from a corpus of image descriptions.

Figure 1: The goal of the speaker (blue agent) is to
generate context-aware utterances to refer to the im-
age 1 and disambiguate from images 2 & 3. Our
work uses (a) communication-based training objectives
rather than (b) non communication-based objectives
which rely on a corpus of ground-truth captions.

Prior work in training communicative NLP sys-
tems has used explicit models of pragmatics (Good-
man and Frank, 2016) to fine-tune traditional LMs
(Monroe et al., 2017; Andreas and Klein, 2016;
Vedantam et al., 2017), or has trained LMs with
external reward signals that indicate the contextual
utility of an utterance. Human preferences are an
ideal source of supervision for the latter approach
(Stiennon et al., 2020; Ziegler et al., 2020), but
are expensive to collect. One promising avenue is
communication-based training (or self play), where
a speaker learns to communicate with a learned
model of a listener (Lazaridou et al., 2017; White
et al., 2020). However, this approach commonly
suffers from the problem of semantic drift. Our
use of “semantic drift” follows the communication-
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based training literature (Lazaridou et al., 2020;
Lee et al., 2019): the speaker produces utterances
that satisfy the listener but diverge from the seman-
tics and conventions of natural language.

It can be difficult to diagnose the nature of se-
mantic drift in complex, open domain models. In
this paper, we isolate one form of semantic drift that
occurs when scaling communication-based train-
ing to larger domains: by increasing the size of
the vocabulary available to the speaker and listener,
the speaker fails to generalize to new listeners. We
identify miscalibrated listener uncertainty as the
source of this problem: the listener is highly confi-
dent in the interpretation of utterances outside its
training domain, so the speaker overfits and pro-
duces nonsensical utterances that fail to general-
ize. We propose to correct the calibration problem
by using populations of listeners, drawing from
both computational and cognitive science work that
suggests deficiencies in just training with a single
listener (Graesser et al., 2020; Raviv et al., 2019;
Wagner et al., 2003) and improvements in emergent
communication protocols by regularization effects
of ensembled models (Li and Bowling, 2019; Tiele-
man et al., 2019). We find that ensemble-based
populations of listeners are better calibrated, help-
ing speakers avoid semantic drift and generalize to
new games and listeners.

2 Approach

We study the problem of learning a pragmatic
speaker for reference games with the ShapeWorld
(Kuhnle and Copestake, 2017) dataset. A reference
game (I, t) consists of n images I = (i1, . . . , in)
and a target image it, with the index t known only
to the speaker. The speaker S must produce an
utterance u which allows the listener L to identify
the target t given the images.

Formally, given u, the listener L is a distribution
over possible targets in a reference game:

L(t | u) ∝ exp(fθ(it)
>gθ(u)) (1)

where fθ and gφ are the listener’s image and lan-
guage encoders, respectively.

The speaker is then trained to produce an ut-
terance for the listener given a game and desired
target. Specifically, S is parameterized by a gated
recurrent neural network (GRU) (Cho et al., 2014):

S(u | I) = pGRU(u|fη(it), fη(i1) . . . , fη(in−1)).
(2)

where fη is the speaker’s image encoder used to ini-
tialize the GRU hidden state. The speaker is trained
to maximize the listener’s probability of selecting
the correct target given its utterance. Formally, the
speaker’s loss over a game G is

L(S;L, I, t) = − logL(t | û), û ∼ S(u | I).
(3)

This informative communication objective has
been used several different ways in the past. Ratio-
nal Speech Act models of pragmatic language use
(Goodman and Frank, 2016) adopt it as a definition
of speaker behavior, rather than an objective for
training. Studies of emergent multi-agent commu-
nication (Lazaridou et al., 2017) use this objective
to jointly train the speaker and listener, or alter-
natively train a pragmatic speaker against a fixed
listener (White et al., 2020; Lazaridou et al., 2020).

We adopt the setting of White et al. (2020):
we first train listener models on separate splits of
ShapeWorld reference games, then train pragmatic
speakers with the fixed listener models as the com-
munication objective. The listeners and speakers do
not share data splits among each other. Training
listener(s) are used as the internal listener model
for the speaker in Equation 3, and other valida-
tion listeners are held-out for speaker evaluation.
All the speakers and listeners are trained on 15000
randomly generated reference games with a single
target and 2 distractor images. More details on the
model architecture, training, data, and the supple-
mentary code can be found in Appendices A and
B.

3 The problem of semantic drift

White et al. (2020) found successful pragmatic lan-
guage production from a model trained to commu-
nicate informatively in the ShapeWorld domain.
We first show that this success hinges on the re-
stricted domain of utterances used. We consider
two settings where the speaker learns to select ut-
terances for two listeners: both are trained on the
ground-truth ShapeWorld data, but one only has
access to the ShapeWorld vocabulary (15 tokens),
and one has access to the entire GPT-2 vocabu-
lary (51k tokens; Radford et al. 2019). Given
either listener, we train the speaker using Equa-
tion 2. We chose GPT-2 vocabulary, a byte-pair
encoding (BPE) (Sennrich et al., 2016), to access
a large tokenization space as we hope to extend
communication-based training to using GPT-2 as
the generation model. Since BPE is the typical
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Table 1: Average speaker accuracy± standard error (middle 4 columns) and speaker-generated tokens overlapping
with ShapeWorld tokens at test time (left-most column, “token overlap”) in % averaged over 10 seeds. Accuracy is
reported with either the training or validation listener (train L, val L), and on either training or validation set (train
D, val D). Gray cells indicate the speaker unable to generalize to new listeners and emitting novel tokens.

token space train L-train D train L-val D val L-train D val L-val D token overlap

small 99 ± 1.40 90 ± 1.40 80 ± 1.40 80 ± 1.40 100 ± 0.0
large 98 ± 0.00 94 ± 0.01 37 ± 0.06 36 ± 0.06 1 ± 0.6

choice for most large pretrained language models,
it is representative of large vocabulary spaces and
introduces the challenges we might encounter in
communication-based training for large speakers.

In Table 1, we report speaker communication
accuracy with either the listener used for speaker
training (train L) or a separately trained held-out
listener (val L), and either reference games seen
during training (train D) or held-out games (val D).
To measure the extent the speaker uses domain-
relevant vocabulary, we additionally report the per-
centage of speaker-generated tokens that overlap
with ShapeWorld captions, such as “blue circle” or
“red square”.

The results reveal two noticeable discrepancies
between the small and large vocabulary settings.
First, speakers trained over the large vocabulary
space can successfully communicate with the train-
ing listener on new reference games – that is, they
generalize to new contexts. However, they are un-
able to generalize to held-out listeners and achieve
only random chance accuracy (33%). This pattern
of overfitting to the training listener despite gener-
alizing to new contexts with the training listener
indicates that the speaker suffers a form of semantic
drift (Lazaridou et al., 2020; Lee et al., 2019).

This semantic drift is shown most clearly in the
second discrepancy: speakers trained with large vo-
cabularies rarely use tokens related to shapes and
colors (i.e. the domain-relevant tokens), whereas
those trained with small vocabularies do so (by
design). Upon qualitative examination of the
speaker’s utterances (Table 2), we observe some
examples of this drift: the speaker’s language de-
viates from natural language and the ShapeWorld
domain that the neural listeners were trained on.

4 Diagnosing semantic drift

We hypothesize that the observed semantic drift
arises from poor uncertainty calibration in the neu-
ral listener, which the speaker then overfits to.
If this is correct, then populations of listeners—

which have been shown to be better calibrated
(Beluch et al., 2018; Li and Bowling, 2019; Tiele-
man et al., 2019)—may yield more useful listeners
for communication-based training. To investigate
this hypothesis we first explore the calibration of
both single listeners and populations of listeners.

We compare the uncertainty measurements of
three different internal listener implementations.
One baseline is single-L0, which approximates the
internal listener L with a single neural listener, i.e.
exactly the setup in Section 3 where existing work
uses a single neural listener for communication-
based training. The second is an ensemble-based
population of n neural listeners; this is equiva-
lent to substituting L(t | u) = 1

n

∑n
j=1 L

j(t | u))
in Equation 3 where each listener Lj is initial-
ized randomly. They are trained on different
data splits and different random seeds, and each
achieves at least 92% accuracy on training and
validation. While all listeners generalize to new
in-distribution utterances, they generalize differ-
ently out-of-distribution. It is these disagreements
among the ensemble that improve calibration com-
pared to a single neural network like single-L0.
The third is the dropout-based population, where
we use a single listener to approximate a pop-
ulation of n listeners via MC-dropout (Gal and
Ghahramani, 2016); this is equivalent to substitut-
ing L(t|u) = 1

n

∑n
j=1 L

dropout(t | u, dj) in Equa-
tion 3 where dj is a randomly sampled dropout
mask. In our experiments, we use a dropout rate
of p = 0.1 but found no differences with using
larger rates while maintaining high listener accu-
racy; please refer to Appendix B for more details
on the dropout implementation.

Intuitively, the ideal listener should be uncer-
tain about utterances that are different from their
training domain. To measure this, we evalu-
ate listener uncertainty scores on utterances with
varying degrees of overlap with their training do-
main. Specifically, for high-overlap utterances,
we sample messages directly from the ground truth
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Figure 2: Listener uncertainty (entropy) by domain
overlap. Scores come from either single L0, dropout-
based population, or an ensemble-based population.
Dashed line is an idealized listener, for reference.

Target Distractors

Method
gt red shape
single L0 suppressed suppressed Mix

suppressed Pagan Mix Mix
Pagan Mix

dropout suppressed suppressed
suppressedops suppressed Mix
Pagan imprison Mix

ensemble rect rect rect rect

Target Distractors

Method
gt gray shape
single L0 ESEESE FDAWHAT

Macedichickarios
Macedichick

dropout ariosichickarios FDA FDAarios
brainsichick Maced

ensemble gray gray gray

Table 2: Examples of generated utterances. “gt” refers
to the ground truth ShapeWorld utterance associated
to the target image (left-most image). We show the
utterance generated by the speaker trained with either
the single L0, dropout-based population, or ensemble-
based population method. Based on token overlap and
the reference game context, the ensemble-based popu-
lation method results in more pragmatic and useful ut-
terances.

ShapeWorld language. For medium-overlap utter-
ances, we sample language from a well-calibrated

neural speaker (Table 2, ensemble). For low-
overlap utterances, we sample from a poorly-
calibrated speaker (Table 2, single L0). Refer to
Appendix C for a complete discussion on utterance
sampling. For these utterance types, the ideal lis-
tener should have maximum entropy over targets
for low-overlap utterances, and zero entropy for
high-overlap utterances. In Figure 2, we plot the
listener’s uncertainty over utterances with varying
domain overlap. We see, as hypothesized, that the
single listener is poorly calibrated, yielding very
low entropy for low-overlap utterances. Somewhat
surprisingly, dropout-based populations do not help
either. The ensemble-based populations, however,
do show better calibration and are closer to the
idealized listener: they are uncertain about out-of-
domain utterances.

5 Countering semantic drift

Following our hypothesis, a well-calibrated listener
should lead the speaker to generalize to new listen-
ers and new contexts while reasoning pragmatically
over a large vocabulary. We show that this is indeed
the case in the following two experiments.

First, we show that with increasing population
size n, the ensemble-based population objective
closes the accuracy gap between training and val-
idation listeners, while still generalizing to new
reference games (Figure 3). This is not the case
for the dropout listener with increasing the num-
ber of passes n. These results are averaged on
10 seeds, for n of {1, 10, 20, 30}. With ensemble-
based population n = 30, we found that the speaker
token overlap increased to 48.4± 12.3%; this is a
much larger token overlap than the original speaker
trained on single-L0 (1.0± 0.6 from Table 1). We
show utterance examples from speakers trained
with the population objectives in Table 2.

To explore the semantic content of utterance dis-
tributions, we investigate the topic overlap between
different speakers and the ground truth utterances.
We find that speakers trained with well-calibrated
listeners produce messages which are semantically
similar to the ground truth utterances, according to
distances in GloVe (Pennington et al., 2014) em-
bedding space (Table 3). We embed the ground
truth utterances by taking the sum of embeddings
over the ground truth utterance. We denote this
sum as zGT. We compare these to the utterance
embeddings of three speakers: one speaker which
is constrained to Shapeworld vocabulary (used in
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(a) Ensemble-based population training
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(b) Dropout-based population training

Figure 3: Accuracy and standard error for speaker trained with a (a) listener ensemble of size n = {1, 10, 20, 30} or
(b) dropout listener with n = {1, 10, 20, 30} number of passes. n represents the population size. Results averaged
over 10 seeds.

speaker type d(zGT, SUM(zS)) d(zGT, FIRST(zS))

Limited 9.2 ± 3.74 6.43 ± 2.54
Calibrated 10.37 ± 2.41 8.52 ± 0.50
Miscalibrated 13.03 ± 3.62 8.72 ± 0.44

Table 3: Euclidean distance d in GloVe embedding
space between the ground truth utterances zGT and
speaker utterances zS. Lower distances indicate that the
speaker’s utterance is close in topicality to the ground
truth. The speakers are either trained only on the Shape-
world vocabulary (Limited), trained with an ensemble-
based listener population (Calibrated), or trained with
single-L0 (Miscalibrated). The speaker utterance em-
beddings are either calculated as a sum of the uttered
words (SUM(zS)) or as the embedding of the first ut-
tered word (FIRST(zS)).

White et al. (2020) and in Section 3), one that is
trained with well-calibrated listeners (ensemble-
based population of size 30), and another that is
trained with the poorly calibrated single-L0 listener.
The speaker’s embeddings, zS, are calculated either
as a sum of uttered word embeddings or as the em-
bedding of the first utterance word; we include the
results from the latter because miscalibrated speak-
ers often repeat words and taking only the sum
might distort the calculated embedding distance.
The distance reported in Table 3 is the Euclidean
distance between zGT and zS. The results show that
the calibrated speaker utters words that are simi-
lar to ground truth utterances, though not quite as
similar as the limited speaker. The miscalibrated
speaker utters words that are less similar to the
ground truth utterances as indicated by the higher
distance scores.

6 Conclusion

The true objective for language use is communica-
tion. Our work highlights the importance of well-
calibrated listeners in communication-based train-
ing. We show that it’s important to understand the
properties of speakers optimized to communicate
with different listeners. We have found that naive
communication-based training over unconstrained
vocabularies is subject to a pernicious form of se-
mantic drift that arises from poorly calibrated lis-
tener models. The overconfidence of listeners is
exploited by the speaker during training and, as a
result, speakers acquire niche linguistic properties,
like conventions that fail to generalize to other lis-
teners (Hawkins et al., 2017; Graesser et al., 2020).
By contrast, an ensemble of listeners shows better
calibration. Speakers trained to communicate with
these listeners avoid semantic drift, generalizing to
new games and new listeners. Future research on
communication-based training for language mod-
els will thus benefit from listener ensembles or
other methods for training listeners with properly
calibrated uncertainty.
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A Software and data for reproducibility

The accompanying code can be found here:
https://github.com/rosewang2008/
calibrate_your_listeners. It includes
code for training the models, instructions, the data
used for this work, and pretrained L models.

B Implementation and training

Model details The listener and speaker have a
separate vision encoder, fθ and fφ, which are con-
volutional neural networks with 4 blocks, each
block containing a 64-filter 3x3 convolutional layer,
batch normalization, ReLU activation, and 2x2 max
pooling. Images are represented as 64×64×3 input,
which produce 1024-d representations. For speak-
ers, the image embeddings are projected down to
the GRU hidden state size for hidden state initializa-
tion in pGRU. For listeners, we take the dot product
of the image embeddings and utterance embed-
dings to produce the target probability. The lis-
tener’s language encoder g(·) is also a gated RNN.
The listener and speaker’s GRU has two layers. It
takes in an embedding dimension of 512 and has
a hidden size of 100. The token space varies in
our experiments: the small vocabulary setting has
15 tokens as in White et al. (2020) and the large
setting has about 51k tokens from the GPT2 tok-
enizer (Wolf et al., 2020; Radford et al., 2019). The
speaker’s maximum sequence length is 10 tokens.

For the dropout-based listener, we apply a
dropout layer with dropout rate p = 0.1 in the
listener’s image and language encoders, fθ, gθ.
Dropout is applied after every convolutional block
except the last block in the image encoder. Dropout
is applied on the outputs of each GRU layer except
for the last layer. We experimented with higher
dropout rates (p = 0.2, 0.3) while maintaining high
listener validation accuracy during listener evalua-
tion, and found no differences in the reported exper-
imental findings. Specifically, we found that using
listeners with higher dropout rates did not change
the uncertainty measurements shown in Figure 2.
Speakers trained with listeners of higher dropout
rates still obtained training and validation accu-
racies that were still within the margin of error
reported in Figure 3.

The listeners in the ensemble-based population
do not share any encoders and are trained on sepa-
rate models.

Training All the models were trained on 100
epochs, with the Adam optimizer, a batch size of
32, using the Gumbel Softmax trick (Jang et al.,
2017). The learning rate is 0.001 for speakers and
0.01 for listeners. All the listeners after training
reach at least 92% validation accuracy, and are used
for speaker training or validation.

C Domain overlap in utterances

Intuitively, we want utterances with low domain
overlap to be utterances that are unrelated Shape-
World domain (e.g. those sampled from the speaker
trained with the single-L0 method as shown in Ta-
ble 2), and utterances with high domain overlap
to be captions correct for a given target image and
perfectly related to the ShapeWorld domain and
correct (e.g. those directly from the ShapeWorld
dataset). Utterances with medium domain overlap
should be an interpolation between low and high
domain overlap. In our setting that is concerned
with semantic language drift, we define overlap
to be with respect to the percentage of utterance
tokens that are ShapeWorld-related tokens.

We use the ShapeWorld image captions as the
high domain overlap because these captions consist
of only tokens related to the ShapeWorld setting,
i.e. 100% overlap. We use utterances sampled from
the speaker trained with ensemble-based popula-
tion for the medium overlap utterances; these utter-
ances generally use ShapeWorld-related tokens but
in repeated fashion (see Table 2 for an example)
and have 51.6% overlap. We use utterances sam-
pled from the speaker trained with the single-L0

method with 0% token overlap for the low domain
overlap, as we found that this condition applied to
a wide majority of utterances sampled from this
speaker. We note that using token overlap as a
proxy for domain overlap is an imperfect measure-
ment as it doesn’t factor in whether an utterance is
actually appropriate for a desired target image. For
example, an utterance like “red green shape” uses
ShapeWorld-related tokens, but may not be an ideal
utterance for a red-shape target image. Nonethe-
less, since our work is concerned with semantic
language drift that uses novel and out-of-domain
tokens, we found this to be the best measurement
of domain overlap compared to alternatives like
n-gram overlap in tokens.

https://github.com/rosewang2008/calibrate_your_listeners
https://github.com/rosewang2008/calibrate_your_listeners

