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Abstract

The Transformer translation model is based
on the multi-head attention mechanism, which
can be parallelized easily. The multi-head
attention network performs the scaled dot-
product attention function in parallel, empow-
ering the model by jointly attending to in-
formation from different representation sub-
spaces at different positions. In this paper, we
present an approach to learning a hard retrieval
attention where an attention head only attends
to one token in the sentence rather than all to-
kens. The matrix multiplication between atten-
tion probabilities and the value sequence in the
standard scaled dot-product attention can thus
be replaced by a simple and efficient retrieval
operation. We show that our hard retrieval
attention mechanism is 1.43 times faster in
decoding, while preserving translation qual-
ity on a wide range of machine translation
tasks when used in the decoder self- and cross-
attention networks.

1 Introduction

The Transformer translation model (Vaswani
et al., 2017), which has outperformed previous
RNN/CNN based sequence-to-sequence models
(Sutskever et al., 2014; Bahdanau et al., 2015;
Gehring et al., 2017), is based on multi-head at-
tention networks. The multi-head attention mecha-
nism, which computes several scaled dot-product
attentions in parallel, can be efficiently parallelized
at sequence level.

In this paper, we investigate whether we can re-
place scaled dot-product attention by learning a
simpler hard retrieval based attention that attends
to a single token only. This simplifies computation
and increases speed. We show that this can indeed
be achieved by a simple and efficient retrieval op-
eration while preserving translation quality.

Our contributions are as follows:
∗ Corresponding author.

• We propose a method to learn hard retrieval
attention that attends with an efficient index-
ing operation (resulting in at most h tokens
being attended to for h attention heads).

• We empirically show that using the hard re-
trieval attention mechanism for decoder self-
and cross-attention networks increases the de-
coding speed by 1.43 times while preserving
performance on a wide range of MT tasks.

2 Background: the Scaled Dot-Product
Attention

The multi-head attention network heavily em-
ployed by the Transformer translation model con-
sists of h parallel scaled dot-product attentions,
where h is the number of attention heads.

The scaled dot-product attention mechanism
takes three inputs: the query sequence Q, the key
sequence K and the value sequence V .

It first compares each vector in Q with all vectors
in K by dot-product computation to generate the
attention score matrix S:

S = QKT (1)

where T indicates matrix transposition.
Next, S is scaled and normalized to attention

probabilities P :

P = softmax(
S√
dk

) (2)

where dk is the dimension of vectors of K.
Finally, the value sequence V is weighted by the

attention probabilities P and accumulated as the
attention result:

Attention(Q,K, V ) = PV (3)
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3 Hard Retrieval Attention

3.1 Training
3.1.1 Forward Propagation
When training the hard retrieval attention mecha-
nism, we have to sharpen the attention probability
vectors in P (Eq. 2) into one-hot vectors by multi-
nomial sampling:

Phard = sharpen(P ) (4)

Since Phard only consists of one-hot vectors,
the corresponding attention accumulation operation
in Eq. 3 can be achieved efficiently by indexing.
Specifically, for the jth one-hot vector −→p hard j ,
we first take the index imax j of the one-valued
element:

imax j = argmax(−→p hard j) (5)

where argmax returns the index of the largest ele-
ment of a vector.

Note that in practice the multinomial sampling
directly returns imax j , but we keep Phard here to
explain our approach in Section 3.1.2.

Next, we obtain the hard attention result with a
simple retrieval operation on V :

AttentionHard(Q,K, V )[j] = V [imax j ] (6)

3.1.2 Gradient Computation
To compute gradients for the hard attention mech-
anism, we address the non-differentiability of the
sharpening operation in the forward propagation
by regarding it as a noise process:

Phard = P +Noise (7)

where Noise stands for the noise introduced by the
sharpening operation.

Thus, we pass the gradients P g
hard of Phard di-

rectly to P to fix the chain rule for back propaga-
tion:

P g = P g
hard (8)

where P g stands for the gradient of P .
The retrieval operation of the value sequence V

with the matrix Phard consisting of one-hot vectors
is equivalent to the matrix-multiplication between
Phard and V . Given the gradient of the hard atten-
tion result Attentiong

Hard, the gradients of Phard

and V can be computed as:

P g
hard = Attentiong

HardV
T (9)

V g[i] =

{ ∑
Attentiong

Hard[j], i = imax j

0, otherwise

(10)
where V g[i] is the ith row of the gradient matrix
V g of V .

For efficiency, we use the retrieval operation
again instead of the matrix multiplication for the
computation of V g like in the forward pass.

3.2 Inference
Since the largest attention score in Eq. 1 corre-
sponds to the largest probability after scaling and
normalization in Eq. 2, we skip the computation of
Eq. 2 and directly take the result of Eq. 1 for the
computation of retrieval indexes during inference:

imax j = argmax(−→s j) (11)

where −→s j stands for the jth row of S.
Next, we can obtain the hard attention results

with imax j by the simple retrieval operation pre-
sented in Eq. 6.

4 Experiment

We implemented our approach based on the Neu-
tron implementation of the Transformer (Xu and
Liu, 2019).

To investigate the impact on translation quality
of our approach, we conducted our experiments
on the WMT 14 English to German and English
to French news translation tasks to compare with
Vaswani et al. (2017). We also examined the impact
of our approach on the pre-processed data of the
WMT 17 news translation tasks for 12 translation
directions.

The concatenation of newstest 2012 and newstest
2013 was used for validation and newstest 2014
as test sets for the WMT 14 English to German
and English to French news translation tasks. We
used the pre-processed data for WMT 17 news
translation tasks.1

4.1 Settings
We applied joint Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016) with 32k merging operations on
both data sets to address the unknown word issue.

1http://data.statmt.org/wmt17/
translation-task/preprocessed/.

http://data.statmt.org/wmt17/translation-task/preprocessed/
http://data.statmt.org/wmt17/translation-task/preprocessed/
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Models En-De En-Fr

Transformer Base 27.55 39.54
with Hard Dec Attn 27.73 39.39

Transformer Big 28.63 41.52
with Hard Dec Attn 28.42 41.81

Table 1: Results on WMT 14 En-De and En-Fr.

We only kept sentences with a maximum of 256
subword tokens for training. Training sets were
randomly shuffled in every training epoch. We
followed Vaswani et al. (2017) for experiment set-
tings. We used a beam size of 4 for decoding with
the averaged model of the last 5 checkpoints for the
Transformer Base setting and 20 checkpoints for
the Transformer Big setting saved with an interval
of 1, 500 training steps, and evaluated tokenized
case-sensitive BLEU.

Though Zhang et al. (2019); Xu et al. (2020b)
suggest using a large batch size which may lead
to improved performance, we used a batch size
of 25k target tokens which was achieved through
gradient accumulation of small batches to fairly
compare with Vaswani et al. (2017). The train-
ing steps for Transformer Base and Transformer
Big were 100k and 300k respectively following
Vaswani et al. (2017). Parameters were initialized
under the Lipschitz constraint (Xu et al., 2020a).

4.2 Main Results
We first examine the effects of using hard retrieval
attention for decoder self- and cross-attention net-
works (reported in our ablation study results in
Table 3) on the WMT 14 English-German and
English-French task to compare with Vaswani et al.
(2017). Results are shown in Table 1.

Table 1 shows that using the hard retrieval at-
tention mechanism for decoder self- and cross-
attention networks achieves comparable perfor-
mance on both tasks under both Transformer Base
and Big settings.

4.3 Efficiency Analysis
Comparing the inference of the standard scaled dot-
product attention with the hard retrieval attention,
we expect the latter to be faster and more efficient
than the first as:

• The operation to find the index of the largest
element in the vector (Eq. 11) in the hard
retrieval attention is more efficient than the

scaling and normalization (Eq. 2) in the scaled
dot-product attention.

• The operation to retrieve the corresponding
vector in V with indexes in the hard retrieval
attention is faster than the matrix multiplica-
tion in the standard attention.

We tested the efficiency of our approach by
recording the time cost of the operations involved
in the two attention mechanisms during the forward
propagation on the development set of the WMT
14 English-German news translation task with a
single GTX 1080 Ti GPU under the Transformer
Base setting. Results are shown in Table 2. Table
2 shows that our hard retrieval attention is much
faster than scaled dot-product attention.

Even though overall time consumption is not
only determined by attention networks, but also
by other parts of the Transformer, we suggest the
acceleration with hard retrival attention during in-
ference is still significant, as decoding is performed
autoregressively in a token-by-token manner and
decoder layers have to be computed for many times
during inference, while the linear projections for
keys and values of the decoder self-attention and
cross-attention heads will be computed once only
and cached. This makes attention computation con-
sume a larger part of computation during inference
than during training, and makes the acceleration
of decoder attention layers significant. Using hard
attention also saves the computation of the linear
projection layer for values, as it only needs to com-
pute the representations of several attended tokens
instead of all tokens of the sequence. We report
overall decoding speed in Table 3.

4.4 Ablation Study
We conducted ablation studies on the WMT 14
En-De task.

We first test decoding with the hard retrival at-
tention algorithm but with the converged standard
Transformer model. Results are shown in Table 4.

Table 4 shows that performing hard decoding
with the softly trained model leads to significant
loss in BLEU (−1.21). On the one hand this shows
that the decoder attention network does not really
need to attend too many tokens, on the other hand it
shows the importance of our hard attention training
approach that closes the gap between training and
inference.

We also study applying the hard retrival atten-
tion network as different attention sub-layers of the
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Operation Costs
Std Hard Std Hard

Compare (Eq. 1) 14.40
Normalize (Eq. 2) argmax (Eq. 11) 6.22 2.10

Attend (Eq. 3) Index (Eq. 6) 12.26 2.93

Total 32.88 19.43

Table 2: Time costs (in seconds) of operations for 1000 iterations. Std: standard scaled dot-product attention.

Hard Attention BLEU Decoding Speed (sent/s) Speed-Up

None 27.55 150.15 1.00
Dec Cross-Attn 27.59 187.69 1.25
Dec Cross- and Self-Attn 27.73 214.50 1.43
Enc Self- and Dec Cross- and Self-Attn 26.60 219.20 1.46

Table 3: Results on using hard attention for different attention mechanisms. Speed is measured on the WMT 14
En-De testset with a beam size of 4.

Train Decode BLEU

Soft 27.55
Soft Hard 26.30

Hard 27.73
Hard Soft 27.80

Table 4: Effects of hard attention training and decoding
on WMT 14 En-De.

decoder or both encoder and decoder. Results are
shown in Table 3.

Table 3 shows that applying the hard retrieval
attention mechanism to encoder self-attention net-
works significantly hampers performance. We con-
jecture potential reasons might be: 1) the encoder
might be harder to train than the decoder as its gra-
dients come from cross-attention networks while
the decoder receives more direct supervision from
the classifier, and the hard attention training ap-
proach makes the encoder’s training even harder.
2) as the hard retrieval attention only attends one
token, the multi-head hard retrieval attention can
only attend at most the same number of tokens as
the number of attention heads. To achieve optimal
results, encoder self-attention may need to attend to
more tokens. We leave how to use hard retrieval at-
tention in the encoder for future work. Fortunately,
the autoregressive decoder is the major factor in
time consumption during decoding, and accelerat-
ing decoder layers’ computation can significantly
speed up inference.

4.5 Testing on WMT 17 Tasks

We further examine the performance of using hard
retrieval attention for decoder attention networks
on all WMT 17 news translation tasks, using the
same setting of the Transformer Base as on the
WMT 14 En-De task. Results are shown in Table 5.
Table 5 shows that hard retrieval attention is able
to match the performance in all tested language
pairs in both translation directions, with training
sets ranging from 0.2M to 52.02M sentence pairs.
The largest performance loss (−0.26 BLEU) is on
the Cs-En task.

5 Related Work

Zhang et al. (2018) accelerate the decoder self-
attention with the average attention network. Xu
et al. (2021) propose to replace the self-attention
layer by multi-head highly parallelized LSTM. Kim
et al. (2019) investigate knowledge distillation and
quantization for faster NMT decoding. Tay et al.
(2021) investigate the true importance and contribu-
tion of the dot product-based self-attention mecha-
nism on the performance of Transformer models.

Most previous research focuses on efficient mod-
eling of the self-attention mechanism for very long
sequences. These are generally not effective on
sequences of normal lengths. Dai et al. (2019)
introduce the notion of recurrence into deep self-
attention network to model very long term de-
pendency efficiently. Ma et al. (2019) combine
low rank approximate and parameter sharing to
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Lang Data (M)
En→xx xx→En

Std Hard Std Hard

De 5.85 27.48 27.56 32.89 32.68
Fi 2.63 22.23 22.15 26.15 26.03
Lv 4.46 16.38 16.43 18.12 18.20
Ru 25.00 28.20 28.04 31.52 31.30
Tr 0.20 15.79 15.81 15.58 15.69
Cs 52.02 21.89 21.78 27.62 27.36

Avg. 22.00 21.96 25.31 25.20

Table 5: Results on WMT 17 news translation tasks. xx denotes the language in row headers. None of the
differences are statistically significant.

construct a tensorized Transformer. Kitaev et al.
(2020) replace dot-product attention by one that
uses locality-sensitive hashing and use reversible
residual layers instead of the standard residuals.
Zhang et al. (2020) propose a dimension-wise at-
tention mechanism to reduce the attention complex-
ity. Katharopoulos et al. (2020) express the self-
attention as a linear dot-product of kernel feature
maps and make use of the associativity property of
matrix products. Wang et al. (2020) approximate
the self-attention mechanism by a low-rank matrix.
Beltagy et al. (2020) introduce an attention mech-
anism that scales linearly with sequence length.
Child et al. (2019) introduce sparse factorizations
of the attention matrix.

On using hard (local) attention for machine trans-
lation, Luong et al. (2015) selectively focus on a
small window of context smoothed by a Gaussian
distribution. For self-attentional sentence encod-
ing, Shen et al. (2018) train hard attention mech-
anisms which select a subset of tokens via policy
gradient. Geng et al. (2020) investigate selective
self-attention networks implemented with Gumble-
Sigmoid. Sparse attention has been found benefi-
tial for performance (Malaviya et al., 2018; Peters
et al., 2019; Correia et al., 2019; Indurthi et al.,
2019; Maruf et al., 2019). Our approach learns
explicit one-to-one attention for efficiency, pushing
such research efforts to the limit.

6 Conclusion

We propose to learn a hard retrieval attention which
only attends to one token rather than all tokens.
With the one-to-one hard attention matrix, the ma-
trix multiplication between attention probabilities
and the value sequence in the standard scaled dot-
product attention can be replaced by a simple and

efficient retrieval operation.
In our experiments on a wide range of machine

translation tasks, we show that using the hard re-
trieval attention for decoder attention networks can
achieve competitive performance while being 1.43
times faster in decoding.
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