
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 738–749
November 7–11, 2021. ©2021 Association for Computational Linguistics

738

An Analysis of Euclidean vs. Graph-Based Framing for
Bilingual Lexicon Induction from Word Embedding Spaces

Kelly Marchisio1, Youngser Park4,5, Ali Saad-Eldin3, Anton Alyakin2,
Kevin Duh1,5, Carey Priebe2,5, Philipp Koehn1

Depts. of 1Computer Science, 2Applied Mathematics and Statistics, and 3Biomedical Engineering
4Center for Imaging Science, 5Human Language Technology Center of Excellence

Johns Hopkins University
{kmarc,youngser,asaadel1,aalyaki1}@jhu.edu
kevinduh@cs.jhu.edu, {cep, phi}@jhu.edu

Abstract
Much recent work in bilingual lexicon induc-
tion (BLI) views word embeddings as vec-
tors in Euclidean space. As such, BLI is
typically solved by finding a linear transfor-
mation that maps embeddings to a common
space. Alternatively, word embeddings may
be understood as nodes in a weighted graph.
This framing allows us to examine a node’s
graph neighborhood without assuming a lin-
ear transform, and exploits new techniques
from the graph matching optimization litera-
ture. These contrasting approaches have not
been compared in BLI so far. In this work,
we study the behavior of Euclidean versus
graph-based approaches to BLI under differ-
ing data conditions and show that they com-
plement each other when combined. We re-
lease our code at https://github.com/
kellymarchisio/euc-v-graph-bli.

1 Introduction

Bilingual lexicons are useful in many natural lan-
guage processing tasks including constrained de-
coding in machine translation, cross-lingual infor-
mation retrieval, and unsupervised machine trans-
lation. There is a large literature inducing bilin-
gual lexicons from cross-lingual spaces. “Map-
ping" methods based on solving the orthogonal
Procrustes problem and its generalizations are pop-
ular, where languages are mapped to a common
space from which a lexicon is extracted. This has
been successful when word embedding spaces are
roughly isomorphic, but fails as embedding spaces
diverge (Søgaard et al., 2018; Vulić et al., 2019).

Rather than word embeddings in Euclidean
space, we can work with weighted graphs derived
from embeddings. Graphs may be full-connected
or sparse to capture the underlying data manifold.
For instance, we may create a similarity graph with
words as nodes and cosine distance between word
vectors as edges. The use of graphs in NLP has a
rich history, for tasks as varied as summarization,

part-of-speech tagging, syntactic parsing, informa-
tion extraction, measures of semantic similarity,
and evaluation of cross-lingual word embeddings
(Mihalcea and Radev, 2011; Nastase et al., 2015;
Fujinuma et al., 2019). Graphs can also represent
rich relationships like hyponym/hypernym, syntac-
tic roles, synonymy such as in WordNet (Miller,
1995) and Freebase (Bollacker et al., 2008). We
focus on fully-connected graphs derived from pair-
wise cosine similarities between word embeddings.

The Euclidean view, exemplified by methods
solving the Procrustes problem, works with embed-
ding spaces and assumes the existence of a linear
transform that maps the spaces. The graph-based
view works with graphs for each language and
directly performs matching on edge pairs based
on neighborhood information. This view is exem-
plified by graph matching methods that solve the
quadratic assignment problem from the combina-
torial optimization literature. Ruder et al. (2018)
and Haghighi et al. (2008) incorporate related tech-
niques for bilingual lexicon induction. We use
Seeded Graph Matching (SGM; Fishkind et al.,
2019) as representative of this class of approach.
Figure 1 illustrates the differences between the
framings; while they both exploit the idea that
words with similar neighbors (in Euclidean or
graph space) should be translations of one another,
they implement the idea in very different ways.

We explore these two different views of BLI.
Our main contributions are (a) a thorough compari-
son of Euclidean vs. graph-based framings to BLI
under varying data conditions, and (b) a method
for combining both approaches that achieves better
performance than either alone.

We organize our work into three main experimen-
tal setup and results sections. First, we compare
standard algorithms of performing BLI via solu-
tions to the orthogonal Procrustes problem (“Pro-
crustes", for short) and SGM in Section 4; we
find that their performance varies depending on

https://github.com/kellymarchisio/euc-v-graph-bli
https://github.com/kellymarchisio/euc-v-graph-bli

739

Figure 1: Comparing Euclidean (Procrustes) vs. Graph (SGM) views. (a) Euclidean view assumes common
embedding space and computes costs based on pairs of vectors. (b) Graph-based view assumes graph structure and
computes cost based on pairs of edges. Both exploit within-language neighborhood info but in different ways.

the number of seeds. SGM appears better when
using less seeds. Second, as it is common to im-
prove results by bootstrapping, we compare iter-
ative versions of Procrustes and SGM in Section
5. We find that Iterative Procrustes improves much
more rapidly than Iterative SGM. We also intro-
duce stochastic variants of the iterative algorithms
to improve robustness and experiment with active
learning setups. Finally, we present our combined
system which outperforms individual Procrustes
and SGM approaches in Section 6.

2 Background

BLI begins with two word embedding matrices:
X ∈ Rn×d represents the d-dimensional word em-
beddings for n vocabulary items in language X,
and Y ∈ Rm×d represents the m embeddings sep-
arately trained on monolingual data in language
Y. We assume seeds {(x1, y1), (x2, y2), ...(xs, ys)}
are given, which are supervised labels indicat-
ing translation correspondence between vocabulary
items in the languages. We sort the corresponding
submatrices of X and Y so each row of X ∈ Rs×d

and Y ∈ Rs×d corresponds to the seeds. Usually,
s is strictly smaller than both n and m and the
goal is to find translation correspondences in the
remaining words.

Procrustes and linear transforms: The popular
Procrustes-based methods for BLI (e.g. Artetxe
et al., 2016a, 2019; Conneau et al., 2018; Patra
et al., 2019) match seeds by calculating a linear
transformation W by a variant of the below:

min
W∈Rd×d

||XW −Y||2F (1)

If W is required to be orthogonal, then distances
between points are unchanged by the transform and
a closed form solution can be computed by singular
value decomposition (Schönemann, 1966).

Once languages are mapped to the same space
by W, nearest neighbor search finds additional
translation pairs. If W is known, one can find
translations by optimizing over permutations Π:

min
P∈Π
||XW −PY||2F (2)

P ∈ {0,1}n×n is permutation matrix that shuffles
the rows of Y. If we enforce the 1-to-1 correspon-
dence, this is linear assignment problem that is
solvable in polynomial time, e.g. with the Hungar-
ian algorithm (Kuhn, 1955) or Wasserstein meth-
ods (Grave et al., 2019a). In the NLP literature,
a large number of methods are based on the same
underlying idea of linear transform followed by cor-
respondence search/matching (see Related Work).

To extract lexicons, one performs nearest neigh-
bor search on the transformed embeddings. To
mitigate the hubness problem (where some words
are close to too many others) (Radovanovic et al.,
2010; Suzuki et al., 2013), Conneau et al. (2018)
modifies the similarity using cross-domain similar-
ity local scaling (CSLS) to penalize hubs. For x, y
in embedding space V :

CSLS(x, y) = 2 cos(x, y)− avg(x, k)− avg(y, k)

avg(v, k) =
1

k

∑
vn∈Nk(v,V)

cos(vn, v)

Nk(v, V) returns the k-nearest-neighbors to v ∈ V
by cosine similarity (typically k = 10).

740

Graph matching: In fields such as pattern recog-
nition, network science, and computer vision, there
exist a large body of related work termed “graph
matching." Rather than assuming the existence of
a linear transform between the embedding spaces,
these methods start with or construct two graphs
and try to match vertices such that neighborhood
structure is preserved. Intuitively, the motivation
of preserving neighborhood structure is the same
as Procrustes methods, but the absence of linear
transform W is an important distinction that po-
tentially makes graph matching more flexible. In-
deed, some recent BLI work argue against linear
transforms (Mohiuddin et al., 2020) and discuss
the failure modes due to lack of isometry (Søgaard
et al., 2018; Nakashole and Flauger, 2018; Ormaz-
abal et al., 2019; Glavaš et al., 2019; Vulić et al.,
2019; Patra et al., 2019; Marchisio et al., 2020).

For BLI, we may build the graphs as Gx =
XXT and Gy = YYT. For standard graph match-
ing objectives, we restrict the vocabularies of X
and Y to equal size, thus Gx,Gy ∈ Rn×n. We
find the optimal relabeling of nodes such that:

min
P∈Π
||Gx −PGyP

T||2F (3)

This is an instance of the quadratic assignment
problem and is much harder than Eq. 2. It is NP-
Hard (Sahni and Gonzalez, 1976) but various ap-
proximation methods exist. Vogelstein et al. (2015)
use the Frank-Wolfe method (Frank et al., 1956)
to find an approximate doubly-stochastic solution,
then project onto the space of permutation matrices.

When seeds are available, SGM can be applied to
solve the amended objective in Equation 4, where
s is the number of seeds and Πn−s is the set of
permutation matrices for the n− s non-seed words.
See Appendix for details.

min
P∈Πn−s

‖Gx − (Is ⊕P)Gy(Is ⊕P)T‖2F (4)

2.1 Differences between Procrustes and SGM
Two differences in behavior of Procrustes vs. SGM
are worth discussing for their relevance to BLI.

Procrustes is many-to-one; SGM is one-to-one.
After solving the orthogonal Procrustes problem,
translation pairs are selected by finding the y ∈ Y
that is closest to the mapped source word in xw ∈
XW. It is possible that the nearest neighbor to
both xw1 ∈ XW and xw2 ∈ XW may be y1 ∈ Y,
so {(xw1 , y1), (xw2 , y1)} may be induced as final

translation hypotheses. Conversely, SGM solutions
are strictly one-to-one; If xw1 is paired with y1,
then xw2 cannot be. As such, SGM may avoid hubs
naturally without CSLS. A way around the one-to-
one restriction is to use SoftSGM. For instance, if
xw1 is paired with y1 on 40% of internal runs of
SoftSGM and xw2 is paired with y1 on 40% of runs
(and y1 is the most frequent pairing for both xw1

and xw2), we may induce {(xw1 , y1), (xw2 , y1)} as
final hypotheses.

Procrustes is soft-seeded; SGM is hard-seeded.
Procrustes is “soft-seeded"; giving seed (x1, y1)
does not guarantee that x1 and y1 will be paired
in the solution, because y1 may not be the nearest
neighbor to the mapped xw1 . Conversely, SGM is
“hard-seeded": pairings given as seeds will always
appear in the solution. This is ideal when one is
confident about the quality of the seeds, but means
that SGM is not robust to errors in the seed set.

3 Experimental Setup

Because there are three methods and results
sections, we detail the experimental setup first.
We evaluate on English→German (En-De) and
Russian→English (Ru-En).

Monolingual Word Embeddings We use 300-
dimensional monolingual word embeddings trained
on Wikipedia using fastText (Bojanowski et al.,
2017).1 We normalize to unit length, mean-center,
and renormalize, following Artetxe et al. (2018a)
(“iterative normalization", Zhang et al. (2019)).

Data & Software Bilingual dictionaries from
MUSE2 are many-to-many lexicons of the 5000
most-frequent words from the source language,
paired with one or more target-side translations.
We filter each lexicon to be one-to-one for simplic-
ity of analysis. For source words with multiple
target words, we keep the first occurrence. This
is equivalent to randomly sampling a target sense
for polysemous source words because target words
are in arbitrary order. En-De originally contains
14667 pairs, and 4903 remain after filtering. Ru-En
has 7452 pairs, reduced to 4084. We use 100-4000
pairs as seeds, chosen in frequency order. The
rest are the test set. Seed/test splits are in Table
1. We use the public implementation of SGM with
random initialization from Graspologic3 (Chung

1https://fasttext.cc/docs/en/pretrained-vectors.html
2https://github.com/facebookresearch/MUSE
3https://github.com/microsoft/graspologic

741

et al., 2019). We leave all other hyperparameters
as their defaults (maximum Franke-Wolfe itera-
tions: 30 with epsilon stopping criterion = 0.03,
shuffle_input=True).

Seeds 100 200 500 1000 2000 4000

En-De Test 4803 4703 4403 3903 2903 903
Ru-En Test 3984 3884 3584 3084 2084 84

Table 1: Seed/test set splits for En-De, Ru-En.

4 Non-Iterative Experiments

4.1 Methods
Procrustes We compare Procrustes versus SGM
methods when each is run once. We solve the or-
thogonal Procrustes problem of Equation 1 over
known seeds and apply the linear transform W to
the entire source embedding matrix X. For each
mapped source word in XW, we select y from tar-
get embedding matrix Y with the minimum CSLS
score as the translation.

SGM We construct graphs Gx = XXT and
Gy = YYT, which are matrices of cosine sim-
ilarity. We solve Equation 4 using the SGM algo-
rithm from Fishkind et al. (2019). We implement
Fishkind et al. (2019)’s SoftSGM algorithm by run-
ning SGM ten times, each time using a different
random initialization for the permutation matrix P.
This gives a probability distribution over matches.

Standard metrics for BLI are precision@1 and
precision@5 (p@1, p@5). Evaluating p@1 is
straightforward. For Procrustes p@5, we select
the five nearest neighbors per source word. Be-
cause SGM only makes one guess per source word,
we calculate p@5 using SoftSGM (Fishkind et al.,
2019), which returns a probability distribution over
possible matches given multiple runs of SGM. We
select the top five hypotheses per source word
from the probability distribution.4 We calculate
recall@5 and F1@5 analogously.

4.2 Results
Table 2 shows non-iterative results. SGM outper-
forms Procrustes in nearly all scenarios, and the
effect with less seeds is particularly marked: Pro-
crustes scores just 4.1% with 100 seeds and 16.6%
with 500 seeds for Ru-En, while SGM scores 50.1%

4There may be less than five hypotheses available per
source word if there is not great diversity in output hypotheses.

and 52.2%, respectively. With a moderate number
of seeds, Procrustes and SGM perform similarly.5

En-De Ru-En
Seeds Procrustes SGM Procrustes SGM

100 3.6 45.8 4.1 50.1
200 16.1 47.3 16.6 52.2
500 44.9 51.9 45.3 56.0

1000 57.2 54.9 56.6 58.1
2000 63.1 61.5 62.7 67.1
4000 70.8 74.2 67.9 89.3

Table 2: P@1 of Procrustes vs. SGM.

We evaluate p@5, recall@5, and F1@5 in Ta-
ble 3. SGM has considerably higher precision and
F1 than Procrustes across all experiments (by 50+
percentage points in extreme cases) but Procrustes
generally has greater recall when seed size is 500
or greater. With 100 or 200 seeds, SGM outper-
forms Procrustes across-the-board. We note the
difference in the number of translation hypotheses
induced for each method in “Total Hyps."

5 Iterative Experiments

5.1 Methods
It is popular to use the Procrustes solution itera-
tively. One applies the transformation calculated
via Procrustes, extracts a dictionary of translation
candidates, then uses those as seeds for the next
round of Procrustes. We develop an analogous it-
erative algorithm for SGM. Figure 2 illustrates the
two related approaches.

Figure 2: IterSGM [or IterProc]. Run SGM [or Pro-
crustes] in forward & reverse directions. Combine hy-
potheses and pass as seeds to SGM [Procrustes]. Pull
final translations on last iteration from forward run.

We run SGM or Procrustes and extract po-
tential translation pairs in source→target and

5SoftSGM performs similarly to SGM, so is not reported.

742

Precision Recall F1 Total Hyps.
Seeds Procrustes SoftSGM Procrustes SoftSGM Procrustes SoftSGM Proc. SoftSGM

En-De

100 2.2 30.2 11.2 53.5 3.7 38.6 24015 8516
200 6.8 34.8 33.9 53.3 11.3 42.1 23515 7203
500 13.9 43.1 69.6 55.7 23.2 48.6 22015 5694

1000 15.9 48.2 79.6 57.1 26.5 52.3 19515 4625
2000 16.8 58.3 83.8 62.6 28.0 60.4 14515 3117
4000 17.2 74.2 86.2 74.2 28.7 74.2 4515 903

Ru-En

100 2.5 33.3 12.6 59.8 4.2 42.8 19920 7150
200 7.6 38.2 38.0 59.4 12.7 46.5 19420 6046
500 14.1 45.8 70.3 59.6 23.5 51.8 17920 4666

1000 16.0 53.8 80.0 59.8 26.7 56.6 15420 3430
2000 16.8 67.1 83.9 67.1 28.0 67.1 10420 2084
4000 17.1 89.3 85.7 89.3 28.5 89.3 420 84

Table 3: P@5, Recall@5, and F1@5 of Procrustes vs. SGM. “Total Hyps." = total number of hypotheses.

target→source language directions, resulting in
two sets of translation hypotheses (one hypothesis
per source word from each translation direction).
For Procrustes, this extraction is done with CSLS.
We intersect the hypotheses from the two direc-
tions, and feed the resulting set back to Procrustes
[or SGM] as seeds. We abbreviate the iterative
procedures as IterProc and IterSGM.

The general procedure is:

1. Run Procrustes [or SGM], forward direction.
2. Run Procrustes [or SGM], reverse direction.
3. Intersect the hypotheses from both directions.
4. Feed the hypotheses into step 1. Repeat.

Before step 1 for IterSGM, we form the graphs as
described in Section 4. For IterProc, we combine
the hypotheses in step 3 with the gold seeds, which
is unncessary for SGM because seeds are always
returned in the hypotheses.

How one select seeds in Step 4 for subsequent
rounds is important. We try three variations:

Add-All Itersect hypotheses from forward and
reverse directions. All become seeds for the next
round, for N total rounds. Advantage: all correct
pairs are passed to the next iteration. Disadvantage:
all incorrect hypotheses are, too.

Stochastic-Add Add up to H new hypotheses
each iteration; For iteration two, H random hy-
potheses from the intersection are chosen and
added to the gold seeds for the forward direction.
A separate random selection is taken for the reverse
direction. The next round, 2H random hypotheses

are chosen. This continues until all hypotheses are
used.6 This setting was designed to encourage ro-
bustness and improve accuracy by minimizing the
number of erroneous seeds passed to subsequent
rounds, to allow for recovery from mistakes. As
distinct subsets are passed to forward and reverse
directions, we encourage solutions of the runs to
also be different, increasing output diversity. When
intersecting the hypotheses, we aim to select pairs
which are most likely to be correct—having two
different solutions agree increases confidence that
the induced pairs are correct, and selecting only a
small subset allows recovery from mistakes. This
is particularly important for SGM, where incorrect
seeds are repeated in the output. In passing a subset
to the next round, some incorrect pairs are dropped,
and the model gets another chance to induce trans-
lations with a (presumably) stronger model. The
stochasticity builds in robustness.

Active-Learning Seeds may also be added in an
active learning fashion (“human-in-the-loop"). To
simulate a human judging hypothesis quality, we
use the union of hypotheses from forward and re-
verse directions and pass only correct hypotheses
as seeds for the next iteration.

For Add-All and active learning experiments,
we run for ten iterations (N = 10). For Stochastic-
Add, H = 100. Tuning H is for future work.

6If not enough seeds in the intersection, all are used.

743

Add-All Stochastic-Add Active-Learning
Seeds IterProc IterSGM IterProc IterSGM IterProc IterSGM

En-De

100 61.3 47.2 62.1 (+0.8) 50.2 (+3.0) 66.1 (+4.8) 56.6 (+9.4)
200 61.5 48.2 62.0 (+0.5) 50.8 (+2.6) 66.3 (+4.8) 56.7 (+8.5)
500 62.6 52.1 62.8 (+0.2) 52.9 (+0.8) 66.6 (+4.0) 58.3 (+6.2)
1000 63.0 54.7 63.5 (+0.5) 54.8 (+0.1) 67.3 (+4.3) 59.5 (+4.8)
2000 65.2 61.4 65.2 (+0.0) 61.7 (+0.3) 69.1 (+3.9) 65.6 (+4.2)
4000 71.3 74.2 71.7 (+0.4) 74.4 (+0.2) 74.6 (+3.3) 75.4 (+1.2)

Ru-En

100 62.4 51.6 62.7 (+0.3) 56.3 (+4.7) 71.0 (+8.6) 62.5 (+10.9)
200 62.4 53.7 63.1 (+0.7) 56.4 (+2.7) 71.1 (+8.7) 61.9 (+8.2)
500 63.7 56.1 63.7 (+0.0) 58.0 (+1.9) 71.3 (+7.6) 63.1 (+7.0)
1000 64.0 58.1 64.0 (+0.0) 60.3 (+2.2) 71.2 (+7.2) 66.4 (+8.3)
2000 66.1 67.1 65.7 (-0.4) 68.2 (+1.1) 72.3 (+6.2) 71.0 (+3.9)
4000 69.0 89.3 69.0 (+0.0) 89.3 (+0.0) 72.6 (+3.6) 89.3 (+0.0)

Table 4: P@1 of IterProc vs. IterSGM. Add-All runs for 10 iterations, seeding subsequent iterations with the
intersection of hypotheses from forward and reverse directions. For Stochastic-Add, seeds are fed in up to 100 at
a time until all are used. In parentheses is the improvement over Add-All.

5.2 Results

Results for IterProc and IterSGM are in Table 4.
In parentheses is the raw improvement over Add-
All. Unlike the single runs of Procrustes and SGM
from Table 2, IterProc outperforms IterSGM in
all scenarios with 1000 or less seeds, and for En-
De with 2000 seeds. Stochastic-Add outperforms
Add-All in nearly all experiments. Because SGM
is more sensitive to input seeds than Procrustes,
it particularly benefits from the stochastic setup
which minimizes its exposure to incorrect input
seeds and allows recovery from mistakes. Both
IterProc and IterSGM benefit from active learning,
showing the improved performance that may be
achieved from human-in-the-loop.

Figure 3 has p@1 for IterProc vs. IterSGM dur-
ing training (En-De, 100 seeds). Each data point
has the number of hypotheses in the intersection of
forward and reverse runs, and the precision of the
intersection [Precision (Hyps.)]. IterProc dramati-
cally underperforms SGM initially but quickly re-
covers. IterSGM stays roughly consistent through-
out iterations. Precision of IterProc rapidly im-
proves, but stays roughly the same for IterSGM.
The number of hypotheses in the intersection is
smaller for IterProc, suggesting that forward and
reverse directions disagree more, but the hypothe-
ses that they do agree upon are more precise.

The results in this section and the previous sug-
gest that Procrustes and SGM have complementary

strengths. While a single run of Procrustes strug-
gles to align word embedding spaces with little
supervision, it recovers when run iteratively. Con-
versely, one run of SGM dramatically outperforms
one run of Procrustes with low number of seeds but
does not improve much with iterations.

6 System Combination Experiments

6.1 Method

We create a combined system to see whether both
methods together can outperform either alone,
shown in Figure 4. For simplicity of implemen-
tation, we use Add-All IterProc and single runs of
SGM. Here, Procrustes and SGM feed off one an-
other to iteratively improve the solution. The com-
bined system is cyclic—one may choose where to
begin and end, with differing effect. There are two
main components and a hypothesis extraction step:

A. SGM Run in forward and reverse directions.
Intersect hypotheses and pass to next step.

B. IterProc Run for Iproc iterations.
C. Hypothesis Extraction Pull translation pairs

from a forward run of SGM (-PullSGM) or
IterProc (-PullProc). This results in one hy-
pothesis for each source word.

We set Iproc = 5 and N = 10. We start
from IterProc and pull results either from IterProc
(Start: IterProc -PullProc) or SGM (Start: IterProc
-PullSGM) on the final loop of the cycle. We repeat
the experiments starting from SGM (Start: SGM).

744

Figure 3: P@1 of iterative methods, by iteration (En-De, 100 seeds). Y-axis has p@1 for the forward run of
Procrustes [SGM]. Seeds for subsequent iterations are drawn from the intersection of forward and reverse runs.
Size and precision of this intersection is labeled above each point as “Precision (Num Hyps)". Add-All adds all
hypotheses in the intersection as seeds to the next iteration. Stochastic-Add adds random samples of up to 100 new
hypotheses per iteration. Active Learning adds all correct hypotheses.

Figure 4: Combined cyclic system. SGM and Add-
All IterProc are interspersed. Begin and end any-
where on the cycle. (1) Run SGM [or IterProc] in
forward/reverse direction. (2) Intersect hypotheses and
pass to forward/reverse IterProc [SGM] as seeds. (3)
Pull final translations after N th cycle from forward
SGM [IterProc].

6.2 Results

Results for the combined cyclic system are in Ta-
ble 5. The “Previous Best" column has the best
performance from previous experiments (exclud-
ing active learning). For all seed levels, the cyclic
system can equal or outperform the previous best
performance from earlier experiments with single
and iterative Procrustes or SGM.

Looking down the “-PullProc" columns, we dis-
cover that it hardly matters whether we begin the
cycle with IterProc or SGM. The same is true for
“-PullSGM". Whether -PullProc or -PullSGM is

Figure 5: Whether pulling from IterProc or SGM is pre-
ferred in the combined cyclic system depends on the
number of seeds, with IterProc preferred with a low
number of seeds, and SGM preferred with more.

preferred appears to be on a continuum, depicted
in Figure 5. For a low seed count, -PullProc is
preferred, with the effect more pronounced as seed
size diminishes. Conversely, -PullSGM is increas-
ingly preferred as seed set size increases.

7 Discussion & Future Directions

Though much work in BLI takes a Euclidean view
and elicits solutions via methods such as solutions
to the generalized Procrustes problem, BLI may
also be viewed as a graph-based problem. Parts
of the graph-based view have appeared in existing
work, but no one has yet to compare the differ-
ent framings in the context of BLI. We perform
this analysis for two high-resource language pairs
with well-trained embeddings from Wikipedia, in
a restricted data context. Under our experimental
settings, we find that:

1. Procrustes-based methods and SGM behave
differently under differing contexts (namely,

745

Combination Methods
-PullProc -PullSGM

Seeds Prev. Best Start: IterProc Start: SGM Start: IterProc Start: SGM

En-De

100 62.1 62.2 62.1 59.7 59.5
200 62.0 62.8 62.6 60.4 60.4
500 62.8 63.5 63.8 62.1 62.0
1000 63.5 63.9 64.2 63.0 63.7
2000 65.2 66.7 66.7 69.7 69.0
4000 74.4 73.2 73.2 79.7 79.2

Ru-En

100 62.7 63.9 64.0 61.7 62.0
200 63.1 64.5 64.3 62.6 63.1
500 63.7 65.3 65.3 64.0 64.3
1000 64.0 66.8 66.4 66.8 66.4
2000 68.2 69.4 69.5 72.9 73.1
4000 89.3 77.4 77.4 89.3 89.3

Table 5: P@1 for combined cyclic method (Figure 4. One may begin from either IterProc (“Start: Procrustes") or
SGM (“Start: SGM"), and may pull final hypotheses from either Procrustes (“-PullProc") or SGM (“-PullSGM").
“Prev. Best" is best result from previous experiments (excluding active learning). Bold is best overall.

the amount of available seeds), so either may
be favorable given the specific data context.
SGM appears favorable with less seeds.

2. SGM can be run iteratively, but does not im-
prove as rapidly as Iterative Procrustes. Both
benefit from stochasticity, and active learning
can provide strong improvement.

3. Procrustes and SGM can be effectively com-
bined to outperform either alone.

Our work has limitations which should be ad-
dressed by future analyses. We use clean, well-
trained embeddings from the same domain. Pre-
vious work has shown Procrustes to struggle with
poorly-trained and low-resource word embedding
spaces, and for well-trained embeddings in mis-
matched domains (e.g., Marchisio et al., 2020). In
these cases, SGM might benefit from a different
distance metric. A detailed analysis should be per-
formed when data is many-to-many, as translation
is naturally a many-to-many task. One might revisit
word vectors based on co-occurrence statistics. The
size of training and test sets should be increased,
as the presence of more synonyms/antonyms and
other “distractor" words may elicit different behav-
ior. There are computational considerations as we
scale-up, particularly for SGM.

8 Related Work

Matching words using vector representations be-
gan with vectors based on co-occurrence statis-

tics. Rapp (1995) and Fung (1995) induce bilin-
gual lexica based on the principle that words that
frequently co-occur in one language have trans-
lations that co-occur frequently in another. Diab
and Finch (2000) extend this by measuring similar-
ity between words based on co-occurrence vectors
and matching words across language by preserving
these similarities. Mikolov et al. (2013) are the
first to perform BLI over word embeddings, esti-
mating the transformation matrix using stochastic
gradient descent. Most recent work solves a vari-
ation of the generalized Procrustes problem (e.g.,
Conneau et al., 2018; Artetxe et al., 2016b, 2017;
Patra et al., 2019; Artetxe et al., 2018b; Doval et al.,
2018; Joulin et al., 2018; Jawanpuria et al., 2019;
Alvarez-Melis and Jaakkola, 2018). Zhang et al.
(2020) learn a mapping that overfits to training
pairs thus enforcing “hard-seeding", while Ruder
et al. (2018) enforce a one-to-one constraint on the
output for BLI.

Some BLI work uses graph based methods im-
plicitly or explicitly. Artetxe et al. (2018a) form
an initial solution with similarity matrices and re-
fine with iterative Procrustes. Grave et al. (2019b)
optimize “Procrustes in Wasserstein Distance", em-
ploying a quadratic assignment formulation and the
Frank-Wolfe method. Ren et al. (2020) form CSLS
similarity matrices, iteratively extract cliques, and
map with Procrustes. Gutierrez-Vasques and Mijan-
gos (2017) create a weighted graph of translation

746

candidates then create word vectors with Node2Vec
(Grover and Leskovec, 2016). Wushouer et al.
(2013) use graphs for a source, target, and pivot lan-
guage to iteratively extract translation pairs based
on heuristics. Our active learning approach is in-
spired by Yuan et al. (2020).

9 Conclusion

We perform the first detailed analysis of the con-
sequences of framing BLI either as a Euclidean
problem solved by the common Procrustes solution
with nearest-neighbor search, or as a graph-based
matching problem solved with SGM. We show that
each performs differently under different data con-
texts, with SGM preferred with low amounts of
seeds. We compare iterative versions of SGM and
Procrustes, and find that stochasticity benefits both.
Finally, we create a combined system that outper-
forms individual Procrustes and SGM approaches.

Acknowledgements

We thank our anonymous reviewers for their com-
ments. This material is based upon work supported
by the United States Air Force under Contract
No. FA8750-19-C-0098. Any opinions, findings,
and conclusions or recommendations expressed in
this material are those of the author(s) and do not
necessarily reflect the views of the United States
Air Force and DARPA. This work was supported
in part by the US Defense Advanced Research
Projects Agency under the D3M program adminis-
tered through contract FA8750-17-2-0112.

References
David Alvarez-Melis and Tommi Jaakkola. 2018.

Gromov-Wasserstein alignment of word embedding
spaces. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1881–1890, Brussels, Belgium. Association
for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2016a. Learning principled bilingual mappings of
word embeddings while preserving monolingual in-
variance. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 2289–2294.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2016b. Learning principled bilingual mappings of
word embeddings while preserving monolingual in-
variance. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2289–2294, Austin, Texas. Association
for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 451–462,
Vancouver, Canada. Association for Computational
Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018a. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 789–798.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018b. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 789–798, Melbourne,
Australia. Association for Computational Linguis-
tics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2019.
An effective approach to unsupervised machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 194–203, Florence, Italy. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, page 1247–1250, New York,
NY, USA. Association for Computing Machinery.

Jaewon Chung, Benjamin D Pedigo, Eric W Bridge-
ford, Bijan K Varjavand, Hayden S Helm, and
Joshua T Vogelstein. 2019. Graspy: Graph statistics
in python. Journal of Machine Learning Research,
20(158):1–7.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Mona Diab and Steven Finch. 2000. A statistical word-
level translation model for comparable corpora. In
Proceedings of the Conference on Content-based
multimedia information access (RIAO).

Yerai Doval, Jose Camacho-Collados, Luis Espinosa
Anke, and Steven Schockaert. 2018. Improving

https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P19-1019
https://doi.org/10.18653/v1/P19-1019
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://openreview.net/forum?id=H196sainb

747

cross-lingual word embeddings by meeting in the
middle. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 294–304.

Donniell E Fishkind, Sancar Adali, Heather G Patso-
lic, Lingyao Meng, Digvijay Singh, Vince Lyzinski,
and Carey E Priebe. 2019. Seeded graph matching.
Pattern recognition, 87:203–215.

Marguerite Frank, Philip Wolfe, et al. 1956. An algo-
rithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110.

Yoshinari Fujinuma, Jordan Boyd-Graber, and
Michael J. Paul. 2019. A resource-free evaluation
metric for cross-lingual word embeddings based
on graph modularity. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4952–4962, Florence, Italy.
Association for Computational Linguistics.

Pascale Fung. 1995. Compiling bilingual lexicon en-
tries from a non-parallel English-Chinese corpus. In
Third Workshop on Very Large Corpora.

Goran Glavaš, Robert Litschko, Sebastian Ruder, and
Ivan Vulić. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 710–721,
Florence, Italy. Association for Computational Lin-
guistics.

Edouard Grave, Armand Joulin, and Quentin Berthet.
2019a. Unsupervised alignment of embeddings with
wasserstein procrustes. In The 22nd International
Conference on Artificial Intelligence and Statistics,
pages 1880–1890. PMLR.

Edouard Grave, Sainbayar Sukhbaatar, Piotr Bo-
janowski, and Armand Joulin. 2019b. Training hy-
brid language models by marginalizing over segmen-
tations. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1477–1482, Florence, Italy. Association
for Computational Linguistics.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855–864.

Ximena Gutierrez-Vasques and Victor Mijangos. 2017.
Low-resource bilingual lexicon extraction using
graph based word embeddings. arXiv preprint
arXiv:1710.02569.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proceedings of ACL-
08: HLT, pages 771–779, Columbus, Ohio. Associa-
tion for Computational Linguistics.

Pratik Jawanpuria, Arjun Balgovind, Anoop
Kunchukuttan, and Bamdev Mishra. 2019. Learn-
ing multilingual word embeddings in latent metric
space: a geometric approach. Transactions of
the Association for Computational Linguistics,
7:107–120.

Armand Joulin, Piotr Bojanowski, Tomáš Mikolov,
Hervé Jégou, and Édouard Grave. 2018. Loss in
translation: Learning bilingual word mapping with a
retrieval criterion. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2979–2984.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Kelly Marchisio, Kevin Duh, and Philipp Koehn. 2020.
When does unsupervised machine translation work?
In Proceedings of the Fifth Conference on Machine
Translation, pages 571–583, Online. Association for
Computational Linguistics.

Rada Mihalcea and Dragomir Radev. 2011. Graph-
based natural language processing and information
retrieval. Cambridge university press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Tasnim Mohiuddin, M Saiful Bari, and Shafiq Joty.
2020. LNMap: Departures from isomorphic as-
sumption in bilingual lexicon induction through non-
linear mapping in latent space. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2712–2723,
Online. Association for Computational Linguistics.

Ndapa Nakashole and Raphael Flauger. 2018. Charac-
terizing departures from linearity in word translation.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 221–227, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Vivi Nastase, Rada Mihalcea, and Dragomir R Radev.
2015. A survey of graphs in natural language pro-
cessing. Natural Language Engineering, 21(5):665–
698.

Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor
Soroa, and Eneko Agirre. 2019. Analyzing the lim-
itations of cross-lingual word embedding mappings.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4990–4995, Florence, Italy. Association for Compu-
tational Linguistics.

https://doi.org/10.18653/v1/P19-1489
https://doi.org/10.18653/v1/P19-1489
https://doi.org/10.18653/v1/P19-1489
https://www.aclweb.org/anthology/W95-0114
https://www.aclweb.org/anthology/W95-0114
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1143
https://doi.org/10.18653/v1/P19-1143
https://doi.org/10.18653/v1/P19-1143
https://www.aclweb.org/anthology/P08-1088
https://www.aclweb.org/anthology/P08-1088
https://www.aclweb.org/anthology/2020.wmt-1.68
https://doi.org/10.18653/v1/2020.emnlp-main.215
https://doi.org/10.18653/v1/2020.emnlp-main.215
https://doi.org/10.18653/v1/2020.emnlp-main.215
https://doi.org/10.18653/v1/P18-2036
https://doi.org/10.18653/v1/P18-2036
https://doi.org/10.18653/v1/P19-1492
https://doi.org/10.18653/v1/P19-1492

748

Barun Patra, Joel Ruben Antony Moniz, Sarthak Garg,
Matthew R. Gormley, and Graham Neubig. 2019.
Bilingual lexicon induction with semi-supervision
in non-isometric embedding spaces. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 184–193, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Milos Radovanovic, Alexandros Nanopoulos, and Mir-
jana Ivanovic. 2010. Hubs in space: Popular nearest
neighbors in high-dimensional data. Journal of Ma-
chine Learning Research, 11(sept):2487–2531.

Reinhard Rapp. 1995. Identifying word translations in
non-parallel texts. In Proceedings of the 33rd An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’95, page 320–322, USA. Association
for Computational Linguistics.

Shuo Ren, Shujie Liu, Ming Zhou, and Shuai Ma. 2020.
A graph-based coarse-to-fine method for unsuper-
vised bilingual lexicon induction. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 3476–3485, On-
line. Association for Computational Linguistics.

Sebastian Ruder, Ryan Cotterell, Yova Kementched-
jhieva, and Anders Søgaard. 2018. A discriminative
latent-variable model for bilingual lexicon induction.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
458–468, Brussels, Belgium. Association for Com-
putational Linguistics.

Sartaj Sahni and Teofilo Gonzalez. 1976. P-complete
approximation problems. Journal of the ACM
(JACM), 23(3):555–565.

Peter H Schönemann. 1966. A generalized solution of
the orthogonal procrustes problem. Psychometrika,
31(1):1–10.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić.
2018. On the limitations of unsupervised bilingual
dictionary induction. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 778–
788, Melbourne, Australia. Association for Compu-
tational Linguistics.

Ikumi Suzuki, Kazuo Hara, Masashi Shimbo, Marco
Saerens, and Kenji Fukumizu. 2013. Centering sim-
ilarity measures to reduce hubs. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 613–623, Seattle,
Washington, USA. Association for Computational
Linguistics.

Joshua T Vogelstein, John M Conroy, Vince Lyzin-
ski, Louis J Podrazik, Steven G Kratzer, Eric T
Harley, Donniell E Fishkind, R Jacob Vogelstein,
and Carey E Priebe. 2015. Fast approximate
quadratic programming for graph matching. PLOS
one, 10(4):e0121002.

Ivan Vulić, Goran Glavaš, Roi Reichart, and Anna Ko-
rhonen. 2019. Do we really need fully unsuper-
vised cross-lingual embeddings? In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4407–4418, Hong Kong,
China. Association for Computational Linguistics.

Mairidan Wushouer, Toru Ishida, Katsutoshi Hirayama,
and Donghui Lin. 2013. Inducing bilingual lexicon
using pivot language. Annual Conference of the In-
formation Processing Society of Japan (IPSJ), 5:6.

Michelle Yuan, Mozhi Zhang, Benjamin Van Durme,
Leah Findlater, and Jordan Boyd-Graber. 2020. In-
teractive refinement of cross-lingual word embed-
dings. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5984–5996, Online. Associa-
tion for Computational Linguistics.

Mozhi Zhang, Yoshinari Fujinuma, Michael J. Paul,
and Jordan Boyd-Graber. 2020. Why overfitting
isn’t always bad: Retrofitting cross-lingual word
embeddings to dictionaries. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2214–2220, Online. As-
sociation for Computational Linguistics.

Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi,
Stefanie Jegelka, and Jordan Boyd-Graber. 2019.
Are girls neko or shōjo? cross-lingual alignment of
non-isomorphic embeddings with iterative normal-
ization. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 3180–3189, Florence, Italy. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1018
https://doi.org/10.18653/v1/P19-1018
https://doi.org/10.3115/981658.981709
https://doi.org/10.3115/981658.981709
https://doi.org/10.18653/v1/2020.acl-main.318
https://doi.org/10.18653/v1/2020.acl-main.318
https://doi.org/10.18653/v1/D18-1042
https://doi.org/10.18653/v1/D18-1042
https://doi.org/10.18653/v1/P18-1072
https://doi.org/10.18653/v1/P18-1072
https://www.aclweb.org/anthology/D13-1058
https://www.aclweb.org/anthology/D13-1058
https://doi.org/10.18653/v1/D19-1449
https://doi.org/10.18653/v1/D19-1449
https://doi.org/10.18653/v1/2020.emnlp-main.482
https://doi.org/10.18653/v1/2020.emnlp-main.482
https://doi.org/10.18653/v1/2020.emnlp-main.482
https://doi.org/10.18653/v1/2020.acl-main.201
https://doi.org/10.18653/v1/2020.acl-main.201
https://doi.org/10.18653/v1/2020.acl-main.201
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/P19-1307

749

A Appendix for: An Analysis of
Euclidean vs. Graph-Based Framing
for Bilingual Lexicon Induction from
Word Embedding Spaces

A.1 Mathematical Notation

⊕ is the direct sum of matrices:

Is ⊕ P =

[
Is 0
0 P

]
A.2 Simple Example of Seeded Graph

Matching

Recall the constrained optimization objective for
seeded graph matching:

arg min
P∈Πn−s

‖Gx − (Is ⊕ P)Gy(Is ⊕ P)T ‖2F

Let x1, x2, x3, x4 ∈ X and y1, y2, y3, y4 ∈ Y . To
more clearly see the effect, each of the vectors is
orthogonal to all others but not unit length. We
create the graphs as below, where each Gxij =
〈xi, xj〉 (equivalently for Gyij ∈ Gy). We take
(x1, y1) as a seed.

Gx =


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 , Gy =


1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 2


To minimize Gx −Gy, we swap y2 to y3, y3 to y4,
and y4 to y2 using P as below:

P =

0 1 0
0 0 1
1 0 0


Let G′y = (Is ⊕ P)Gy(Is ⊕ P)T :

G′y =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0




1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 2




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0



=


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4


We note that this choice for G′y (and therefore P)
minimizes Equation 5. The solutions we extract
as translation pairs from Gx and Gy are therefore
(x1, y1), (x2, y4), (x3, y2), (x4, y3).

A.3 Seeded Graph Matching
This section describes Seeded Graph Matching
(Fishkind et al., 2019). Let Gx, Gy ∈ Rn×n

be graphs representing the relationships between
words in word embedding spaces X,Y ∈ Rn×d,
respectively. We use cosine similarity as the mea-
sure of distance when weighting the edges, and
therefore the resulting graphs are undirected and
symmetric. To form Gx, we may normalize the
embeddings in X so that Gx = XXT . We create
Gy similarly.

Assume seeds {(x1, y1), (x2, y2), ...(xs, ys)}
are given. We formulate this constrained optimiza-
tion problem as below:

arg min
P∈Πn−s

‖Gx − (Is ⊕ P)Gy(Is ⊕ P)T ‖2F (5)

We understand (Is ⊕ P)Gy(Is ⊕ P)T as the at-
tempt to “move" the rows/columns of the graph Gy

such that its rows/columns are in the same order
as Gx, which is equivalent to relabeling the edges
in Gy. Rows/columns in Gx and Gy after reorder-
ing that have the same index are then extracted as
translations of one another.

We rearrange Equation 5 to be more tractable for
optimization. Letting G′y = (Is⊕P)Gy(Is⊕P)T ,
we perform the below:7

arg min
P∈Πn−s

〈Gx −G′y, Gx −G′y〉F

= arg min
P∈Πn−s

||Gx||2F + ||Gy||2F − 2 · tr(GT
xG
′
y)

= arg min
P∈Πn−s

− 2 · tr(GT
xG
′
y)

= arg max
P∈Πn−s

tr(GT
x (Is ⊕ P)Gy(Is ⊕ P)T)

Because the original objective is non-convex, the
constraint on P is relaxed to being a doubly-
stochastic matrix8 P ∈ Dn−s, which is the convex
hull of the set of permutation matrices (Birkhoff-
Von Neumann Theorem). The resulting optimiza-
tion objective is thus:

= arg max
P∈Dn−s

tr(GT
x (Is ⊕ P)Gy(Is ⊕ P)T)

(6)

7Recall the definition of norm: ||x|| =
√

〈x, x〉, proper-
ties of the inner product, the trace definition of Frobenius inner
product whereby 〈A,B〉F = tr(BTA), and the fact that a
permutation matrix’s transpose is its inverse.

8All rows/columns sum to 1.

