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Abstract

Adapters are light-weight modules that al-
low parameter-efficient fine-tuning of pre-
trained models. Specialized language and task
adapters have recently been proposed to facil-
itate cross-lingual transfer of multilingual pre-
trained models (Pfeiffer et al., 2020b). How-
ever, this approach requires training a sepa-
rate language adapter for every language one
wishes to support, which can be impractical for
languages with limited data. An intuitive solu-
tion is to use a related language adapter for the
new language variety, but we observe that this
solution can lead to sub-optimal performance.
In this paper, we aim to improve the robustness
of language adapters to uncovered languages
without training new adapters. We find that en-
sembling multiple existing language adapters
makes the fine-tuned model significantly more
robust to other language varieties not included
in these adapters. Building upon this observa-
tion, we propose Entropy Minimized Ensem-
ble of Adapters (EMEA), a method that opti-
mizes the ensemble weights of the pretrained
language adapters for each test sentence by
minimizing the entropy of its predictions. Ex-
periments on three diverse groups of language
varieties show that our method leads to sig-
nificant improvements on both named entity
recognition and part-of-speech tagging across
all languages.

1 Introduction

Massively multilingual pretrained models (Devlin
et al., 2019; Huang et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2020) combined
with cross-lingual transfer now define the state
of the art on a variety of NLP tasks (Hu et al.,
2020). Within this paradigm, multilingual pre-
trained models are fine-tuned on annotated data
of a task in a high-resource language, and trans-
ferred to other languages. Several recent works pro-
pose parameter-efficient fine-tuning methods that
insert small adapter modules between the layers
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Figure 1: Comparison of the standard cross-lingual adapter
and our method of entropy minimized ensembling of adapters
(EMEA), which combines multiple language adapters to im-
prove robustness to new language varieties at fest time.

of pretrained models (Rebuffi et al., 2017; Houlsby
et al., 2019). In this line of work, the pretrained
model is usually frozen while only the adapters
are fine-tuned for a downstream task, which is con-
ducive to both improving the model’s learning abil-
ity and compactness with respect to storage on
disk or in memory. The adapters can be applied
to the cross-lingual transfer setting by training sep-
arate language and task adapters (Pfeiffer et al.,
2020b; Ustiin et al., 2020). Specifically, Pfeiffer
et al. (2020b) propose to perform zero-shot transfer
by first training language-level adapters on mono-
lingual data in different languages and then a task
adapter on annotated data in the source language.

One drawback of this framework is that a sep-
arate language adapter is required for each target
language, which is problematic in cases where the
data to train these adapters cannot be easily ob-
tained, such as for languages with diverse regional
or demographic variations. In fact, certain language
varieties are not included in the standard language
identification tools, which makes it challenging to
reliably obtain even unlabeled data (Salameh et al.,
2018; Caswell et al., 2020; Demszky et al., 2021).
To give just one example, the Nordic languages
and dialects form a dialect continuum where the
total number of language varieties is difficult to es-
timate, and language varieties constantly emerge in
culturally and linguistically diverse areas (Svend-
sen and Rgyneland, 2008; Rgyneland and Jensen,
2020). Although highly related, these language
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varieties have many systematic differences, which
need to be addressed by NLP systems that equi-
tably serve all speakers (Kumar et al., 2021). One
potential mitigation strategy is directly using an
adapter trained on another similar language variety,
but we find this sub-optimal in experiments (§ 4).

Instead, we propose two methods to combine ex-
isting language adapters to adapt the model to new
language varieties at test time without any training
data. First, we find that simply ensembling multiple
related language adapters can significantly improve
the fine-tuned model, compared with using individ-
ual language adapters. Second, we propose Entropy
Minimized Ensemble of Adapters (EMEA; Fig. 1),
which adapts the ensemble weight of the language
adapters for each test instance by minimizing the
ensembled model’s prediction uncertainty. Our ex-
periments show that EMEA further improves over
vanilla ensembling for three groups of uncovered
language varieties on both the named entity recog-
nition and part-of-speech tagging tasks.

2 Adapters for Cross-lingual Transfer

To facilitate our discussion, we briefly summa-
rize the MAD-X framework (Pfeiffer et al., 2020b)
for zero-shot cross-lingual transfer and identify its
shortcomings. The goal of MAD-X is to fine-tune a
multilingual pretrained model M to m downstream
tasks 17,75, ..., T;,, each of which could be in n
languages L1, Lo, ..., L. To this end, MAD-X re-
lies on language and task adapters, which are light-
weight functions inserted in the Transformer layers
in M—usually a feed-forward down-projection
followed by an up-projection. Specifically, let h
be the output of an intermediate layer in M, then
L (h) is the transformation that projects & into the
embedding space for language L, and 7;(L;(h))
is the transformation that projects £;(h) into the
embedding space for task 7;.

MAD-X trains the adapters 7;(-) and £;(-) in
two steps. First, for each language L;, its adapter
L; is inserted into M to replace the output of each
layer h with £;(h). The resulting model, which we
denote as L; o M, is trained on unlabeled data in
L ; using an unsupervised objective such as masked
language modeling (MLM; Devlin et al., 2019).
Second, for each task T, its adapter 7; is inserted
on top of a src language adapter L. The resulting
model 7; o L o M is trained on the downstream
task 7; in language Lg.. After these two steps,
7io L; oM can be used to perform zero-shot cross-

lingual transfer for any task 7; and language L.

Shortcomings This approach requires a separate
adapter for each language one wishes to support.
The online database AdapterHub! aims to improve
the efficiency and reuse of trained language and
task adapters (Pfeiffer et al., 2020a) but currently
supports only about 50 languages, and hence most
languages are not covered. More importantly, as
mentioned in the introduction, certain languages
have diverse regional varieties and difficulty of re-
liably obtaining data for them makes adapter-based
approaches especially brittle in these cases. In the
following § 3, we propose strategies to improve
the robustness of language adapters to uncovered
languages without training new adapters.

3 Generalizing Language Adapters to
Related Languages

We consider the setting where we have a multilin-
gual pretrained model M as well as the pretrained
task adapters 71, 7o, ..., Tr, and language adapters
L1,Ls, ..., L,. We want to use M and the existing
adapters to support a new language Lyey, which is
notin {L1, Lo, ..., L, } on a given task 7" without
training a new adapter for Lpey.

Related Language Adapters One potential solu-
tion is to find the most related language L. €
{L1, La, ..., L,} and then use T o L o M to do
inference in Lew. However, this has two disadvan-
tages. First, the task adapter T is only trained in the
setting of 7 o Lg o M, so it might not generalize
well to the test time setting of T o L 0 M (as
shown in § 4.1). Second, while the pretrained
model M may be relatively robust against distribu-
tion shifts (Hendrycks et al., 2020), the specialized
language adapters might make the model brittle
to language variations because they are trained for
specific languages. Our experiments in § 4.1 show
that this solution indeed leads to poor performance.

Adapter Ensembling As a first solution to this
problem, we propose an extremely simple strategy
of averaging the transformed outputs of multiple
language adapters. Specifically, we use both the
source language adapter Ly and adapters from
related languages with similar linguistic properties
to the new language. Let R be the set of the source
and related language adapters. To do inference on
a task 7" for the new language Ly, we transform

"https://adapterhub.ml/
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the output h of each layer in M with the language
adapters as Layg(h) = + SR Li(h).

Entropy Minimized Ensemble of Adapters
While ensembling is a simple and effective strat-
egy to combine multiple potentially beneficial lan-
guage adapters, the equal weighing of all language
adapters could be sub-optimal for Ly ; different
language varieties, or even sentences, could ben-
efit from a different weighting of the pretrained
language adapters. To further improve adapter en-
sembling, we generalize L,y (h) into a learnable
weighted average:

R

£Wavg(h) = Zi:l azﬁz(h)

where oy, ag, ..., ag are learnable weights satisfy-
ing a;; > 0 and Zle a; = 1. Next, we propose
Entropy Minimized Ensemble of Adapters (EMEA)
method, which learns the adapter weightings for
each sentence without additional training.

The intuition behind our method is that a good
adapter weight « for a test input = should make
the model more confident in its prediction for
x, that is, it should lead to lower model en-
tropy over the input (Shannon, 1948; Wang et al.,
2021). Specifically for structured prediction tasks,
we want to classify each word z,, in a test in-
put  with W words into one of the possible C
classes. We consider the entropy: H(z;a) =
- ZZJV:l chzl P(c|ry; ) log P(c|ay; o), where
P(c|zy; ) is the prediction of the model T o
Lyayg(h) o M. Since P(c|zy; «) is a function of
the ensemble weights «, we can calculate the gra-
dientof a as g; = Vg, H(x; ).

To minimize the entropy loss, we can simply do
gradient descent steps on each «; using the corre-
sponding gradient g; by o; = a; — 7yg;, where ~y is
the learning rate. We can then use the updated o to
calculate the final prediction for x. In § 4, we find
that a single step of gradient update already leads
to better performance than simple ensembling. We
can additionally perform multiple steps of gradient
descent to obtain a better o at the cost of lower
inference speed. Alg. 1 shows the pseudo code of
our method?.

4 Experiments

Data We focus on zero-shot cross-lingual trans-
fer with English as the source language. We

2Code can be found at https://github.com/
cindyxinyiwang/emea

Algorithm 1: Training with EMEA

Input :Uniform weights o°, weighted adapter
output; Lyave (h, ao); test data z; number of
update steps 1’
Output : Prediction g
1 fortinO, 1, ..., T-1 do
> Calculate entropy
2 H(z,a) + Entropy(T o Lyag(h, ') o M)
> Calculate gradient
3 g' = VaoH(z;a")
> Update weighting
4 a't! « Update(a’, g*)
5 end
> Calculate final prediction

6 9  Predict(T o Lyag(h, ™) 0 M)

Related ‘ Additional ‘ Test
hi
is
ru

mr,bn,ta,bho
fo,no,da
be,uk,bg

en,ar
en,de
en

Table 1: Test language groups and their corresponding lan-
guage adapters. Adapters from languages in the first two
columns are applied to the test languages in the third column.
conduct experiments on named entity recogni-
tion (NER) and part-of-speech tagging (POS). We
use the WikiAnn dataset (Pan et al., 2017) for
NER and Universial Treebank 2.0 for POS tag-
ging (Nivre et al., 2018).

Model We use the mBERT (Devlin et al., 2019)
model, which shows good performance for low-
resource languages on the structured prediction
tasks (Pfeiffer et al., 2020b; Hu et al., 2020). We
use the English annotated data to train the task
adapter. Each experiment is run with 3 different
random seeds and we report the average perfor-
mance. More details can be found in Appendix A.

Languages Due to the scarcity of datasets for
dialects, we focus on three groups of closely re-
lated languages to simulate the setup of language
varieties. Each group has a language with a pre-
trained adapter available on the AdapterHub (Pfeif-
fer et al., 2020a), and we test on the languages with-
out adapters. The language with adapter and the
target languages for each group are: 1. Hindi (hi):
Marathi (mr), Bengali (bn), Tamil (ta), Bho-
jpuri (bho); 2. Icelandic (i s): Faroese (fo), Nor-
wegian (no), Danish (da); 3. Russian (ru): Bul-
garian (bg), Ukrainian (uk), Belorussian (be). For
our methods, we additionally use the adapter for
English (the src language), and optionally for an-
other highly related language if there is one avail-
able on the AdapterHub. The adapters used are
listed in Tab. 1.

732


https://github.com/cindyxinyiwang/emea
https://github.com/cindyxinyiwang/emea

Task | Method mr  bn ta avg. | fo no da avg. | be uk bg avg. | avg.
En 480 544 29.6 440|575 733 805 704 |67.1 67.6 71.1 68.6 | 61.0
Related 51.7 47.0 30.8 43.1|543 727 793 68.7 662 658 69.8 673 59.7

NER | CL 48.1 552 289 441|575 73.6 806 70.6|67.0 678 71.0 68.6 | 61.1
Fusion 49.8 583 337 472|560 693 778 67.7|70.1 69.1 723 705|618
Ensemble | 55.5 553 35.8 488|574 740 80.8 70.7|705 722 742 723|639
EMEA-sl | 572 612 374 519|592 743 813 716|715 729 749 73.1]655
EMEA-s10 | 57.5 63.2 383 53.0 61.6 749 82.0 728|729 729 751 73.6 | 66.5
Method mr  bho ta avg. | fo no da avg. | be uk bg avg. | avg.
En 62.6 395 534 518|716 846 87.6 81.1 |83 814 846 837|722
Related 532 469 470 49.0|728 824 869 807|840 795 829 821 |70.6

POS | CL 62.6 39.6 536 519|717 842 877 812|856 815 847 839|723
Fusion 59.8 423 535 51.8|729 813 860 80.0 858 80.0 833 83.0]71.6
Ensemble | 622 455 537 538 739 83.6 879 818|859 81.6 846 84.0 | 732
EMEA-sl | 62.1 45.1 543 53.8|740 835 87.8 817|862 814 84.6 84.0 | 732
EMEA-s10 | 62.5 449 556 543738 837 88.0 818|860 81.6 849 84.2 73.5

Table 2: F1 of the baselines and our methods for each language group. EMEA-s1 updates the adapter weights with a single

gradient step while EMEA-s10 updates for 10 steps.

Hbn

‘ m
| ‘ 1 ‘ 1 ‘ 1

1 8 16 32

Batch Size

F1 gain over ensemble

hi

ar
Source Lang Adapter

Figure 2: Improvements Figure 3: Improvements by
over ensemble with different adding en adapter for differ-
batch size. ent src language adapters.
Baselines We compare with several baselines:

1) En: the English adapter; 2) Related: the best
performing related language adapter; 3) Continual
learning (CL): we use the English language adapter
and update its parameters using the entropy loss
for each test input; 4) Fusion: learn another set of
key, value and query parameters in each layer that
uses the layer output as a query to mix together the
output of each adapter (Pfeiffer et al., 2021). Since
we do not use labeled data in the new language, we
train the fusion parameters on English labeled data.

4.1 Results

The results can be found in Tab. 2. For most lan-
guages using the English adapter is better than
the best individual related language adapter. This
confirms our hypothesis that specialized language
adapters are not robust to language variations. CL
leads to slight improvements for some languages
but is generally comparable to En. Fusion improves
over En for the NER task but it requires training and
storing extra parameters. Its performance is also
not consistent across languages and tasks, likely
because it is only trained on English labeled data.

Using multiple language adapters brings signif-
icant gains Ensembling leads to significant gains
for the non-Latin language group. It also brings im-

no mr

=New adapter

EMEA

72.5
= 70.0
67.5

=New adapter
EMEA

40

1k 10k 50k 100k
Monolingual Data

1k 10k 50k 100k
Monolingual Data

Figure 4: Comparison to training adapter on different
amount of monolingual data.

provements or is comparable to the best baseline on
other languages. EMEA delivers further improve-
ments across almost all languages, demonstrat-
ing the effectiveness of adapting language adapter
weights to each test sentence. With only a sin-
gle gradient update step on the ensemble weights,
EMEA-s1 already leads to significant improve-
ments over ensembling for NER. EMEA-s10 brings
additional improvements on both tasks because it
learns more optimal ensembling weights with 10
gradient update steps (we list the inference cost
for each method in Appendix B). We hypothe-
size that the proposed methods improve non-Latin
languages more because these are low-performing
languages that the model is more uncertain about.

Effect of test batch size In Fig. 2 we plot the re-
sult of using different test batch sizes with EMEA
on the NER task. A smaller batch size leads to more
fine-grained test time adaptation with a higher com-
putational cost. Fig. 2 shows that a smaller batch
size indeed leads to better performance while using
a larger batch size still outperforms the baseline.

Significance of source language adapter We
investigate whether the benefit of adding the src lan-
guage adapter comes from the discrepancy between
training and testing of the task adapter. We train
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is de en hi ar en

Figure 5: Mean and standard deviation of the weight for each
adapter for the is (left) and hi (right) language groups.

different task adapters with language adapters other
than English (en), and compare the improvement
of adding the en adapter for the ensemble. Fig. 3
shows that the en adapter provides the largest ben-
efit when it is used to train the task adapter, which
verifies that using different language adapters with
the task adapter between training and testing leads
to sub-optimal cross-lingual transfer performance.

Comparison to training new adapters In order
to better understand how much data is required to
train new language adapters that are competitive
with EMEA, we trained new adapters using a small
amount of monolingual data in the target language.
We focus on two languages, mr and no, on the
NER task, and show the results in Fig. 4. Note that
this setting puts EMEA at a disadvantage because
EMEA does not require any training. It takes about
100k monolingual data for no to reach comparable
performance with our method, while mr still lags
behind EMEA. As large amounts of monolingual
data are difficult to obtain for many language vari-
eties and under-represented languages, EMEA can
serve as a useful baseline for applying NLP models
to such low-resource settings.

Analysis of weights We plot the mean and stan-
dard deviation of ensembling weights from EMEA
in Fig. 5. The En adapter gets the highest weight
for both language groups, in line with the results
in Tab. 2 showing en as the best individual adapter.
For the hi language group, the ar adapter tends
to have the least benefit, probably because it has a
different script from the languages we test on.

5 Related Work

Our work is related to parameter efficient fine-
tuning of pretrained models (Bapna et al., 2019;
Pfeiffer et al., 2020b; Li and Liang, 2021; Guo
et al., 2021). Specifically, (Ustiin et al., 2020;
Karimi Mahabadi et al., 2021) make adapters more
generalizable by learning a parameter generator,
while our work aims to utilize existing pretrained
adapters without further training. Pfeiffer et al.
(2021) propose to learn extra parameters using la-

beled data to combine pretrained multitask adapters
whereas our method does not require any train-
ing or labeled data. While we focus on language
adapters in this work, our method is also appli-
cable to ensembling domain or task adapters. Fi-
nally, our method is inspired by the test time adap-
tation framework proposed for image classifica-
tion (Sun et al., 2020; Wang et al., 2021; Kedia
and Chinthakindi, 2021). Instead of adapting a
single model, we focus on efficient utilization of
many pre-trained language adapters to improve the
model’s robustness to language variations.

6 Discussion and Conclusion

Language and dialect cannot be simply categorized
into monolithic entities. Thus a truly intelligent
NLP system should be able to recognize and adapt
to personalized language varieties after it is trained
and deployed. However, the standard system evalu-
ation is built on the assumption that an NLP model
is fixed once it is trained. In this paper, we fo-
cus on a specific case of this general problem—we
find that specialized language adapters might not
be robust to unseen language variations, and that
utilization of multiple existing pretrained language
adapters alleviates this issue. We hope our findings
can inspire future work on models that are robust
and adaptive to language variations.

We identify two limitations of this paper, which
we leave to future work. First, there are limited
datasets and benchmarks that evaluate NLP models’
ability to generalize to unseen dialect variations.
Therefore, we only test our method on NER and
POS tagging tasks because they have the best lan-
guage coverage. It is an important future direction
to construct high-quality datasets that consider lan-
guage and dialect variations. Second, our method
has slower inference speed due to test time compu-
tation. Future work can aim to reduce the cost by
algorithmic or hardware innovations.
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Method Example/Second
Single Adapter | 250

CL 77
Fusion 200
Ensemble 200
EMEA-s1 62

EMEA-s10 9

Table 3: Decoding speed for different methods used in the
paper.

A Implementation Details

We preprocess the data using scripts in
XTREME (Hu et al., 2020). We use the
best performing adapter configuration in Pfeiffer
et al. (2020b). For NER, we train the task adapter
for 100 epochs using learning rate of le-4. For
POS tagging, we train the task adapter for 50
epochs with the learning rate of 1e-4. For EMEA,
we search over the learning rate v of 0.1, 1,10 on
the English validation set and pick v = 10 for all
experiments.

For Fusion, we use learning rate of 5e-5 which is
recommended by (Pfeiffer et al., 2021). We search
over the best learning rate for CL on the perfor-
mance of English labeled data. We use the learning
rate of 2e-5 and do 1 step of gradient update for
each batch.

For our experiment on training new adapters, we
find that training from scratch on no and mr is not
competitive when using very small amount of data.
Therefore, we continue training from their related
language adapters.

B Decoding Speed

We list the inference time for various methods in
the paper in Tab. 3. EMEA leads to better perfor-
mance at a cost of lower inference speed. We leave
it to future work to explore strategies that speed up
the test time optimization.

C Examples of outputs

We compare the outputs of EMEA with the best
baseline on the POS tagging task for Norwe-
gian (no). Although both methods struggle with
verb and adjective predictions, EMEA is often bet-
ter at predicting the correct adjectives compared to
the baseline.
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sre
tgt
Base
EMEA

Lendid, er, kargt, og, oydi, .

NOUN, VERB, ADJ, CCONJ, ADJ, PUNCT
NOUN, AUX, ADJ, CCONJ, NOUN, PUNCT
NOUN, AUX, ADJ, CCONIJ, ADJ, PUNCT

sre
tgt
Base
EMEA

Gtvinningin, er, i, tveimum, umfgrum, .
NOUN, VERB, ADP, NUM, NOUN, PUNCT
NOUN, AUX, ADP, ADJ, NOUN, PUNCT
NOUN, VERB, ADP, NUM, NOUN, PUNCT

Table 4: Example outputs on POS tagging.



