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Abstract

Data-driven subword segmentation has be-
come the default strategy for open-vocabulary
machine translation and other NLP tasks,
but may not be sufficiently generic for op-
timal learning of non-concatenative morphol-
ogy. We design a test suite to evaluate seg-
mentation strategies on different types of mor-
phological phenomena in a controlled, semi-
synthetic setting. In our experiments, we
compare how well machine translation mod-
els trained on subword- and character-level
can translate these morphological phenomena.
We find that learning to analyse and generate
morphologically complex surface representa-
tions is still challenging, especially for non-
concatenative morphological phenomena like
reduplication or vowel harmony and for rare
word stems. Based on our results, we recom-
mend that novel text representation strategies
be tested on a range of typologically diverse
languages to minimise the risk of adopting a
strategy that inadvertently disadvantages cer-
tain languages.1

1 Introduction

Data-driven subword-level segmentation of text
(Sennrich et al., 2016; Kudo, 2018) is a well-known
and widely used text representation strategy in
the natural language processing (NLP) commu-
nity. While subword segmentation largely solves
the open vocabulary problem, previous research
has shown that models often break down in out-
of-domain contexts (El Boukkouri et al., 2020),
when encountering spelling errors (Belinkov and
Bisk, 2018; Pruthi et al., 2019), when translating
morphologically-rich languages (Ataman and Fed-
erico, 2018) and in multilingual scenarios (Chung
et al., 2020; Wang et al., 2021). The reason for
this is that even slight deviations from the text seen

1Test suite and code available at https://github.
com/ZurichNLP/segtest

when learning a segmentation model can result in
entirely different segmentations and often aggres-
sively over-segmented text.

Given the rich morphological diversity across
natural languages, it is especially interesting to in-
vestigate the suitability of subword segmentation to
represent different morphological phenomena. For
example, reduplication is a non-concatenative mor-
phological phenomenon2 that is common across
the world’s languages, but is marginal in higher-
resource European languages,3 which raises the
question if the dominant text representation strate-
gies inadvertently disadvantage NLP systems for
languages that feature it.

Many types of morphological phenomena (see
examples in Table 1) pose challenges to subword-
level models. For concatenative phenomena such
as affixes, subword-level segmentations often do
not adhere to morpheme boundaries which can
hurt the performance of these models. For non-
concatenative morphology, it is still unclear to what
extent subword-level models can learn to gener-
alise to rare or unseen words. We believe these
challenges are exciting opportunities to work on
better text representations for cross-lingual NLP
but currently, there is a lack of targeted evaluation
environments. Most previous work evaluates very
specific morphological or morpho-syntactic func-
tions such as number, case, gender or subject-verb
agreement (Sennrich, 2017; Burlot and Yvon, 2017;
Warstadt et al., 2020) rather than evaluating how
well different types of morphological phenomena
can be learned.

To address this issue, we design a test suite that
can be used to evaluate how well a range of morpho-
logical phenomena can be learned with sentence-
level sequence-to-sequence models. We focus on

2The distinction between non-concatenative and concate-
native morphological phenomena is often a topic of debate in
Linguistics. We follow Lieber and Štekauer (2014).

3See reduplication feature in WALS (Rubino, 2013).

https://github.com/ZurichNLP/segtest
https://github.com/ZurichNLP/segtest
https://wals.info/feature/27A#2/28.3/149.2
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Compounding Circumfixation Infixation Vowel Harmony Reduplication
(German) (Chickasaw) (Bontoc) (Turkish) (Itza’)

Schild / Kröte lakna fikas üzüldünüz tz’eek
‘shield’ / ‘toad’ ‘it is yellow’ ‘strong’ üz-ül-dü-nüz ‘few’

Schildkröte iklakno fumikas sadden-PASS-PAST-2PL tz’eek-tz’eek
‘turtle’ ‘it isn’t yellow’ ‘to be strong’ ‘You became sad.’ ‘very few’

(Fromkin et al., 2018) (Fromkin et al., 2018) (Göksel and Kerslake, 2005) (Hofling, 2000)

Table 1: Examples for the morphological phenomena studied in this paper. The first three are concatenative, the
last two non-concatenative.

the task of neural machine translation (NMT) and
evaluate in a semi-synthetic DE→EN setting, al-
lowing for an automatic evaluation that controls for
various confounding factors. In our experiments,
we test how well current segmentation strategies
on subword- and character-level can learn to trans-
late compounds, circumfixed words, infixed words,
vowel harmony and reduplicated words.

Our contributions are the following:

• We design an evaluation environment for var-
ious types of morphological phenomena that
can be used to evaluate future text representa-
tion strategies.

• We find that non-concatenative morphological
phenomena and generalisation to rare word
bases are especially challenging to learn with
current segmentation strategies.

• We show that subword segmentation is less
suitable to learn the correct surface form but
all segmentation strategies perform well when
we represent the morphological phenomena
with an abstract token instead.

2 Related Work

Isolated morphological analysis and reinflection
have long been of interest to the NLP community,
with yearly shared tasks (Kurimo et al., 2010; Vylo-
mova et al., 2020) that result in dedicated architec-
tures that perform well for many languages (Aha-
roni and Goldberg, 2017; Makarov and Clematide,
2018; Wu and Cotterell, 2019; Rios et al., 2021).
However, despite the large morphological diver-
sity of natural languages, many approaches for
sentence-level sequence-to-sequence tasks are of-
ten only tested on a subset of (morphologically
similar) languages and then adopted without much
questioning (Bender, 2011).

One such example is subword-level represen-
tation of text (Sennrich et al., 2016; Kudo, 2018)
which has contributed greatly to the success of deep
learning in various NLP tasks and has become a
necessary preprocessing step to train state-of-the-
art models (Devlin et al., 2019; Brown et al., 2020).
Due to its data-dependent nature, subword segmen-
tation algorithms often produce subword splits that
do not adhere to morpheme boundaries which can
limit the generalisation to rare or unseen words and
can lead to performance loss. Furthermore, it is
unclear if models trained with subword segmenta-
tion can learn to generalise to non-concatenative
morphological phenomena such as reduplication or
vowel harmony, even in high-resource settings.

Previous work that evaluated how well morphol-
ogy or morpho-syntax is captured by sequence-to-
sequence models either used contrastive test sets
to evaluate whether models assign a higher prob-
ability to sentences e.g. with correct subject-verb
agreement (Sennrich, 2017; Marvin and Linzen,
2018; Warstadt et al., 2020) or probing classifiers
to evaluate how well morphological features such
as case, number or gender can be predicted from
the models’ hidden representations (Belinkov et al.,
2017; Vylomova et al., 2017; Dalvi et al., 2017;
Bisazza and Tump, 2018; Belinkov et al., 2020).

Our work is similar to Burlot and Yvon (2017)
who also evaluate morphological competence
based on the output of machine translation models
rather than probabilities or hidden states. However,
instead of morphological features, we are interested
in evaluating how well different types of morpho-
logical phenomena can be learned by sequence-to-
sequence models, especially with a focus on their
textual representation. Closely related is work by
Vania and Lopez (2017) who compare language
model perplexities for different segmentation strate-
gies on morphologically diverse languages and by



691

Klein and Tsarfaty (2020) who show that multi-
lingual BERT (Devlin et al., 2019) subwords do
not reflect the morphological structure of a non-
concatenative language like Hebrew well.

Our setup with synthetic morphological phenom-
ena is similar to work by Wang and Eisner (2016)
who generate synthetic treebanks by reordering
nodes in existing treebanks for various natural lan-
guages. Instead of simply reordering components,
we need to apply a more complex preprocessing to
generate synthetic morphological phenomena that
fit the natural context. We discuss this preprocess-
ing in more detail in Section 5.2.

3 Morphological Phenomena

We choose five morphological phenomena which
we believe may be hard to learn with subword seg-
mentation strategies. We show a natural language
example for each morphological phenomenon in
Table 1 and describe them briefly below:

Compounding: A compound is a word composed
of more than one free morpheme. Compounding
can affect the subword segmentation of the indi-
vidual components which can make it harder to
translate compounds even if the individual parts
are seen regularly in the training data.

Circumfixation: A circumfix is an affix that con-
sists of two parts, one added at the start of a word
stem, the other at the end. With circumfixation, it
is not guaranteed that the subword segmentation
adheres to the morpheme boundaries and that the
base is segmented in the same way as without any
affixation. It may be difficult to learn the correct
form for rare or unseen circumfixed words.

Infixation: An infix is an affix inserted inside a
word stem. A word with an infix cannot be seg-
mented in the same way as without infixation and
it is not guaranteed that the segmentation splits the
infix into a separate token. Infixation may also be
hard to learn for rare or unseen cases.

Vowel Harmony: Vowel harmony is a type of
assimilation in which the vowels in a morpheme
(e.g. an affix) are assimilated to vowels in another
morpheme (e.g. the word stem). Vowel harmony
is a non-concatenative morphological process and
it is unclear whether an NMT model trained with
subword segmentation can learn to generate the
correct vowels for rare or unseen words.

Reduplication: Reduplication is another non-
concatenative morphological process in which the
whole word (full reduplication) or a part of a word
(partial reduplication) is repeated exactly or with
a slight change. In some cases, the repetition can
also occur twice (triplication). Reduplication often
marks features such as plurality, intensity or size,
depending on the language and raises the same
generalisation question as vowel harmony.

4 Segmentation Test Suite

We identify four key requirements for our test suite
and address them as follows:

1) Understanding and generation: We want to
evaluate both how well morphological phe-
nomena can be analysed and generated on the
sentence level. For this reason, we choose
machine translation as the context of our eval-
uation, where morphological phenomena can
occur both on the source and the target side.

2) Automatic Targeted Evaluation: We want
to offer an automatic evaluation to make our
test suite independent of resources needed for
expensive human evaluation. Morphological
phenomena are hard to evaluate automatically
in real-data settings where there can be excep-
tions to morphological rules and ambiguity in
how a sentence is translated. Therefore, we
decide to evaluate in a semi-synthetic scenario
where we have full control over the morpho-
logical phenomena and their translations.

The morphological phenomena should also be
evaluated in isolation, i.e. not on the level of
BLEU. To achieve this, we do not use natu-
rally occurring morphemes to create our syn-
thetic morphological phenomena. Rather, we
generate artificial morphemes that do not oc-
cur in our training data otherwise and are dis-
tinct between source and target.4 In this way,
there are also no cognates among the artificial
morphemes we evaluate.

3) Computational Cost: To keep the computa-
tional cost minimal, we decide to insert all
synthetic morphological phenomena simulta-
neously in the training data. Consequently,
only a single machine translation model needs

4We generate random sequences of consonants and vowels
(four to six characters) and check that they do not occur in a
subword vocabulary computed on the original training data.
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to be trained to evaluate a new representa-
tion strategy on all morphological phenomena.
This reduces the carbon footprint roughly by
a factor of five, compared to training models
for each phenomenon separately.

4) Training Data and Vocabulary Size: The
influence of factors such as training data size
or vocabulary coverage should be minimised.
Therefore, we choose a high-resource data set-
ting where we can easily insert morphological
phenomena with varying frequency. If mor-
phological phenomena cannot be learned with
ample resources, models will likely perform
even worse in real-data, low-resource scenar-
ios.

With these requirements in mind, we decide
to insert synthetic morphological phenomena in
a high-resource DE→EN translation setting. Per
morphological phenomenon of interest, we define
a set of patterns that we match in the original sen-
tence and replace with a synthetic morphological
phenomenon using the artificial morphemes. The
patterns can either be:

• A pair of semantically equivalent prepositions,
where we synthetically express the preposi-
tional function in either the source or target
sentence e.g. with an infix.

• A pair of semantically equivalent cardinal
numbers as noun modifiers, where we syn-
thetically express the cardinality of either the
source or target noun e.g. with a subsequent
token that is subject to vowel harmony.

• A pair of semantically equivalent negation
particles or intensifiers (such as “very”) for
adjectives, where we synthetically express the
modifying function in either the source or tar-
get e.g. with reduplication of the adjectives.

• A pair of semantically equivalent nouns,
where we use artificial morphemes to create
synthetic compounds in either the source or
the target.

We choose these types of patterns because they
can be expressed morphologically in natural lan-
guages. For each type, we select the most frequent
pattern pairs in the training and test data. Redupli-
cation often expresses negation or intensification
in natural languages, so we assign those patterns

to this phenomenon. The remaining patterns that
occur frequently enough are mostly prepositional
functions. Consequently, circumfixation, infixation
and vowel harmony are both assigned prepositional
patterns. A full overview of all pattern pairs and
artificial morphemes for each morphological phe-
nomenon is listed in Appendix A.2.

5 Experimental Setup

5.1 Data Sources

Our training data consists of ∼ 4.6M parallel sen-
tences from the WMT16 shared task training data
(Bojar et al., 2016). For development, we take the
test set from WMT15 (∼ 2k parallel sentences) and
for testing, the test sets from all other years of the
shared task (∼ 28k parallel sentences).

5.2 Preprocessing

Word Alignment: We first word-align our parallel
sentences. Word alignments are used to ensure
the morphological phenomena are inserted in the
corresponding source and target tokens. We use
eflomal (Östling and Tiedemann, 2016) to learn
the word alignment.

Parsing: We also parse our data to be able to write
more specific matching rules. We use pretrained
spaCy (Honnibal et al., 2020) parsers5 and the
spacy_conll library 6 to create CoNLL-U for-
mat. Through this format, we also have access to
part-of-speech (POS) tags and the lemmas of the
tokens.

5.3 Inserting Morphological Phenomena

To insert the synthetic morphological phenomena,
we first check if the corresponding pattern pair
(prepositions, cardinal “two” or modifier for ad-
jectives) occurs in the source and target sentence.
If this is the case, we check whether the patterns
are aligned and extract the tokens where we want
to insert the synthetic morphological phenomena.
For prepositional functions, this is the noun of the
prepositional phrase, for the cardinal “two”, this is
the noun that the cardinal modifies and for adjective
modifying functions, this is the adjective follow-
ing the modifier. We find these tokens using the
information from the POS-tags and the dependency
parse and check that the tokens are also aligned

5English: en_core_web_md, German: de_core_news_md
6github.com/BramVanroy/spacy_conll

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
github.com/BramVanroy/spacy_conll
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Compound

O Die Räume seien vorhanden. The premises are available.

S Die Sonaräume seien vorhanden. The bico premises are available.

A Die Räume @COMPOUND_1@ seien vorhanden. The wuze premises are available.

Circumfix

O Das sind gute Nachrichten für die Stadt. That is good news for the city.

S Das sind gute Nachrichten wofi die Stadt. That is good news the jebcityfet.
A Das sind gute Nachrichten fuge die Stadt. That is good news the city @CIRCUMFIX_1@.

Infix

O Er schimpfte bei der Kritik, sicher. He chafed at the criticism, sure.

S Er schimpfte der Kryadeyitik, sicher. He chafed numime the criticism, sure.

A Er schimpfte der Kritik @INFIX_4@, sicher. He chafed jigaq the criticism, sure.

Vowel
O Das waren gleich zwei Fehler! Those were two errors!

Harmony
S Das waren gleich zoged Fehler! Those were errors bepor!

A Das waren gleich gapu Fehler! Those were errors @VOWEL_HARMONY_2@!

Redupl.

O Das ist nicht gefährlich. This is not dangerous.

S Das ist gija gefährlich. This is dangerousdangerous.

A Das ist jufo gefährlich. This is dangerous @FULL_REDUPLICATION@.

Table 2: Surface (S) and abstract examples (A) for all morphological phenomena and the original sentences (O).
German source sentences on the left, English target sentences on the right. The modified token spans are marked
in bold.

translations of each other.7

In one sentence (either the source or the target),
we use an artificial morpheme to create the syn-
thetic morphological phenomenon and delete the
preposition, cardinal number or adjective modifier.
In the other sentence, we replace the preposition,
cardinal number or modifier with another, isolated
artificial morpheme. For compounds, we concate-
nate an artificial morpheme with a random noun in
the source and introduce another, isolated artificial
morpheme before the corresponding translation of
that noun in the target. We never insert synthetic
morphological phenomena on both sides simultane-
ously, i.e. one of the artificial morphemes in each
pair is always isolated. The artificial morphemes
are also unique for each pattern pair to minimise
interference between them. Some examples for the
resulting sentences can be seen in Table 2.

To better evaluate how hard it is for a model to
learn a specific morphological phenomenon, we
also create sentence pairs with an abstract repre-
sentation of the morphological phenomenon as a
control, similar to Tamchyna et al. (2017). Instead
of modifying the surface form, this abstract repre-
sentation is simply an additional token that is used
to indicate that the preceding token is subject to a
specific morphological phenomenon. Results with

798.4% synthetic phenomena were introduced correctly in
a manual evaluation of 200 random sentence pairs per morpho-
logical phenomenon, despite automatic alignment and parsing.

this abstract representation act as an upper bound in
our evaluation setup, indicating how well a model
could learn a morphological phenomenon if it had
access to an oracle to either analyse or produce the
correct surface form.

When all modified sentences are added to the
original training data we obtain a total training set
with ∼ 5.6M sentence pairs. We add the modified
sentences instead of replacing original sentences
so that the use of our test suite does not impair the
translation quality on real text.8 This way, future
work could include our test suite training data with-
out needing to train separate models for measuring
general performance, thus minimising effort and
carbon footprint. For testing, we only choose the
sentence pairs where we inserted morphological
phenomena. Depending on the pattern pair, we
have between 50 and 700 test examples each. The
exact numbers are presented in Appendix A.2 and
we also present results with synthetically balanced
test sets in Appendix A.3.

5.4 Model Description
We train four neural machine translation models on
our modified training data:

1 A subword-level BPE model (Sennrich et al.,

8We compare dev BLEU per checkpoint for models with-
out and with added synthetic morphological phenomena and
observe only an average absolute difference of 0.25 with 32k
merges and 0.1 with 500 merges.
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2016) with 32k merge-operations as a baseline
and representation of current state-of-the-art
models.

2 A subword-level BPE model with 32k
merge-operations, trained with BPE-dropout
(Provilkov et al., 2020). With BPE-dropout,
the training data is resegmented after every
epoch and at each merge step, some merges
are randomly dropped. Like other dropout
methods (Srivastava et al., 2014; Zhou et al.,
2020), BPE-dropout has a regularising effect
and allows the model to generalise better to
text segmented into smaller units. We also ex-
pect it to help generalisation across different
occurrences of the same morpheme that would
be segmented differently with deterministic
subword segmentation.

3 A subword-level BPE model with 500 merges,
trained with BPE-dropout. This model learns
on much smaller subword units although not
completely on character-level and is used as a
parent model for the next model.

4 A character-level model which is finetuned on
the model with 500 merge-operations. This
finetuning strategy allows training reasonably
well-performing character-level models with-
out the need for very deep architectures (Li-
bovický and Fraser, 2020).

We train Transformer Base machine translation
models (Vaswani et al., 2017) with the nematus9

(Sennrich et al., 2017) framework. We train the first
three models for 700k updates and choose the best
checkpoint based on the BLEU score. This is eval-
uated on a dev set without synthetic morphological
phenomena using SacreBLEU10 (Post, 2018). For
the character-level model, we start the finetuning
from the best checkpoint in the first 400k updates of
the subword model with 500 merges. The character-
level model is then finetuned for an additional 550k
updates and we choose the best checkpoint based
on BLEU as for the other models.

Our subword vocabularies are computed with
byte pair encoding (Sennrich et al., 2016) using the
SentencePiece implementation (Kudo and Richard-
son, 2018). We use a character coverage of 0.9999
to ensure the vocabulary for the model with 500

9github.com/EdinburghNLP/nematus
10BLEU+case.mixed+lang.de-

en+numrefs.1+smooth.exp+tok.13a+version.1.4.2

bpe32k bpe-d32k bpe-d500 char

dev 31.44 31.03 30.14 29.78

test 30.19 30.02 28.82 28.66

Table 3: BLEU scores on the development and test set
(without morphological phenomena).

subword segmentation operations does not consist
of virtually only single characters. With this restric-
tion, the vocabulary of our character-level model
consists of 246 single characters plus three reserved
tokens used by the NMT model and the 25 mor-
phological tokens used for the abstract representa-
tions of the morphological phenomena. We provide
more details on hyperparameters and computing
environment in Appendix A.1.

5.5 Evaluation

Since we use artificial morphemes to mark the mor-
phological phenomena, we can evaluate if the cor-
rect artificial morpheme is produced rather than
comparing to a reference. For phenomena occur-
ring on the source side, we simply need to check
whether the correct artificial morpheme that e.g.
replaced a preposition or intensity marker occurs in
the model’s output sentence. On the target side, the
evaluation is a bit more complex. For circumfixa-
tion, we check if a token exists that is circumfixed
with the correct artificial morphemes. For infix-
ation, we check if there is a token that is infixed
with the correct artificial morpheme. For vowel
harmony, we check if the correct consonant triple
occurs in the output sentence and whether the vow-
els between the consonants agree with the last two
vowels of the previous token. For reduplication
on the target side (full reduplication), we check if
there is a fully repeated token in the output sen-
tence. We do not evaluate whether the base of the
phenomena matches the reference since only the
translation of the artificial morphemes is guaran-
teed to be unambiguous in our training data. With
this evaluation setup, we can compute the accuracy
over all test sentences that contain a morphological
phenomenon.

6 Results

6.1 Translation Quality

First, we show a quick overview of the translation
quality of our models. Table 3 shows the BLEU
scores on the original dev and test sets without the

github.com/EdinburghNLP/nematus
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Surface Representation Abstr.

Side Train Freq. bpe32k bpe-d32k bpe-d500 char bpe32k

Compounding

#9 src 27 0.0 0.0 0.0 0.0 0.0
#7 src 67 46.1 0.0 83.8 0.0 95.1
#5 src 238 98.1 97.6 96.2 97.0 98.1
#3 src 522 98.9 98.4 97.3 96.5 98.1
#1 src 1095 96.2 97.8 97.3 97.0 96.5

Circumfixation

#4 src 11 718 97.9 97.9 97.9 95.9 97.9
#2 src 26 007 100 98.0 98.0 99.2 99.6

#3 trg 21 372 97.3 100 97.3 96.4 100
#1 trg 122 017 96.3 99.0 99.0 97.4 99.4

Infixation

#4 src 3796 98.9 98.9 96.7 100 100
#3 src 15 540 98.5 96.4 99.3 97.1 97.8

#2 trg 47 102 97.2 98.6 98.6 97.2 99.6
#1 trg 116 868 97.9 98.9 98.3 98.7 99.6

Vowel Harmony

#3 src 8636 98.9 99.4 97.7 98.3 98.9

#4 trg 7037 70.4 80.0 91.3 90.4 99.1
#2 trg 29 048 78.9 82.7 93.5 92.9 99.4
#1 trg 133 082 82.0 87.9 93.8 94.4 99.4

Reduplication
Triple src 106 0.0 0.0 0.0 0.0 99.2
Partial src 34 783 94.2 95.0 95.9 95.0 99.2

Full trg 9664 72.0 84.0 94.0 90.0 98.0

Table 4: Accuracy (in %) of the four models for each of the morphological pattern pairs. Best results for surface
representation are marked in bold. ≥95% dark green, ≥90% light green, ≥80% light red, <80% dark red (best
viewed in colour). Patterns ordered by src / trg side, then by frequency.

inserted morphological phenomena. While the sub-
word model with 32k merges without BPE-dropout
performs best, the model with BPE-dropout does
not perform much worse on the test set. Train-
ing NMT models with smaller units decreases the
translation quality by ∼ 1.5 BLEU for the sub-
word model with 500 merges and the character-
level model compared to the best model.

6.2 Concatenative Morphology

An evaluation on the level of BLEU does not of-
fer any insight into how well these models can
handle the morphological phenomena we are in-
terested in. Table 4 shows the accuracy results on
our test suite for each of the morphological pat-
tern pairs. For compounding, it is interesting to
see how the accuracy changes with increasing fre-

quency of the patterns in the training data. Even
with an abstract representation (last column), it
takes around 70 training examples for the subword-
level models with 32k merges to learn to translate
the phenomenon correctly.

The results for circumfixation and infixation fur-
ther show that concatenative morphological phe-
nomena can be learned rather well by all models on
both sides and with both the abstract and surface
representations. The results of the other models
with the abstract representation are comparable to
the subword model with 32k merges.

6.3 Non-Concatenative Morphology

The most interesting results can be seen for the
two non-concatenative morphological phenomena:
vowel harmony and reduplication. First, there is a
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clear gap between the accuracy with the abstract
representation and the surface representation for
the subword-level model with 32k merges. The
only exception is vowel harmony pattern #3 where
the vowel harmony occurs on the source side and
does not need to be generated by the model. Sec-
ond, we can again see an effect of the frequency of
the pattern pairs. For vowel harmony, the accuracy
drops significantly the rarer a pattern pair is. This
is more prominent in the subword models with 32k
splits. Similarly, for reduplication, while partial
reduplication which occurs∼35k times in the train-
ing data can be learned to some extent, none of
the models can learn to translate triplication cor-
rectly which is only seen 106 times. These results
indicate that non-concatenative morphological phe-
nomena will be even harder to learn in real-life
scenarios, where we often encounter low-resource
settings and more ambiguity in the translations.

For the non-concatenative morphological phe-
nomena, we can see a considerable benefit from
translating with smaller units. Even simply using
BPE-dropout at training time can give a boost of
up to 20% in accuracy. Given these results, we
support the recommendation by Wang et al. (2021)
that BPE-dropout should become the default for
training sequence-to-sequence models.

7 Analysis and Discussion

7.1 Learning Over Time
It is interesting to see how the models learn to trans-
late the different morphological patterns over time.
Figure 1 shows the training curves for the first three
models11 on a circumfixation, vowel harmony and
reduplication pattern pair. The pattern frequen-
cies in the training data are comparable, occurring
11718, 7037 and 9664 times respectively.

While circumfixation is learned almost perfectly
after the first few checkpoints by all models, we
can see that reduplication and especially vowel
harmony are learned much more slowly. For the
latter two phenomena, we can also see that the
differences between the two models are much more
pronounced, e.g. for vowel harmony the subword
model with 500 merges continuously outperforms
the other two models. These plots also still show
an improving tendency at 700k steps, so longer
training times may be beneficial for learning non-
concatenative morphology in NMT.

11We do not show training curves for the character-level
model because it was not trained from scratch.
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Figure 1: Accuracy of one pattern pair per morphologi-
cal phenomenon over time.
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Figure 2: Accuracy on different frequency buckets ac-
cording to how often the source token has been seen
with the morphological pattern during training.

7.2 Source Frequency During Training

We perform a more fine-grained evaluation and
bucket test sentences according to how often the
modified token in the source occurred with the
specific morphological pattern in the training data.
Figure 2 shows that the main benefits from using
models with smaller units come from the better gen-
eralisation to unseen or very rare modified tokens.
This finding suggests that character-level models
may outperform subword-level models to an even
greater extent in real-data low-resource settings.



697

7.3 Error Types

We perform a manual analysis of up to 50 sen-
tences per pattern pair where the morphological
phenomenon was not translated with the correct
artificial morphemes. We summarise the most in-
teresting findings here and list the full results in
Appendix A.4. For vowel harmony on the target
side, we find that all wrong translations are due to
vowels that do not match with the previous token.
For full reduplication on the target side, we see an
interesting effect with the models trained with 32k
merges. Instead of reduplicating an adjective such
as “compulsorycompulsory”, these models often
concatenate two words that are similar in mean-
ing such as “mandatorycompulsory”. This effect
disappears when training on smaller units.

For rare compounds, the models trained with 32k
merges often either copy the whole source com-
pound or the artificial morpheme to the target side.
This happens less often with the models trained on
smaller units but instead, these models only start to
translate the first characters of the artificial source
morpheme or hallucinate real words with similar
orthography, e.g. “kidnapping rights” or “kidney
inhabitants” instead of “kixaka rights” and “kixaka
inhabitants” respectively.

7.4 How Realistic Are Our Results?

We note that our results should not be taken as
evidence that current NMT models can perfectly
translate concatenative morphology. Generally, we
expect that our controlled setting - where there is a
one-to-one correspondence between artificial mor-
phemes - is an idealised scenario and that models
likely perform worse in real-life settings with more
ambiguity and noise. However, our results do show
a clear gap between the models’ competence for
non-concatenative and concatenative morphology.
Considering this performance gap and our reasons
for evaluating in a semi-synthetic setup (see Sec-
tion 4), we think that our test suite offers a targeted
way to compare how well novel text representation
strategies can learn non-concatenative phenomena.

For vowel harmony, there is one factor in our set-
ting that may slightly increase its difficulty: only a
few patterns in our data set exhibit vowel harmony.
This might make it harder for the model to learn
to extract the relevant information (i.e. the vowels
in word stems) than if all suffixes in a language
followed vowel harmony rules. Note however, that
the frequencies of the individual patterns in our

test suite are realistic. The top 50 nominal inflec-
tional suffixes in Turkish - a language that shows
extensive vowel harmony in suffixes - range from
13’000’000 at rank 1 to 30’000 at rank 50 (Ak-
san et al., 2017). These frequencies were counted
in a corpus with 50M tokens. Our two more fre-
quent pattern pairs lie in this range and our two less
frequent ones capture the long tail of suffixes and
more accurately predict expected results in low-
resource scenarios (likely less than 50M tokens).

8 Conclusion

We develop a test suite to evaluate how well var-
ious types of morphological phenomena can be
translated in NMT. We show that the choice of
segmentation strategy can have a considerable in-
fluence on the performance, especially for non-
concatenative phenomena such as reduplication
and vowel harmony. Our results with current seg-
mentation strategies show a) that there is potential
for more work on text representation strategies,
b) that abstract representations may be a helpful
source of information, especially for languages
with non-concatenative morphology (if reliable
tools for morphological analysis and generation
are available) and c) that BPE-dropout should be
adopted in state-of-the-art models since it improves
learning non-concatenative morphology. Based on
our results, we recommend that novel approaches
in NLP always be tested on a range of typologi-
cally diverse languages that cover different types
of morphological phenomena.

In the future, we are interested in evaluating
a wider variety of text representation strategies,
including tokenisation-free input such as CANINE
(Clark et al., 2021) or visual text representations
(Salesky et al., 2021), although these are limited to
the source side. We would also like to investigate
the effects of out-of-domain contexts where we
expect more rare word stems.
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A Appendix

A.1 Additional Model Details
We train Transformer Base machine translation
models (Vaswani et al., 2017) with 6 encoder lay-
ers, 6 decoder layers, 8 attention heads, an em-
bedding and hidden state dimension of 512 and
a feed-forward network dimension of 2048. We
regularise our models with a dropout of 0.1 for the
embeddings, the residual connections, in the feed-
forward sub-layers and for the attention weights.
For BPE-dropout (Provilkov et al., 2020), we also
use a dropout probability of 0.1 during training.

We apply exponential smoothing of 0.0001 and
label smoothing of 0.1. We tie both our encoder and
decoder input embeddings as well as the decoder in-
put and output embeddings (Press and Wolf, 2017).
The subword models with 32k merges are trained
with a maximum sequence length of 200 tokens,
the subword model with 500 merges with a max-
imum sequence length of 500 and the character-
level model with a maximum sequence length of
1,000 tokens.

For optimisation, we use Adam (Kingma and
Ba, 2015) with standard hyperparameters and a
learning rate of 0.0001. We follow the Trans-
former learning schedule described in (Vaswani
et al., 2017) with a linear warmup over 4,000 steps.
For finetuning, we use a constant learning rate of
0.001. Our token batch size is set to 16,348 and we
train on 4 NVIDIA Tesla V100 GPUs. All models
were trained using the implementation provided in
nematus (Sennrich et al., 2017) allowing early
stopping on a development set with patience 5.

A.2 Morphological Phenomena and Pattern
Pairs

Table 5 shows the pattern pairs that we define for
each morphological phenomenon. The first col-
umn shows what the pattern matches in the original
source sentence, i.e. a random noun, a preposition,
a cardinal number or a modifier of an adjective. The
second column shows the corresponding pattern
that we match in the target sentence. We always
check that these patterns and the nouns or adjective
following them are aligned and we make sure that
the dependency relationships between them are cor-
rect, e.g. that the following noun is the head of the
prepositional phrase.

Column three shows the artificial morphemes we
use on the source side and column four the ones
we use on the target side. For compounding, the

morphological phenomenon always occurs on the
source side. We simply concatenate the artificial
morpheme with the matched noun. On the target
side, we insert the artificial morpheme as a separate
token before the noun.

For the remaining morphological phenomena,
we have patterns where the phenomenon occurs
on the source side and others where they occur on
the target side. Circumfixes are formed by deleting
the matched preposition and adding an artificial
morpheme before and after the noun. In the other
sentence, we simply replace the preposition with an
artificial morpheme. Infixes are formed in the same
way but instead of adding the artificial morphemes
before and after the noun, we insert one before the
first vowel inside the noun.

We form the vowel harmony by deleting the
preposition or cardinal number and inserting an ar-
tificial morpheme as a separate token after the noun.
This morpheme is a placeholder consisting of three
consonants. We then fill the positions between the
consonants with the last two vowels occurring in
the noun. If the noun only has one vowel, we insert
this vowel twice. In the other sentence, we replace
the preposition or cardinal number again with the
artificial morpheme.

For partial reduplication, we extract a substring
of the matched adjective until after the first vowel.
We then repeat this substring to form a partially
reduplicated adjective. If the adjective starts with
a vowel, we extract the substring until after the
second vowel. For triplication, we extract the same
substring but repeat it twice and for full reduplica-
tion, we repeat the whole adjective. In the other
sentence, we simply replace the modifier with an
artificial morpheme.

For our abstract representation of morphological
phenomena (not shown in the table), we generate
a token of the form @TYPE_#@ that is inserted
after the noun. For the other sentences, we have a
distinct set of artificial morphemes that we use in
the same way as for the surface form. Examples for
the abstract representations can be seen in Table 2.

In column five and six, we present the frequen-
cies with which these pattern pairs occur in the
training data and the test set. We note that some
pattern pairs are not as frequent as others and result
in a relatively small test set, e.g. full reduplica-
tion. To check whether this affects our results, we
present additional experiments on a synthetically
balanced test set that we generate using data aug-
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Compounding

SRC pattern TRG pattern SRC artificial TRG artificial train test aug_test

#1 random NOUN aligned NOUN Sona+NOUN bico NOUN 1095 371 400
#3 random NOUN aligned NOUN Suyi+NOUN saqo NOUN 522 371 400
#5 random NOUN aligned NOUN Zarumo+NOUN vazaga NOUN 238 371 400
#7 random NOUN aligned NOUN Necib+NOUN kixaka NOUN 67 371 400
#9 random NOUN aligned NOUN Dawida+NOUN nonujo NOUN 27 371 400

Circumfixation

SRC pattern TRG pattern SRC artificial TRG artificial train test aug_test

#1 für [...] NOUN for [...] NOUN wofi [...] NOUN jeb+NOUN+fet 122 017 493 700
#2 aus [...] NOUN from [...] NOUN Kur+NOUN+maz quroc [...] NOUN 26 007 256 600
#3 zwischen [...] NOUN between [...] NOUN seyet [...] NOUN nuw+NOUN+daf 21 372 110 700
#4 durch [...] NOUN through [...] NOUN Rül+NOUN+bos sudizu [...] NOUN 11718 97 600

Infixation

SRC pattern TRG pattern SRC artificial TRG artificial train test aug_test

#1 in [...] NOUN in [...] NOUN huheke [...] NOUN N+jetah+OUN 116 868 474 700
#2 auf [...] NOUN on [...] NOUN siye [...] NOUN N+dezaxe+OUN 47 102 248 700
#3 gegen [...] NOUN against [...] NOUN N+yusid+OUN huxi [...] NOUN 15 540 137 600
#4 bei [...] NOUN at [...] NOUN N+yadey+OUN numime [...] NOUN 3796 92 600

Vowel Harmony

SRC pattern TRG pattern SRC artificial TRG artificial train test aug_test

#1 mit [...] NOUN with [...] NOUN duji [...] NOUN NOUN s-f-p 133 082 679 700
#2 zwei [...] NOUN two [...] NOUN zoged [...] NOUN NOUN b-p-r 29 048 323 700
#3 nach [...] NOUN after [...] NOUN NOUN n-l-j dulana [...] NOUN 8636 174 700
#4 vor [...] NOUN before [...] NOUN xefoqi [...] NOUN NOUN b-k-m 7037 115 700

Reduplication

SRC pattern TRG pattern SRC artificial TRG artificial train test aug_test

Partial sehr ADJE very ADJE ADJ+ADJE popera 34 783 121 700
Triple sehr, sehr ADJE very, very ADJE ADJ+ADJ+ADJE metuza 106 121 700

Full nicht ADJE not ADJE gija ADJE+ADJE 9664 50 563

Table 5: Overview of pattern pairs for every morphological phenomenon, the artificial morphemes that we replace
them with and how often they occur in the training data, the original test set (main results) and the augmented test
set (results in Appendix A.4).
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mentation. We explain this further in Appendix
A.4. The pattern frequencies in this augmented test
set are shown in the last column.

A.3 Experiments on Synthetically Balanced
Data

We find that some pattern pairs do not occur very
frequently in our training set (see Table 5) which
raises the question of whether our results are mean-
ingful enough. Furthermore, our test set may con-
sist of more sentences for words with synthetic
phenomena that we have seen a handful of times
in the training data but fewer “zero-shot” cases. To
check that our results are still valid, we create a
synthetic, balanced test set using data augmenta-
tion and show that the results on this augmented
test set are in line with the results presented in the
main body of the paper.

To enrich our test set with synthetically gener-
ated sentence pairs for the evaluation, we use a very
simple data augmentation technique. Specifically,
we a) substitute prepositions with other preposi-
tions, b) substitute numbers and other cardinals
with the cardinal “two” and c) insert different modi-
fiers before any adjectives. Below are some English
example sentences after data augmentation:

Prepositions:

orig: They came to Verona from Bologna.
0.3440: They came to Verona with Bologna.
7.6578: They came to Verona against Bologna.

Cardinals:
orig: "I’m known to work 20 hours a day."

-0.8844: "I’m known to work two hours a day."

Intensity Markers:
orig: The selection is broad.

-0.6354: The selection is very broad.
1.8426: The selection is not broad.

We score our synthetic test data with a language
model and compute the difference in (pseudo)-
perplexity to the original sentences to obtain a syn-
thetic data score (see examples above - the lower
the score the better). The scores for the German
sentence and the English sentence are averaged to
obtain a single score. The sentences are then or-
dered by this score such that we can pick the X
most natural sentences for the evaluation. We use

Masked-Language-Model-Scoring (Salazar et al.,
2020) and score both the German and the English
sentences with the multilingual BERT model (De-
vlin et al., 2019).

We then define a set of seven frequency classes
that capture how often a specific word has been
seen with the morphological phenomenon in the
training data: zero-shot, one to five times, six to
15 times, 16 to 50 times, 51 to 100 times, 101 to
500 times and 501 to 1000 times. For each of these
buckets, we extract up to 100 sentences from the
concatenated original and augmented test data. The
original sentences are picked first and if necessary,
we fill up each bucket with augmented sentences
ordered by the language model score.

The results on the synthetically balanced test can
be seen in Table 6. The results are very similar to
the results on the original test sentences presented
in Table 4. Consequently, we conclude that the
results presented in the main body of the paper are
not affected by the imbalanced test data.

A.4 Error Analysis

We manually check up to 50 incorrect translations
per pattern pair in the original test set. For classifi-
cation of the errors, we define the following error
types:

M1 no artificial morpheme in output

S1 source artificial morpheme, base untranslated

S2 only source artificial morpheme untranslated

S3 source artificial morpheme translated to ortho-
graphically similar word

T1 target artificial morpheme not entirely correct
(e.g. wrong vowels in vowel harmony)

T2 target artificial morpheme translated as ortho-
graphically similar word

T3 target artificial morpheme occurs multiple
times

T4 word break between artificial morpheme +
base

T5 concatenation with semantically similar word
instead of reduplication

O1 other, unrelated artificial morpheme generated

A1 abstract instead of surface form generated
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Surface Representation Abstr.

Side Train Freq. bpe32k bpe-d32k bpe-d500 char bpe32k

Compounding

#9 src 27 0.0 0.0 0.0 0.0 0.0
#7 src 67 44.8 0.0 83.8 0.0 95.5
#5 src 238 98.3 97.8 96.3 97.0 98.3
#3 src 522 99.0 98.3 97.5 96.8 98.3
#1 src 1095 96.5 98.0 97.5 97.3 96.8

Circumfixation

#4 src 11 718 98.7 99.0 98.3 95.7 98.8
#2 src 26 007 99.7 98.8 99.0 98.8 99.5

#3 trg 21 372 97.7 99.1 98.6 97.7 99.7
#1 trg 122 017 96.4 99.3 99.1 97.7 99.6

Infixation

#4 src 3796 99.2 98.8 97.3 98.0 99.3
#3 src 15 540 98.7 96.8 99.3 98.7 98.5

#2 trg 47 102 97.1 98.4 98.3 97.3 99.7
#1 trg 116 868 97.4 98.3 97.9 98.1 99.7

Vowel Harmony

#3 src 8636 99.0 98.0 96.7 97.1 98.9

#4 trg 7037 57.3 73.0 92.0 92.6 99.9
#2 trg 29 048 76.1 81.4 93.6 92.3 99.7
#1 trg 133 082 82.6 88.3 94.0 94.6 99.4

Reduplication
Triple src 106 0.0 0.0 0.0 0.0 98.6
Partial src 34 783 84.1 90.7 89.1 84.4 98.6

Full trg 9664 74.2 88.6 93.4 91.8 99.1

Table 6: Accuracy (in %) of the four models for each of the morphological pattern pairs on the augmented test
set. Best results for surface representation are marked in bold. ≥95% dark green, ≥90% light green, ≥80% light
red, <80% dark red (best viewed in colour). Patterns ordered by src / trg side, then by frequency.

We summarise the most interesting findings in
Section 7.3 and list the full distribution of error
types for the pattern pairs here:

Higher-Resource Compounds (#1, #3, #5):

bpe32k bpe-d32k bpe-d500 char

M1 60% 87% 91% 97%

S1 24% - - -

S2 4% - - 3%

S3 4% - - -

T3 8% 13% 9% -

Lower-Resource Compounds (#7, #9):

bpe32k bpe-d32k bpe-d500 char

M1 18% 6% 13% 12%

S1 16% 7% 14% 11%

S2 47% 87% 44% 55%

S3 10% - 4% 8%

T2 - - 25% 14%

O1 9% - - -

Circumfixation on Source Side (#2, #4):

bpe32k bpe-d32k bpe-d500 char

M1 100% 86% 71% 100%

T3 - 14% 29% -
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Circumfixation on Target Side (#1, #3):

bpe32k bpe-d32k bpe-d500 char

M1 19% 6% 13% 12%

T1 38% 7% 14% 11%

T4 43% 87% 44% 55%

Infixation on Source Side (#3, #4):

bpe32k bpe-d32k bpe-d500 char

M1 100% 83% 75% 100%

T3 - 17% 25% -

Infixation on Target Side (#1, #2):

bpe32k bpe-d32k bpe-d500 char

M1 94% 89% 100% 100%

T3 - 11% - -

A1 6% - - -

Vowel Harmony on Source Side (#3):

bpe32k bpe-d32k bpe-d500 char

M1 100% 100% 100% 100%

Vowel Harmony on Target Side (#1, #2, #4):

bpe32k bpe-d32k bpe-d500 char

T1 100% 100% 100% 100%

Partial Reduplication on Source Side:

bpe32k bpe-d32k bpe-d500 char

M1 100% 100% 100% 100%

Triplication on Source Side:

bpe32k bpe-d32k bpe-d500 char

M1 6% 6% 4% 2%

O1 94% 94% 96% 98%

Full Reduplication on Target Side:

bpe32k bpe-d32k bpe-d500 char

M1 7% 25% 100% 40%

T1 - - - 60%

T4 14% 12% - -

T5 79% 63% - -


