
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 475–486
November 7–11, 2021. ©2021 Association for Computational Linguistics

475

CascadeBERT: Accelerating Inference of Pre-trained Language Models
via Calibrated Complete Models Cascade

Lei Li†, Yankai Lin§, Deli Chen†§, Shuhuai Ren†, Peng Li§, Jie Zhou§, Xu Sun†
†MOE Key Laboratory of Computational Linguistics, School of EECS, Peking University

§Pattern Recognition Center, WeChat AI, Tencent Inc., China
{lilei, shuhuai_ren}@stu.pku.edu.cn

{chendeli, xusun}@pku.edu.cn
{yankailin, patrickpli, withtomzhou}@tecent.com

Abstract

Dynamic early exiting aims to accelerate
the inference of pre-trained language models
(PLMs) by emitting predictions in internal lay-
ers without passing through the entire model.
In this paper, we empirically analyze the work-
ing mechanism of dynamic early exiting and
find that it faces a performance bottleneck un-
der high speed-up ratios. On one hand, the
PLMs’ representations in shallow layers lack
high-level semantic information and thus are
not sufficient for accurate predictions. On
the other hand, the exiting decisions made by
internal classifiers are unreliable, leading to
wrongly emitted early predictions. We instead
propose a new framework for accelerating the
inference of PLMs, CascadeBERT, which dy-
namically selects proper-sized and complete
models in a cascading manner, providing com-
prehensive representations for predictions. We
further devise a difficulty-aware objective, en-
couraging the model to output the class prob-
ability that reflects the real difficulty of each
instance for a more reliable cascading mecha-
nism. Experimental results show that Cascade-
BERT can achieve an overall 15% improve-
ment under 4× speed-up compared with exist-
ing dynamic early exiting methods on six clas-
sification tasks, yielding more calibrated and
accurate predictions.1

1 Introduction

Large-scale pre-trained language models (PLMs),
e.g., BERT and RoBERTa, have demonstrated supe-
rior performance on various natural language under-
standing tasks (Devlin et al., 2019; Liu et al., 2019).
While the increased model size brings more promis-
ing results, the long inference time hinders the de-
ployment of PLMs in real-time applications. Re-
searchers have recently exploited various kinds of
approaches for accelerating the inference of PLMs,

1Our code is available at https://github.com/
lancopku/CascadeBERT

L=1

L=2

L=9

L=12

: Classifier

: BERT Layer

DeeBERT

L=1

L=2

BERT-Complete

20 1

.992

.001 .007
✓

20 1

.991

.004 .005
✓

20 1

.250
.504

.246✗

0: neutral ✗
1: entailment ✓
2: contradiction ✗

⋯

⋯

Premise: Also, the final rule is not intended to have any retroactive
effect and administrative procedures must be exhausted prior to any
judicial challenge to the provisions of the rule.
Hypothesis: The final rule isn't meant to have a retroactive effect.
0: Neutral ✗ 1: Entailment ✓ 2: Contradiction ✗

Figure 1: An easy instance with a large word over-
lap (colored in orange) between the premise and the
hypothesis from the MNLI dataset. The classifiers in
shallow layers of a dynamic early exiting model cannot
predict correctly, while BERT-Complete (Turc et al.,
2019), a small BERT pre-trained from scratch with the
same size can make a correct and confident prediction.

which can be categorized into model-level com-
pression and instance-level speed-up. The former
aims at obtaining a compact model via quantiza-
tion (Zafrir et al., 2019; Shen et al., 2020; Zhang
et al., 2020), pruning (Voita et al., 2019; Michel
et al., 2019) or knowledge distillation (KD) (Sanh
et al., 2019; Sun et al., 2019; Jiao et al., 2020),
while the latter adapts the amount of computation
to the complexity of each instance (Graves, 2016).
A mainstream method for instance-level speed-up
is dynamic early exiting, which emits predictions
based on intermediate classifiers (or off-ramps)
of internal layers when the predictions are con-
fident enough (Xin et al., 2020b; Liu et al., 2020;
Schwartz et al., 2020; Li et al., 2021).

In this paper, we focus on dynamic early exit-
ing, as it can be utilized to accelerate inference
and reduce the potential risk of the overthinking
problem (Kaya et al., 2019). Such a paradigm is

https://github.com/lancopku/CascadeBERT
https://github.com/lancopku/CascadeBERT

476

intuitive and simple, while faces a performance
bottleneck under high speed-up ratios, i.e., the task
performance is poor when most examples are ex-
ited in early layers. We conduct probing exper-
iments to investigate the mechanism of dynamic
exiting, and find that the poor performance is due
to the following two reasons: (1) The shallow rep-
resentations lack high-level semantic information,
and are thus not sufficient for accurate predictions.
As PLMs like BERT exhibit a hierarchy of repre-
sentations, e.g., shallow layers extract low-level
features like lexical/syntactic information while
deep layers capture semantic-level relations (Ten-
ney et al., 2019; Jawahar et al., 2019), we argue
that the high-level semantic inference ability is usu-
ally required even for easy instances. As shown
in Figure 1, the classifier of the second layer in a
representative early exiting model DeeBERT (Xin
et al., 2020b) cannot predict correctly even for an
easy instance with a large word overlap. On the
contrary, BERT-Complete, a shallow 2-layer model
pre-trained from scratch (Turc et al., 2019) that is
thus capable of extracting semantic-level features,
can make confident and correct predictions like that
in deep layers of DeeBERT. (2) The intermediate
classifiers in the early exiting models cannot pro-
vide reliable exiting decisions. We design a metric
to examine the ability of models to distinguish dif-
ficult instances from easy ones, which can reflect
the quality of exiting decisions. We find that the
predictions of internal classifiers cannot faithfully
reflect the instance difficulty, resulting in wrongly
emitted results and thus hindering the efficiency of
early exiting.

To remedy those drawbacks, we instead extend
the dynamic early exiting idea to a model cascade,
and propose CascadeBERT, which conducts in-
ference based on a series of complete models in a
cascading manner with a dynamic stopping mecha-
nism. Specifically, given an instance for inference,
instead of directly exiting in the middle layers of a
single model, the framework progressively checks
if the instance can be solved by the current PLM
from the smallest to the largest one, and emits the
prediction once the PLM is confident about the
prediction. Furthermore, we propose a difficulty-
aware regularization to calibrate the PLMs’ predic-
tions according to the instance difficulty, making
them reflect the real difficulty of each instance.
Therefore, the predictions can be utilized as a good
indicator for the early stopping in inference. Ex-

perimental results on six classification tasks in the
GLUE benchmark demonstrate that our model can
obtain a much better task performance than pre-
vious dynamic early exiting baselines under high
speed-up ratios. Further analysis demonstrates that
the proposed difficulty-aware objective can cali-
brate the model predictions, and proves the effec-
tiveness and the generalizability of CascadeBERT.

2 Investigations into Early Exiting

Dynamic early exiting aims to speed-up the infer-
ence of PLMs by emitting predictions based on
internal classifiers. For each instance, if the in-
ternal classifier’s prediction based on the current
layer representation of the instance is confident
enough, e.g., the maximum class probability ex-
ceeds a threshold (Schwartz et al., 2020), then the
prediction is emitted without passing through the
entire model. However, whether the internal repre-
sentations could provide sufficient information for
accurate predictions and whether the intermediate
classifiers can be utilized for making accurate exit-
ing decisions still remain unclear. In this section,
we investigate the working mechanism of dynamic
early exiting by exploring these two questions.

2.1 Are Shallow Features Sufficient?

As discussed by Tenney et al. (2019), PLMs like
BERT learn a hierarchy of representations. We
assume that the high-level semantics is usually re-
quired even for easy instances, and therefore the
predictions based on shallow representations are
insufficient for accurate predictions. To examine
this, we evaluate the model performance based on
outputs of different layers, as the representation
contains adequate information is necessary for a
decent task performance. Specifically, we compare
the following models:
DeeBERT (Xin et al., 2020b), which is a repre-
sentative of early exiting methods. The internal
classifiers are appended after each layer in the orig-
inal BERT for emitting early predictions.
BERT-kL, which only utilizes the first k layers in
the original BERT model for prediction. A classi-
fier is added directly after the first k layers. The
parameters of the first k layers and the classifier
are fine-tuned on the training dataset. It could be
seen as a static early exiting method.
BERT-Complete (Turc et al., 2019), which is a
light version of the original BERT model pre-
trained from scratch using the masked language

477

2 4 6
Number of Layers

40.0

50.0

60.0

70.0

80.0

90.0
A

cc
ur

ac
y

(%
)

MNLI-m

2 4 6
Number of Layers

75.0

80.0

85.0

90.0

95.0

100.0
SST-2

DeeBERT BERT-kL BERT-Complete

Figure 2: Performance comparison utilizing different
models with the same number of layers on MNLI-m
and SST-2. Complete models capable of extracting
semantic-level information clearly outperform models
like DeeBERT which overlooks the high-level seman-
tic features.

modeling (MLM) objective. We assume the repre-
sentations of this model contain high-level seman-
tic information, as MLM requires a deep under-
standing of the language.

For a fair comparison, models are evaluated on
a subset of instances which DeeBERT chooses
to emit at different layers. We report predic-
tion accuracy using different number of layers on
MNLI (Williams et al., 2018) and SST-2 (Socher
et al., 2013). Figure 2 shows the results on the
development sets, and we can see that:

(1) BERT-Complete clearly outperforms Dee-
BERT, especially when the predictions are made
based on shallow layers. It indicates that the high-
level semantics is vital for handling tasks like
sentence-level classification.

(2) BERT-kL also outperforms DeeBERT. We
attribute it to that the last serveral layers can learn
task-specific information during fine-tuning to ob-
tain a decent performance. A similar phenomenon
is also observed by Merchant et al. (2020). How-
ever, since the internal layer representation in Dee-
BERT are restricted by the layer relative position
in the whole model, this adaption effect cannot be
fully exploited, resulting in the poor performance
in shallow layers.

These findings verify our assumption that the
semantic-level features are vital, motivating us
to exploit complete models for predictions. Be-
sides, DeeBERT performs poorly on the selected
instances which it decides to emit at different lay-
ers, triggering our further explorations on the qual-
ity of exiting decisions.

2 4 6
Number of Layers

BE
RT

-C
om

pl
ete

BE
RT

-k
L

De
eB

ER
T

77.42 78.85 79.76

73.49 77.28 80.16

56.66 65.33 74.31

MNLI-m

60

65

70

75

80

2 4 6
Number of Layers

79.89 83.61 85.24

78.91 79.91 82.20

71.89 75.77 77.10

SST-2

72

75

78

81

84

Figure 3: DIS (%, higher is better, see Eq. 3 in Sec-
tion 2.2) heatmap of different models on the develop-
ment set of MNLI and SST-2. The DIS of internal off-
ramps in the DeeBERT of shallow layers is lower than
that of BERT-kl and BERT-Complete, which leads to
more wrongly emitted instances. The exiting decisions
in shallow layers of DeeBERT thus can be unreliable.

2.2 Are Internal Classifiers Reliable?

We further probe whether the early exiting deci-
sions made by internal classifiers are reliable, by
first introducing two key concepts:

• Instance Difficulty d(x), which indicates
whether an instance x can be handled by a
specific model. We define instances that the
model cannot predict correctly as difficult in-
stances, i.e., d(x) = 1, and those can be han-
dled well as easy ones, i.e., d(x) = 0.

• Model Confidence c(x), which denotes how
confident the model is about its prediction for
a specific instance x. For each instance, we
utilize the maximum class probability of the
output distribution as the confidence score.

Intuitively, a difficult instance should be predicted
with less confidence than that of an easy one, such
that the output distribution can be utilized as an
indicator for early exiting decisions. However, the
model confidence can be inconsistent with the in-
stance difficulty due to the overconfident problem.
To measure this consistency, we propose Difficulty
Inversion Score (DIS). Specifically, we first define
a difficult inversion indicator function for instance
pair (xi, xj) measuring the inconsistency between
model confidence and instance difficulty as:

DI (xi, xj) =
{

1, if d(xi) > d(xj) and c(xi) < c(xj)
0, otherwise,

(1)

The instances are then sorted by their confidence
scores in an ascending order, i.e., c(xi) ≤ c(xj)
for any i < j. We compute the sum of difficulty

478

inversion pair as:

DI-Sum =
N∑
i=1

i−1∑
j=1

DI(xi, xj), (2)

where N is the number of instance. The final DIS
is a normalized DI-Sum:

DIS = 1− 1

K
DISum, (3)

where K is a normalizing factor calculated as the
product of the number of easy instances and the
number of difficult instances, to re-scale DIS to the
range from 0 to 1. According to the definition, the
DIS measures the proportion of instance pairs that
are correctly ranked by the classifier. Classifiers
with lower DIS achieve lower consistency between
the model confidence and instance difficulty, thus
making more unreliable exiting decisions. The DIS
thus can be utilized as a proxy for evaluating the
quality of exiting decisions. We compute the DIS
on the development sets of MNLI-m and SST-2 for
internal classifiers of different models discussed
in Section 2.1, and the results are illustrated in
Figure 3. We find that:

(1) The DIS of internal classifiers in shallow
layers of DeeBERT falls far behind BERT-kL and
BERT-Complete. This indicates that the exiting
decisions in the shallow layers of DeeBERT are
unreliable, and the task performance thus can be
poor when most instances are wrongly emitted in
early layers.

(2) The ability to distinguish difficult examples
from easy ones is enhanced as the layer number in-
creases. Since the deep layer representations with
semantic information can boost the task perfor-
mance, it is reasonable to expect that the off-ramps
in deep layers can provide more comprehensive
early exiting decisions.

Our analysis demonstrates that current dynamic
early exiting predictions made by internal classi-
fiers in shallow layers are not reliable, motivating
us to inform the model of the instance difficulty for
more robust exiting decisions.

3 Methodology

To remedy the drawbacks of conducting dynamic
exiting in a single model, we extend the idea to a
model cascade, by proposing CascadeBERT, that
utilizes a suite of complete PLMs with different
number of layers for acceleration in a cascading

manner, and further devise a difficulty-aware cal-
ibration regularization to inform the model of in-
stance difficulty.

3.1 Cascade Exiting
Formally, given n complete pre-trained language
models {M1, . . . ,Mn} fine-tuned on the down-
stream classification dataset, which are sorted in an
ascending order by their corresponding number of
layers {L1, . . . , Ln}, our goal is to conduct infer-
ence with the minimal computational cost for each
input instance x while maintaining the model per-
formance. Our preliminary exploration shows that
it is relatively hard to directly selecting a proper
model for each instance according to the instance
difficulty. Therefore, we formulate it as a cascade
exiting problem, i.e., execute the model prediction
sequentially for each input example from the small-
est M1 to the largest Mn, and check whether the
prediction of the input instance x can be emitted.
Specifically, we use the confidence score c(x), i.e.,
the maximum class probability, as a metric to deter-
mine whether the predictions are confident enough
for emitting:

c(x) = max
y∈Y

(Pr(y | x)), (4)

where Y is the label set of the task and Pr(y | x) is
the class probability distribution outputted by the
current model. The predicted result is emitted once
the confidence score exceeds a preset threshold τ .
By varying the threshold τ , we can obtain different
speed-up ratios based on the application require-
ments. A smaller τ indicates that more examples
are outputted using the current model, making the
inference faster, while a bigger τ will make more
examples go through larger models for better re-
sults. The cascaded exiting framework is summa-
rized in Algorithm 1. Since every model in our cas-
cading framework is a complete model, predictions
are more accurate with instance representations
that contain both low-level and high-level features,
even when only the smallest model is executed.

3.2 Difficulty-Aware Regularization
To further make the cascade exiting based on confi-
dence score more reliable, we design a difficulty-
aware regularization (DAR) objective based on
instance difficulty, to regularize the model clas-
sifiers produce lower confidence for more diffi-
cult instances. To measure the instance difficulty,
we first split the training dataset D into K folds

479

Algorithm 1: Cascade Exiting
Input: Models {M1, . . . ,Mn}, threshold τ
Data: Input x
Result: Class probability distribution Pr(y | x)
for i← 1 to n do

// calculate class distribution
Pr(y|x) =Mi(x)
// compute confidence score
c(x) = maxy(Pr(y | x))
if c(x) > τ then

Early exit Pr(y | x)

return Pr(y | x)

{D̃i | i = 1, . . . ,K}. For each complete model
in our cascade, we train K models with the same
architecture using the leave-one-out method, e.g.,
model M i

n is trained on the D−D̃i
=
⋃j 6=i

j D̃j . We
utilize M i

n to evaluate the difficulty of the exam-
ples in D̃i for model Mn. Specifically, the samples
are marked as easy, i.e., d = 0, if they can be cor-
rectly classified by the model. Otherwise, they are
marked as difficult, i.e., d = 1. To eliminate the
impact of randomness, we group the predictions of
5 seeds and strictly label the examples that can be
correctly predicted in all seeds as easy examples,
while the others as difficult ones.

With the instance difficulty for each instance
in the training dataset, we add a difficulty-based
margin objective for each instance pair:

L(xi, xj) = max {0,−g (xi, xj) (c (xi)− c (xj)) + ε} ,
(5)

where ε is a confidence margin. We design
g (xi, xj) as below:

g (xi, xj) =


1, if d(xi) > d(xj)
0, if d(xi) = d(xj)
−1, otherwise.

(6)

This objective is added to the original task-specific
loss with a weight factor λ to adjust its impact. By
optimizing the above objective function, the confi-
dence scores of difficult instances are adjusted to be
lower than those of easy instances, thus making the
confidence-based emitting decisions more reliable.

4 Experiments

We evaluate our method on the classification tasks
in the GLUE benchmark (Wang et al., 2018) with
BERT (Devlin et al., 2019). We first give a brief
introduction of the dataset used and the experimen-
tal setting, followed by the description of baseline
models for comprehensive evaluation. The results
and analysis of the experiments are presented last.

Dataset # Train # Dev # Test Metric ε

MNLI 393k 20k 20k Accuracy 0.3
MRPC 3.7k 0.4k 1.7k F1-score 0.5
QNLI 105k 5.5k 5.5k Accuracy 0.3
QQP 364k 40k 391k F1-score 0.3
RTE 2.5k 0.3k 3k Accuracy 0.5
SST-2 67k 0.9k 1.8k Accuracy 0.5

Table 1: Statistics of six classification datasets in
GLUE benchmark. The selected difficulty margins ε
of each datasets are provided in the last column.

4.1 Experimental Settings

We use six classification tasks in GLUE bench-
mark, including MNLI (Williams et al., 2018),
MRPC (Dolan and Brockett, 2005), QNLI (Ra-
jpurkar et al., 2016), QQP,2 RTE (Bentivogli et al.,
2009) and SST-2 (Socher et al., 2013). The metrics
for evaluation are F1-score for QQP and MRPC,
and accuracy for the rest tasks. Our implemen-
tation is based on the Huggingface Transformers
library (Wolf et al., 2020). We use two models
for selection with 2 and 12 layers, respectively,
since they can provide a wide range for accelera-
tion. The difficulty score is thus evaluated based
on the 2-layer model. The effect of incorporating
more models in our cascade framework is explored
in the later section. We utilize the weights provided
by Turc et al. (2019) to initialize the models in our
suite. The split number K for difficulty labeling is
set to 8. We use AdamW (Loshchilov and Hutter,
2018) with a learning rate 2e-5 to train model for 10
epochs, since we find that small models need more
time to converge. We set DAR weight λ as 0.5, and
perform grid search over ε in {0.1, 0.3, 0.5, 0.7}.
The best model is selected based on the validation
performance. The statistics of datasets and the se-
lected ε are provided in Table 1.

The inference speed-up ratio is estimated as the
ratio of number of the original model and layers
actually executed in forward propagation in our cas-
cade. Compared to performing dynamic exiting in
a single model, the overhead of CascadeBERT con-
sists of two parts. The former is the extra embed-
ding operations, which is nearly 0.3M FLOPs and
is negligible compared with the 1809.9M FLOPs of
each layer (Liu et al., 2020). The latter is brought
by instances that run forward propagation multiple
times, which is counted in the speed-up ratio calcu-
lation. For example, for an instance which is first

2https://data.quora.com/First-Quora-
Dataset-Release-Question-Pairs

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

480

Method MNLI-m/mm MRPC QNLI QQP RTE SST-2 AVG

BERT-base† 84.6 (1.00×) / 83.4 (1.00×) 88.9 (1.00×) 90.5 (1.00×) 71.2 (1.00×) 66.4 (1.00×) 93.5 (1.00×) 82.6
∼

2×

BERT-6L‡ 79.9 (2.00×) / 79.2 (2.00×) 85.1 (2.00×) 86.2 (2.00×) 68.9 (2.00×) 65.0 (2.00×) 90.9 (2.00×) 79.3
DeeBERT† 74.4 (1.87×) / 73.1 (1.88×) 84.4 (2.07×) 85.6 (2.09×) 70.4 (2.13×) 64.3 (1.95×) 90.2 (2.00×) 77.5
PABEE† 79.8 (2.07×) / 78.7 (2.08×) 84.4 (2.01×) 88.0 (1.87×) 70.4 (2.09×) 64.0 (1.81×) 89.3 (1.95×) 79.2
CascadeBERT 83.0 (2.01×) / 81.6 (2.01×) 85.9 (2.01×) 89.4 (2.01×) 71.2 (2.01×) 64.6 (2.03×) 91.7 (2.08×) 81.1

∼
3×

BERT-4L‡ 75.8 (3.00×) / 75.1 (3.00×) 82.7 (3.00×) 84.7 (3.00×) 66.5 (3.00×) 63.0 (3.00×) 87.5 (3.00×) 76.5
DeeBERT‡ 63.2 (2.98×) / 61.3 (3.03×) 83.5 (3.00×) 82.4 (2.99×) 67.0 (2.97×) 59.9 (3.00×) 88.8 (2.97×) 72.3
PABEE‡ 75.9 (2.70×) / 75.3 (2.71×) 82.6 (2.72×) 82.6 (3.04×) 69.5 (2.57×) 60.5 (2.38×) 85.2 (3.15×) 75.9
CascadeBERT 81.2 (3.00×) / 79.5 (3.00×) 84.0 (3.00×) 88.5 (2.99×) 71.0 (3.02×) 63.8 (3.03×) 90.9 (2.99×) 79.8

∼
4×

BERT-3L‡ 74.8 (4.00×) / 74.3 (4.00×) 80.5 (4.00×) 83.1 (4.00×) 65.8 (4.00×) 55.2 (4.00×) 86.4 (4.00×) 74.3
DeeBERT‡ 55.8 (4.01×) / 54.2 (3.99×) 82.9 (3.99×) 75.9 (4.00×) 62.9 (4.01×) 57.4 (4.00×) 85.4 (4.00×) 67.8
PABEE‡ 62.3 (4.32×) / 63.0 (4.30×) 79.9 (4.00×) - 68.0 (3.45×) 56.0 (3.62×) - -
CascadeBERT 79.3 (4.03×) / 77.9 (3.99×) 82.6 (4.00×) 86.5 (3.99×) 70.0 (4.04×) 61.6 (4.02×) 90.3 (4.01×) 78.3

Table 2: Test results from the GLUE server. We report F1-score for QQP and MRPC and accuracy for other tasks,
with the corresponding speed-up ratios shown in parentheses. For baseline methods, † denotes results taken from
the original paper and ‡ denotes results based on our implementation. The - denotes that results are not available
by tuning the threshold of PABEE. Best results are shown in bold.

fed into a 2-layer model and then goes through a
4-layer model to obtain the final prediction result,
the number of layers actually executed is there-
fore 6 and the corresponding speed-up ratio is 2×
compared to the original 12-layer full model.

4.2 Baselines

We implement two kinds of baselines, including:

Early Exiting, including BERT-kL, where the first
k layers with a fine-tuned classifier are used for
outputting the final classification results. We take
k = 6, k = 4 and k = 3 to obtain a statically
compressed model with speed-up ratios of 2×, 3×
and 4×, respectively; DeeBERT (Xin et al., 2020b),
which makes dynamic early predictions based on
the internal classifiers; PABEE (Zhou et al., 2020),
an enhanced variant by emitting the result until
several layers produce a consistent prediction. 3

Knowledge Distillation methods that do not re-
quire external data, including DistilBERT (Sanh
et al., 2019), which distills knowledge from the
teacher model to the student during pre-training
via logit distillation; BERT-PKD (Sun et al., 2019),
which distills internal states of the teacher model to
the student model; BERT-of-Theseus (Xu et al.,
2020), which gradually replaces the module in
the original model; BERT-PD (Turc et al., 2019),
which directly pre-trains a compact model from
scratch and conducts distillation on the task dataset.

3PABEE provides limited speed-ratios since the threshold
for tuning speed-up ratios can only be set to integers.

Method MNLI-m/mm QNLI QQP SST-2 AVG

DistilBERT 78.9 / 78.0 85.2 68.5 91.4 80.4
BERT-PKD 79.9 / 79.3 85.1 70.2 89.4 80.8
BERT-Theseus 78.6 / 77.4 85.5 68.3 89.7 79.9
BERT-PD 79.3 / 78.3 87.0 69.8 89.8 80.8
CascadeBERT 81.2 / 79.5 88.5 71.0 90.9 82.2

Table 3: Test result comparison with static knowledge
distillation methods under speed-up ratio 3×.

4.3 Overall Results

The performance comparison with early exiting
methods are presented in Table 2. We observe that
CacadeBERT outperforms all the baseline meth-
ods under different speed-up ratios, validating the
effectiveness of our proposal. Furthermore, the per-
formance gap becomes clearer as the acceleration
ratio increases. For example, CascadeBERT out-
performs DeeBERT by a big margin with a relative
15.5% improvement (10.5 points on average) un-
der speed-up ratio 4×. This phenomenon demon-
strates that CascadeBERT can break the perfor-
mance bottleneck by utilizing comprehensive rep-
resentations from complete models. Interestingly,
we find CascadeBERT performs closely with Dee-
BERT on MRPC. We attribute it to that this para-
phrase identification task requires less high-level
semantic information, thus only utilizing low-level
features at specific layers can sometimes become
beneficial. Different from DeeBERT and PABEE,
FastBERT (Liu et al., 2020) enhances the internal
classifiers with a self-attention mechanism to use
all the hidden states for predictions, resulting in

481

DeeBERT - Accuracy: 44.0

contradiction
entailment
neutral

CascadeBERT - Accuracy: 75.9

contradiction
entailment
neutral

(a) Instance representations t-SNE projection on MNLI-m.

DeeBERT - Accuracy: 78.0

negative
positive

CascadeBERT - Accuracy: 87.7

negative
positive

(b) Instance representations t-SNE projection on SST-2.

Figure 4: t-SNE visualization of instance representa-
tions of different class in DeeBERT and our Cascade-
BERT at the second layer. The instance representations
of our CascadeBERT exhibit a more distinct boundary
between different classes, helping the following classi-
fier to make accurate predictions. Best viewed in color.

a different magnitude of computational overhead.
Comparison results with FastBERT are provided
in Appendix A. CascadeBERT can still outperform
FastBERT, especially on the tasks requiring seman-
tic reasoning ability.

Besides, our proposal also achieves superior
performance over strong knowledge distillation
methods like BERT-PKD and BERT-of-Theseus,
as shown in Table 3. Distillation methods can im-
plicitly learn the semantic reasoning ability by forc-
ing student models to mimic the behaviors of the
teacher model. However, it is still relatively hard
to obtain a single compressed model to handle all
instances well, as different instances may require
the reasoning ability of different granularities. Our
cascading mechanism instead provides flexible op-
tions for instances with different complexities, thus
achieving better results.

5 Analysis

In this section, we investigate how the proposed
CascadeBERT makes accurate predictions under
high speed-up ratios, and analyze the effects of
the proposed difficulty-aware regularization and
incorporating more models to the cascade. We
finally examine the generalizability by applying it
to RoBERTa. The experiments are conducted on

Method MNLI-m/mm QNLI QQP SST-2 AVG

∼
3× CascadeBERT 81.2 / 79.5 88.5 71.0 90.9 82.2

- w/o DAR 80.0 / 79.3 87.8 71.0 90.3 81.7

∼
4× CascadeBERT 79.3 / 77.9 86.5 70.0 90.3 80.8

- w/o DAR 78.9 / 78.1 86.6 69.8 89.6 80.6

Table 4: Ablated results of the proposed difficulty-
aware regularization under different speed-up ratios.

MNLI, QNLI, QQP and SST-2 for stable results.

5.1 Visualization of Instance Representations
To investigate how the representations with suffi-
cient information benefit accurate predictions, we
visualize the instance representations after 2 lay-
ers using t-SNE projection (Maaten and Hinton,
2008). The results and the corresponding classifier
accuracy are shown in Figure 4. We observe that
the boundary of instances belonging to different
classes of our CascadeBERT is much clearer than
that of DeeBERT. Since the representations contain
sufficient information for predictions, our model
can thus obtain more accurate results. Interestingly,
the shallow representations in DeeBERT of SST-2
are already separable to some extent, which indi-
cates that the task is somewhat easy. It is consistent
with our main results that the performance degra-
dation of different methods is negligible on SST-2.

5.2 Effects of Difficulty-Aware
Regularization

We show the performance of an ablated version
of our proposal, CascadeBERT w/o DAR in Ta-
ble 4. The results indicate that the DAR can im-
prove the overall performance of our framework.
Note that the improvement is very challenging
to achieve, as the original model cascade already
outperforms strong baseline models like PABEE.
Furthermore, we explore whether the performance
boost comes from an enhanced ability of the model
to distinguish difficult instances from easy ones.
Specifically, we compute the DIS and the task ac-
curacy (Acc) of the smallest model in our cascade.
The results are listed in Table 5. We find that the
DAR can effectively improve the DIS while slightly
harms the task performance, indicating that DAR
boosts the overall performance by helping model
make more reliable emitting decisions. The excep-
tional decrease of DIS on QQP is attributed to the
fact that the original DIS score is relatively high,
which makes further improvements very challeng-
ing. Besides, the DAR can lower the prediction

482

Dataset Method DIS (↑) Acc(↑) ECE (↓)

MNLI-m CascadeBERT 78.00 75.97 7.90
- w/o DAR 76.73 76.02 11.07

QNLI CascadeBERT 78.89 84.53 3.41
- w/o DAR 77.79 84.73 8.79

QQP CascadeBERT 84.39 87.21 3.37
- w/o DAR 85.77 88.71 4.99

SST-2 CascadeBERT 82.02 87.70 5.61
- w/o DAR 79.30 87.95 8.73

Table 5: The ECE (%), Acc (%) and DIS (%) scores
on different datasets. ↑ denotes higher is better, while
↓ means lower is better. The proposed DAR can boost
the performance by giving hints of instance difficulty
and calibrate the model predictions.

confidence of difficult instances, which improves
the consistency between the predicted probability
and how likely the model is to be correct for an
instance. We quantitively measure this calibration
effect of DAR, by utilizing the expected calibration
error (ECE) (Guo et al., 2017).4 As shown in Ta-
ble 5, the DAR not only improves the DIS score,
but also calibrates the model predictions, achieving
lower expected calibration error.

5.3 Impacts of More Models in Cascade
We further consider to incorporate more models
into the CascadeBERT framework. Theoretically,
we prove that adding more models in cascade can
boost the task performance under mild assumptions.
Besides, the benefits will become marginal as the
number of model increases. The detailed proof is
provided in the Appendix C. We empirically verify
this by adding a medium-sized model with 6 layers
which satisfies our assumptions into the cascade.
The performance under different speed-up ratios of
a 2-12 cascade consists of a 2L model and a 12L
model and the above mentioned 2-6-12 cascade
are illustrated in Figure 5. Overall, we find that
adding a model with a moderate size can slightly
improve the performance, while the gain becomes
marginal when the speed-up ratio is higher, since
most instances are emitted from the smallest model.

5.4 Fine-tuned Models as an Alternative
To verify the generalizability of our cascading
framework, we propose to apply our method to
RoBERTa (Liu et al., 2019). However, small ver-
sions of RoBERTa pre-trained from scratch are
currently not available. We notice that BERT-kL

4Refer to Appendix B for the details of the ECE score.

2 3 4 5 6
Speed-up Ratio

87.0

88.0

89.0

90.0

91.0

92.0
SST-2

2-6-12
2-12

2 3 4 5 6
Speed-up Ratio

76.0

77.0

78.0

79.0

80.0

81.0

82.0

83.0

A
cc

ur
ac

y
(%

)

MNLI

2-6-12
2-12

Figure 5: Task performance on the validation set and
speed-up ratio trade-off curve comparison of a 2-model
cascade (orange square) and a 3-model cascade (blue
circle) on SST-2 and MNLI-m.

Method MNLI-m/mm QNLI QQP SST-2 AVG

RoBERTa-base 87.0 / 86.3 92.4 71.8 94.3 86.4

RoBERTa-4L 80.3 / 79.2 86.2 69.8 90.8 81.2
DeeBERT 53.9 / 55.4 77.2 67.6 88.6 68.5
PABEE 74.0 / 74.2 - - 87.5 -
CascadeRoBERTa 78.9 / 78.1 86.8 70.5 90.8 81.0

+ Vanilla KD 79.7 / 78.8 86.9 70.8 91.4 81.5

Table 6: Test results from the GLUE server with
RoBERTa models in our cascade framework. The
speed-up ratio is approximately 3× (±4%). The - de-
notes unavailable results of PABEE.

model can achieve comparable performance via
fine-tuning, as discussed in Section 2. Therefore,
we propose to leverage a fine-tuned RoBERTa-2L
with the vanilla KD (Hinton et al., 2015) incorpo-
rated for enhancing its semantic reasoning ability,
as an alternative of the original complete model.
The results around 3× speed-up are listed in Ta-
ble 6. Our framework still outperforms dynamic
early exiting baselines by a clear margin, validat-
ing that our framework is universal and can be
combined with knowledge distillation techniques
to further boost the performance.

6 Related Work

Model-level compression includes knowledge dis-
tillation (KD), pruning and quantization. KD fo-
cuses on transferring the knowledge from a large
teacher model to a compact student model (Hinton
et al., 2015). Sanh et al. (2019) propose Distil-
BERT and Sun et al. (2019) enhance KD by align-
ing the internal representations of the student and
the teacher model. Besides, Jiao et al. (2020) pro-
pose TinyBERT via a two-stage KD on augmented
data. Pruning methods deactivate the unimportant
structures in the model like attention heads (Voita

483

et al., 2019; Michel et al., 2019) and layers (Fan
et al., 2019). Quantization methods target at us-
ing fewer physical bits to efficiently represent the
model (Zafrir et al., 2019; Shen et al., 2020; Zhang
et al., 2020). We do not compare pruning and quan-
tization methods since these techniques are orthog-
onal to our framework.

Instance-level speed-up accelerates the inference
via adapting the computation according to the in-
stance complexity (Graves, 2016). A representa-
tive framework is dynamic early exiting, which
has been verified in natural language understand-
ing (Xin et al., 2020b; Schwartz et al., 2020; Liu
et al., 2020; Zhou et al., 2020; Liao et al., 2021;
Sun et al., 2021), sequence labeling (Li et al., 2021),
question answering (Soldaini and Moschitti, 2020)
and document ranking (Xin et al., 2020a). In this
paper, we probes the work mechanism of dynamic
early exiting, and find that it faces a serious per-
formance bottleneck under high speed-up ratios.
To remedy this, we generalize the idea to a model
cascade and prove it is effectiveness even under
high speed-up ratios for various natural language
understanding tasks. Concurrently with our work,
Enomoto and Eda (2021) adopt the similar idea
and achieve better inference efficiency on image
classification tasks.

7 Conclusion

In this paper, we point out that current dynamic
early exiting framework faces a performance bot-
tleneck under high speed-up ratios, due to insuffi-
cient shallow layer representations and poor exit-
ing decisions of the internal classifiers. To remedy
this, we propose CascadeBERT, a model cascade
framework with difficulty-aware regularization for
accelerating the inference of PLMs. Experimen-
tal results demonstrate that our proposal achieves
substantial improvements over previous dynamic
exiting methods. Further analysis validates that
the framework is generalizable and produces more
calibrated results.

Acknowledgements

We thank all the anonymous reviewers for their
constructive comments, Xuancheng Ren and Hua
Zheng for their valuable suggestions in preparing
the manuscript, and Wenkai Yang for providing the
theoretical analysis. This work was supported by a
Tencent Research Grant. Xu Sun is the correspond-
ing author of this paper.

References
Luisa Bentivogli, Ido Kalman Dagan, Dang Hoa,

Danilo Giampiccolo, and Bernardo Magnini. 2009.
The fifth pascal recognizing textual entailment chal-
lenge. In TAC Workshop.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP).

Shohei Enomoto and Takeharu Eda. 2021. Learning to
cascade: Confidence calibration for improving the
accuracy and computational cost of cascade infer-
ence systems. In AAAI, pages 7331–7339.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. In ICLR.

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. arXiv preprint
arXiv:1603.08983.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In ICML, pages 1321–1330.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In ACL, pages 3651–3657.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of EMNLP, pages
4163–4174.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
2019. Shallow-deep networks: Understanding and
mitigating network overthinking. In ICML, pages
3301–3310.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In ACL, pages 7871–7880.

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan,
Xipeng Qiu, and Xuanjing Huang. 2021. Accelerat-
ing BERT inference for sequence labeling via early-
exit. In ACL, pages 189–199.

https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/P19-1356
https://www.aclweb.org/anthology/P19-1356
https://www.aclweb.org/anthology/2020.findings-emnlp.372
https://www.aclweb.org/anthology/2020.findings-emnlp.372
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://aclanthology.org/2021.acl-long.16
https://aclanthology.org/2021.acl-long.16
https://aclanthology.org/2021.acl-long.16

484

Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su,
Xu Sun, and Bin He. 2021. A global past-future
early exit method for accelerating inference of pre-
trained language models. In NAACL-HLT, pages
2013–2023.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: A self-
distilling BERT with adaptive inference time. In
ACL, pages 6035–6044.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In ICLR.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. JMLR, 9:2579–2605.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick,
and Ian Tenney. 2020. What happens to BERT
embeddings during fine-tuning? In BlackboxNLP
Workshop, pages 33–44.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In
NeurIPS, pages 14014–14024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In EMNLP, pages
2383–2392.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter.
In NeurIPS Workshop on Energy Efficient Machine
Learning and Cognitive Computing.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching
model and instance complexities. In ACL, pages
6640–6651.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian based ultra low
precision quantization of BERT. In AAAI, pages
8815–8821.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631–1642.

Luca Soldaini and Alessandro Moschitti. 2020. The
cascade transformer: an application for efficient an-
swer sentence selection. In ACL, pages 5697–5708.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In EMNLP-IJCNLP, pages 4323–4332.

Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu
Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, and
Xipeng Qiu. 2021. Early exiting with ensemble in-
ternal classifiers. arXiv preprint arXiv:2105.13792.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
ACL, pages 4593–4601.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. arXiv preprint arXiv:1908.08962.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In ACL, pages 5797–
5808.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In
EMNLP Workshop on BlackboxNLP, pages 353–
355.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL-
HLT, pages 1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In System Demonstrations, EMNLP, pages
38–45.

Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin.
2020a. Early exiting BERT for efficient document
ranking. In SustaiNLP: Workshop on Simple and Ef-
ficient Natural Language Processing, pages 83–88.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020b. DeeBERT: Dynamic early exit-
ing for accelerating BERT inference. In ACL, pages
2246–2251.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. BERT-of-Theseus: Com-
pressing BERT by progressive module replacing. In
EMNLP, pages 7859–7869.

https://aclanthology.org/2021.naacl-main.162
https://aclanthology.org/2021.naacl-main.162
https://aclanthology.org/2021.naacl-main.162
https://www.aclweb.org/anthology/2020.acl-main.537
https://www.aclweb.org/anthology/2020.acl-main.537
https://www.aclweb.org/anthology/2020.blackboxnlp-1.4
https://www.aclweb.org/anthology/2020.blackboxnlp-1.4
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/2020.acl-main.593
https://www.aclweb.org/anthology/2020.acl-main.593
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://aclanthology.org/2020.acl-main.504
https://aclanthology.org/2020.acl-main.504
https://aclanthology.org/2020.acl-main.504
https://www.aclweb.org/anthology/D19-1441
https://www.aclweb.org/anthology/D19-1441
https://www.aclweb.org/anthology/P19-1452
https://www.aclweb.org/anthology/P19-1580
https://www.aclweb.org/anthology/P19-1580
https://www.aclweb.org/anthology/P19-1580
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2020.sustainlp-1.11
https://aclanthology.org/2020.sustainlp-1.11
https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.emnlp-main.633
https://www.aclweb.org/anthology/2020.emnlp-main.633

485

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: Quantized 8bit BERT.
In NeurIPS Workshop on Energy Efficient Machine
Learning and Cognitive Computing.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. TernaryBERT:
Distillation-aware ultra-low bit BERT. In EMNLP,
pages 509–521.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In NeurIPS, pages 18339–18350.

A Comparison with FastBERT

Performance comparison of our CascadeBERT
with FastBERT is shown in Table 7 under 3.00×
and 4.00× speed-up ratios. Note that FastBERT
utilizes a complicate internal classifier with self-
attention mechanism and take the hidden states
of all the sequence tokens for making predictions,
while we only adopt the original linear-based classi-
fier. Our method can still outperform the FastBERT
under high speed-up ratios, especially on tasks that
require high-level semantic reasoning ability like
MNLI.

Method MNLI-m / -mm QNLI QQP SST-2 Average

∼
3× FastBERT 79.8 / 78.9 88.2 71.5 92.1 82.1

CascadeBERT 81.2 / 79.5 88.5 71.0 90.9 82.2

∼
4× FastBERT 76.1 / 75.2 86.4 70.5 90.7 79.8

CascadeBERT 79.3 / 77.9 86.5 70.0 90.3 80.8

Table 7: Performance comparison with FastBERT.

B Expected Calibration Error

Calibration measures the consistency between pre-
dictions’ confidence and accuracy. A well cali-
brated model can be more reliable, e.g., it can give
us a hint that it knows what it does not know, and
thus it is easier for deployments in real-world appli-
cations. It is formally expressed as a joint distribu-
tion P (Q,Y) over confidences Q ∈ R and labels
Y ∈ L. When P (Y = y | Q = q) = q, the model
is perfectly calibrated. For example, if the aver-
age confidence score of 100 instances is 0.8, there
should be 80 instances that are correctly predicted.
This probability can be approximated by grouping
predictions into k disjoint and equally-sized bins,
where each bin consists of bk predictions. The ex-
pected calibration error is defined as a weighted
average of difference between each bin’s accuracy

(acc(·)) and prediction confidence (conf(·)):

ECE =
∑
k

bk
n
|acc(k)− conf(k)| (7)

where n is the number of total instances. A lower
ECE denotes the model is better calibrated. In this
paper, we set k = 10 for calculating the ECE score.

C Analysis for More Models in Cascade

Suppose there are n models {M1, . . . ,Mn} sorted
from the smallest to largest according to number of
layers in our cascade, with corresponding number
of layers {L1, . . . , Ln} and the task performance,
e.g., classification accuracy {a1, · · · , an}, we want
to explore whether incorporating another complete
model into the original cascade can further improve
the task performance and speed-up trade-off. In
more detail, we propose to evaluate the difference
of classification accuracy between the original cas-
cade and the new cascade, under the same speed-
up ratio. We denote the new added model as M∗

with classification accuracy a∗ consisting of L∗

layers, Li < L∗ < Li+1 for a specific i. Consid-
ering the instance emitting distribution, we denote
the number of instances exiting after model Mj

(j = 1, . . . , n) as sj in the original n models cas-
cade. For the new n+1 models cascade, the number
of samples exiting after model Mj (j = 1, . . . , n)
is ŝj and there will be ŝ∗ instances emitting from
M∗. Besides, we assume that the accuracy ai ofMi

is the same for any subsets of the original dataset.
The performance difference thus can be written as:

T =
1

N

(
n∑

k=1

akŝk + a∗ŝ∗ −
n∑

k=1

aksk

)
(8)

under the conditions of

n∑
k=1

sk =
n∑

k=1

ŝk + ŝ∗ = N

n∑
k=1

skL
k =

i∑
k=1

ŝkL
k + ŝ∗(Li + L∗)+

n∑
k=i+1

ŝk(L
k + L∗)

(9)

where Lk =
k∑

i=1
Li is the actual layer cost with

the computation overhead and N is the number
of test instances. The first condition indicates the
total number of test instances is the same, and the
second one guarantees that the total layer cost is
same thus the speed-up ratio is identical.

https://www.aclweb.org/anthology/2020.emnlp-main.37
https://www.aclweb.org/anthology/2020.emnlp-main.37

486

There are infinite solutions for the above system
of equations, as we can adjust the exiting thresholds
of different models to achieve the same speed-up
ratio. We propose to simplify this by making a
assumption that we only adjust the thresholds of
Mi, Mi+1 and M∗ to achieve the same speed-up
ratio, thus the following equation holds:

ŝk = sk, k = 1, 2, · · · , i−1, i+2, · · · , n (10)

Conditions in Eq. (9) can thus be re-written as
si + si+1 = ŝi + ŝi+1 + ŝ∗

siL
i + si+1L

i+1 = ŝiL
i + ŝ∗(Li + L∗)

+ ŝi+1(L
i+1 + L∗)

(11)
Then we can further calculate si and si+1 as{

si = ŝi + ŝ∗ − L∗

Li+1
(ŝi+1 + ŝ∗)

si+1 = ŝi+1 +
L∗

Li+1
(ŝi+1 + ŝ∗)

(12)

By plugging the equations in Eq. 12 into the
Eq. 8, and use the assumption in Eq. 10 we get

T =
1

N
[ai(ŝi − si) + ai+1(ŝi+1 − si+1) + a∗ŝ∗]

=
1

N

[
a∗ŝ∗ + ai(

L∗

Li+1
(ŝi+1 + ŝ∗)− ŝ∗)

−ai+1
L∗

Li+1
(ŝi+1 + ŝ∗)

]
=

1

N

[
ŝ∗(a∗ − ai)−

L∗

Li+1
(ŝi+1 + ŝ∗)(ai+1 − ai)

]
The final expected performance difference is thus:

T (ŝ∗, L∗) =
1

N

[
ŝ∗(a∗ − ai)−

L∗

Li+1
(ŝi+1 + ŝ∗)(ai+1 − ai)

]
(13)

where the index i satisfies that Li < L∗ < Li+1.
Note that the model accuracy a∗ is related to the
size L∗ of model, as a larger model with more
layers tends to achieve a better task performance. It
indicates that the performance difference depends
on the number of samples exits at model M∗ (ŝ∗),
and the layers of M∗ (L∗). If we fix the index i
when we add the new model M∗, since we have
ai ≤ a∗ ≤ ai+1, from Eq (13) we can get

T (ŝ∗, L∗)

≤ 1

N

[
ŝ∗(a∗ − ai)−

L∗

Li+1
(ŝi+1 + ŝ∗)(a∗ − ai)

]
≤ 1

N
(a∗ − ai)

[
ŝ∗ − L∗

Li+1
(ŝi+1 + ŝ∗)

]

On the one hand, as L∗ → Li+1, (a∗ − ai) will in-
crease to (ai+1−ai), but ŝ∗− L∗

Li+1
(ŝi+1+ ŝ

∗) will
decrease to −ŝi+1; On the other hand, when L∗

gets close to Li, a∗ − ai → 0. This trade-off indi-
cates that the layer size of M∗ should be carefully
chosen to achieve performance improvements. Oth-
erwise, the overall gain could be negative. Besides,
the upper bound of maximum gain also depends on
the number of samples exit at M∗. Thus, adjusting
thresholds properly is also important. Additionally,
we can further scale the upper bound as:

T (ŝ∗, L∗)

≤ 1

N
(ai+1 − ai)

[
ŝ∗ − Li

Li+1
(ŝi+1 + ŝ∗)

]
≤ si + si+1

N
(ai+1 − ai)

(
1− Li

Li+1

)
which indicates that

max
s∗,L∗

{T (ŝ∗, L∗)}

≤ si + si+1

N

(
max

i
{ai+1 − ai}

)(
1−min

i

{
Li

Li+1

})
.

Note that

max
i
{ai+1 − ai |Mi, · · · ,Mn} (14)

and

min
i

{
Li

Li+1
|Mi, · · · ,Mn

}
(15)

are non-increasing as n gets larger. It means the
maximum expected performance gain of adding
another model can be marginal as the number of
models in the original cascade becomes larger.

In all, our analysis shows that we should care-
fully select model M∗ with layers L∗, and tune the
exiting threshold to adjust number of samples exit
after M∗, to guarantee that the target in Eq. 13 is
positive, in order to gain improvements by incorpo-
rating more models into the original cascade.

