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Abstract

For interpreting the behavior of a probabilis-
tic model, it is useful to measure a model’s
calibration—the extent to which the model
produces reliable confidence scores. We ad-
dress the open problem of calibration for tag-
ging models with sparse tagsets, and recom-
mend strategies to measure and reduce cali-
bration error (CE) in such models. We show
that several post-hoc recalibration techniques
all reduce calibration error across the marginal
distribution for two existing sequence taggers.
Moreover, we propose tag frequency grouping
(TFG) as a way to measure calibration error in
different frequency bands. Further, recalibrat-
ing each group separately promotes a more eq-
uitable reduction of calibration error across the
tag frequency spectrum.

1 Introduction

An advantage of probabilistic models is that, in ad-
dition to providing a prediction, they also quantify
uncertainty. Knowing how certain a model is about
a particular prediction can be crucial when using its
output for downstream tasks or when weighing its
trustworthiness. Of course, the probability estimate
associated with a predicted output is an artifact of
the model, and is subject to error—separate from
the accuracy or error of the prediction itself.

By and large, NLP evaluations of multiclass clas-
sifiers and structured prediction models consider
only the top prediction for an input and how closely
it matches the gold standard. Only in some studies
is the probability assigned to the prediction taken
into account at all (e.g. via a precision-recall curve).

A more comprehensive evaluation would ex-
amine whether the model’s probabilities are well-
calibrated, i.e., whether they correlate well with
empirical accuracy (such that ~ @% of predictions
with probability close to ¢ are in fact correct). Guo
et al. (2017) showed that despite high accuracy,
modern neural networks can still suffer from severe
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miscalibration. Fortunately, calibration error is not
completely random, and can be corrected post hoc
with a second model fit on development data (or
even a separate recalibration set if available) as in
several recalibration techniques (§2).

In domains where NLP models help inform hu-
man decision-making (e.g., medicine), having a
well-calibrated model is essential. Even in less crit-
ical domains, a well-calibrated model has potential
to benefit rare instance discovery, pre-annotation,
and self-training. In this paper we consider a struc-
tured prediction setting of particular relevance in
NLP: tagging tasks with sparse tagsets—output
spaces with a handful of high-frequency tags and
many more rare tags.

Many linguistic phenomena follow power law
distributions and thus feature a long tail of individ-
ually rare events, which, as we will show, makes it
nontrivial to measure calibration error with exist-
ing methods, including marginal calibration error
(MCE), which requires sufficient samples of each
class to produce a reliable estimate (Kumar et al.,
2019). We evaluate two English sentence taggers'
with closed sets of 100s of tags that disambiguate
word tokens: a Combinatory Categorial Grammar
(CCQG) syntactic supertagger with 426 tags (Prange
et al., 2021), and a Lexical Semantic Recognition
(LSR) tagger with 598 tags (Liu et al., 2021).

Our main contributions are the following:

* We posit that evaluation of calibration should
go beyond a model’s highest-confidence pre-
diction, extending the arguments of Nixon
et al. (2020), with a particular focus on sparse
tagsets.

* We propose tag frequency grouping (TFG),
a novel technique for evaluating and recali-
brating groups of similarly frequent tags in a
sparse tagging space.

lData, code, and results are available at https://github.
com/nert-nlp/calibration_tfg. Hyperparameters are de-
scribed in §4.2.
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* We introduce two new error metrics based on
MCE suitable for tasks where insufficient data
is available to apply MCE to all tags.

* We compare TFG and shared class-wise bin-
ning (SCW) on two sequence tagging tasks.

2 Background

Calibration studies have two components: a recali-
bration technique and an evaluation metric. We
use similar notation as Kumar et al. (2019) to
describe both. That is, we assume a multiclass
model f: X — Y that produces a real-valued score
f(X)x €[0,1] for each class k € Y. In other words,
for any input, the model gives K = |))| scores. If
these predictions are the output of a softmax func-
tion (as is typical for the last layer of neural net-
works), they will sum to 1 and can be interpreted
as uncalibrated confidence scores across the dis-
tribution of possible classes or tags. The goal of
recalibration is to make these confidence scores
more reliable.

2.1 Definition and Measurement

There are several metrics for evaluating calibration
error, including maximum calibration error (Naeini
et al., 2015), Brier Score (Brier, 1950), calibration
error (a term used widely in the literature, but here
we refer to definition 2.1 in Kumar et al. (2019)),
and expected calibration error (Naeini et al., 2015).
We focus on the marginal calibration error (Ku-
mar et al., 2019), which is a multiclass extension of
CE.2 MCE uses the l,-norm to measure, for each
class, “the difference between the model’s proba-
bility and the true probability of that class given
the model’s output™: MCE(f) =

J S 2
\J};E[(f(X)k—P(Y:Hf(X)k)) ] )

This metric is the root mean square error of mea-
surements taken from K binary recalibration mod-
els, where P is the true probability that the class
is k given f(X ), which is the model’s predicted
probability for class k on input X. But one of the
problems we quickly encounter with this definition
(and similar measures of calibration error) is that
with finite data, we cannot actually measure cali-
bration error, since f outputs values in a continuous
range. In practice, this is overcome using binning

ZKull et al. (2019) introduce a metric similar to MCE they
call classwise-ECE.

schemes to estimate P(Y =k | f(X);). The range
[0,1] is partitioned into bins; each score is placed
in the appropriate bin; and error is estimated as
the deviation between the average confidence of
the bin and the proportion of positive labels in the
bin (proportion of positive labels is equivalent to
accuracy for top-label calibration).

2.2 Recalibration Techniques

We use three techniques for recalibration: his-
togram binning (Zadrozny and Elkan, 2001), iso-
tonic regression (Zadrozny and Elkan, 2002), and
scaling binning (Kumar et al., 2019). All of these
are post-hoc techniques—they are applied after the
model has been trained. In general, recalibration
techniques fit into one of two categories: scaling or
binning. Binning techniques quantize the interval
of confidence scores and only output a fixed num-
ber of unique calibrated scores equal to the number
of bins used for recalibration. Scaling techniques
output continuous calibrated scores. Scaling tech-
niques are generally better at reducing error, but
because their output domain is continuous, the bin-
ning techniques used for evaluation are prone to
underestimating true calibration error. Kull et al.
(2019) showed this with experiments on CIFAR-10
(Krizhevsky, 2009) and ImageNet (Russakovsky
et al., 2015).

Histogram Binning. Histogram binning is a pop-
ular recalibration technique that is simple and fast.
The interval [0, 1] is subdivided into B subintervals
using the confidence scores from the development
set.> The bin boundaries can be set such that each
bin covers a fixed interval (fixed-width binning), or
such that each bin includes the same number of data
points (adaptive binning; Nguyen and O’Connor,
2015).

Using the boundaries for these B bins, a confi-
dence score from the test set is calibrated by finding
the bin it belongs to and outputting the empirical
proportion of positive labels among the develop-
ment scores in that bin. This definition assumes a
binary classification setting, but histogram binning
can be extended to a multiclass scenario by build-
ing a one-vs.-rest model for each class, by using
shared classwise binning (SCW; Patel et al., 2021),
or by using TFG, described in §3.3.

Isotonic Regression. Isotonic regression is a
scaling technique that fits a non-decreasing piece-

3This is also referred to as a recalibration set in the litera-
ture, though they need not necessarily be disjoint.
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wise linear function on the recalibration set by
minimizing the square error subject to the non-
decreasing constraint. It produces calibrated scores
in a continuous range via linear interpolation.

Scaling Binning. Scaling techniques and bin-
ning techniques each have disadvantages. For ex-
ample, histogram binning usually yields worse re-
sults than temperature scaling (another scaling tech-
nique), but its error measurement is reliable (Kumar
et al., 2019). Scaling binning combines the best
of both approaches by first learning a scaling func-
tion. Uncalibrated scores are binned, and instead
of outputting the proportion of positive labels (as
in histogram binning), the calibrated score is the
average output of the scaling function on the devel-
opment scores in the bin. In our experiments with
scaling binning, we use isotonic regression as the
scaling function.

2.3 Related Work

Zadrozny and Elkan (2002) initially proposed the
one-vs.-rest approach for multiclass probabilities.
Kuleshov and Liang (2015) recognize the sparsity
problem and suggest reducing multiclass calibra-
tion of structured prediction to targeted “events
of interest” and training a binary forecaster to
learn calibrated probabilities of the event happen-
ing. This work is extended by Jagannatha and Yu
(2020), who treat a sequence of tags as a com-
positional model output and develop a forecaster
based on gradient boosted decision trees. They
achieve reductions in expected calibration error and
a slight increase in model performance after rerank-
ing. Reranking refers to the process of normalizing
calibrated scores and reordering them. With most
recalibration techniques, it is rare for the ranking to
be affected, and with some techniques like isotonic
regression, the ranking of calibrated confidence
scores will always match the uncalibrated ones.

3 Designing and Evaluating
Recalibration Models for Sparse
Tagsets

The long tail of tags for CCG and LSR is of par-
ticular interest with respect to calibration. Kumar
et al. (2019) point out that most studies of multi-
class calibration focus primarily on top-label cali-
bration (reducing calibration error for only the top
prediction out of the model for each input), also
called top-1 or top-k when looking at several of the
model’s top predictions. While top-label scores are

an important component of calibration, they don’t
tell the whole story, and we argue that the rest of
the distribution (marginal calibration) shouldn’t
be ignored. Recent works that address marginal
calibration (Kumar et al., 2019; Patel et al., 2021;
Nixon et al., 2020) make similar arguments but
still tend to focus on balanced datasets like CIFAR-
100, which contains 600 examples for each of 100
classes, or datasets with fewer tags like MNIST
(LeCun et al., 1998), MNIST Fashion (Xiao et al.,
2017), and CIFAR-10, which each have 10 classes.

In our analysis of marginal calibration, we study
two long tails of distributions related to calibrating
a sparse tagset: low confidence scores and low-
frequency tags. We show how the standard one-
vs.-rest approach to multiclass calibration becomes
infeasible as the size of the tagging space grows,
and we provide specific recommendations for quan-
tifying calibration error with sparse tagsets, where
the lack of instances of rare tags poses unique chal-
lenges.

Extending section 4 of Nixon et al. (2020) with a
particular focus on sparse tagsets, we now discuss
the many design decisions that need to be made
regarding multiclass calibration.

3.1 Thresholding

While we are interested in calibrating more of the
distribution than is addressed with top-label calibra-
tion, it would be unwise to include all confidence
scores. This is more an issue for evaluation than
for recalibration. The justification for this deci-
sion is made clear in the distribution of the confi-
dence scores and in prior work (Nixon et al., 2020).
We observe that more than 98% of our two mod-
els’ (which each have hundreds of possible tags)
confidence scores are below 0.0001. Evaluating
a recalibration model on all scores is likely to un-
derestimate the error of the model, where the error
on more likely output candidates will be washed
out by excessively many near-zero scores that often
have little error (particularly on a highly accurate
model).

Instead, we select a threshold ¢ and if any scores
are below this threshold, they are excluded from the
recalibration and evaluation sets. For isotonic re-
gression, including the scores below # would have
little effect as this scaling technique produces a
piecewise function independent of any hyperparam-
eter for the number of recalibration bins required
for other techniques. However, if a threshold is
not applied with binning techniques, many bins
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will contain only near-zero scores. For this reason
(and consistency), we apply the threshold ¢ before
both recalibration and evaluation for all techniques.
Consequently, in our results we report calibration
error on unnormalized scores, since thresholding
excludes data and prevents us from obtaining cali-
brated scores for all tags in the distribution.

3.2 Binning

How should bin boundaries be determined?
With a sparse tagset, it is even more important to
avoid fixed-width binning, especially as the number
of bins increases. Fixed-width binning will lead to
significant imbalance, whereby the bins covering
intervals of lowest and highest confidence scores
will have many more items per bin, and the bins in
the middle of the range will have very few items,
causing high variance in estimates of calibration
error. Thresholding does make the distribution less
skewed, but many of the confidence scores in both
of our datasets are low even after a threshold is
applied. The alternative to fixed-width binning,
adaptive binning (Nguyen and O’Connor, 2015),
puts the same number of items in each bin, leading
to wider bins in the middle of the range, but guar-
antees each bin will have a sufficient number of
data points for recalibration to overcome sampling
erTor.
How to avoid too-small bins due to rare tags?
Marginal calibration error as defined in eq. (1)
treats each class as a binary recalibration problem
and averages the error in each recalibration model
that was estimated by binning. Nixon et al. (2020)
highlight that a finer-grained, per-class approach to
evaluation analagous to MCE is ideal because it al-
lows “systematic differences in the calibration error
between classes to be evaluated without washing
each other out.” In contrast to MCE, the top-label
approach measures error only among the model’s
highest confidence score for each input (i.e. the con-
fidence score associated with the model’s predicted
label). This is done by binarizing the multiclass
problem via one-hot labels. The top prediction of
the model is selected and its gold label is taken to
be 1 if that class is the true class and O otherwise.
In this way, confidence scores for multiple tags can
be evaluated together. This idea is key to how we
modify MCE to evaluate our recalibration models.
While MCE is the gold standard, it requires am-
ple data in all tags in order to get a reliable mea-
surement. With our sparse tagsets, measuring MCE
separately for each tag is unfortunately infeasible,

since we would not have enough samples in each
bin. Nguyen and O’Connor (2015), for instance,
recommend 200 samples per bin to reduce sam-
pling error. In the literature, the floor for the num-
ber of bins used in evaluation is around 5. As-
suming 5 bins at >200 samples each, that means
creating a tag-specific recalibration model would
require 1000 confidence scores.

On its face, this is not a huge ask for marginal
calibration with no thresholding, since having a
recalibration set of 1000 tokens will produce 1000
confidence scores for each tag. But the number
of near-zero confidence scores will increase as the
tagset grows, and these near-zero scores are not as
relevant to a discussion about calibration as actual
candidate outputs from the model. For top-label
calibration, it is possible to build a strong recalibra-
tion model, but in order to measure MCE for that
model (with our assumption of 5 bins and at least
200 scores per bin), we would need at least 1000
tokens where each tag is predicted. So the relative
frequency of the rarest tag controls the total num-
ber of instances required for reliable binning (e.g.,
a tag occurring at a rate of 1% would necessitate a
recalibration set of 100,000 instances).

We experiment with two strategies to overcome
this and derive a modified MCE metric. First, we
extend the binarization approach of top-label er-
ror measurement to all labels, effectively creating
a shared binning model for collective evaluation.
This approach, shared classwise binning (SCW),
was introduced by Patel et al. (2021) for recali-
bration, but is extendable to evaluation. (We will
introduce TFG, a generalization of SCW giving
finer control over the sharing, in §3.3.)

For SCW evaluation, we modify MCE and in-
troduce shared marginal calibration error (SMCE).
When operationalized with binning, we get eq. (2).
D contains the set of above-threshold confidence
scores for all tokens and tags in the data. In this
equation, g, is the average confidence score of the
b-th bin and p,, is the average of the binary labels
associated with each confidence score in the b-th
bin. N is the total number of confidence scores
being recalibrated. AdaBin(D, 3) is our adaptive
binning function that partitions the sorted confi-
dence scores into bins of size . A key difference
between this metric and MCE is that scores for
multiple tags are included in the square.

b, _
sucem p)-\| > g, 72 @
beAdaBin(D,B)
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Using SCW for recalibration simply means learn-
ing a single recalibration model, pooling together
all confidence scores from all tags.

How many bins should we use? We report re-
sults using 10 bins for recalibration and evaluation
in our experiments, to ensure each bin has a suffi-
cient number of datapoints.

3.3 Tag Frequency Grouping

As we have explained, SCW solves the problem
of rare tags by pooling all tags together when re-
calibrating or evaluating calibration error. But a
concern is that this may be too coarse-grained: all
tags are not necessarily created equal with respect
to their calibration. We therefore propose a new
technique, TFG, to strike a balance between the
two extremes of treating all tags together or inde-
pendently with respect to calibration. TFG, like
SCW, can be used for recalibration, evaluation, or
both.

The intuition is simple. We often find that mod-
els are overconfident with tags seen frequently in
the training data and underconfident with tags seen
less frequently. Therefore, we hypothesize that
tags that are similarly frequent in the training
data will be miscalibrated in similar ways, and
that by grouping together tags of similar frequen-
cies and developing a separate recalibration model
for each group, we can achieve improved results
over SCW and calibrate tags that lack sufficient
data for a class-specific recalibration model. The
number of groups G should be selected such that
G « K, and in this paper, we report results where
G=54

Choosing an optimal value of G is tricky. As G
increases, the amount of recalibration data avail-
able for each group decreases, making each recal-
ibration model less reliable. However, too low a
value can lead to a reduced benefit over SCW with
the loss of granularity (both in the recalibration
models and in evaluation). Higher values for G
are likely suitable for larger datasets that still suffer
from sparsity. However, if the dataset is sufficiently
large and balanced, we recommend that indepen-
dent recalibration models be created for each tag
instead of using TFG or SCW.

“Patel et al. (2021) explored a similar idea in one of their
experiments on digit recognition: digits with similar class
priors were grouped together manually for recalibration. How-
ever, Patel et al. did not propose a general grouping technique,
nor did they address large sparse tagsets as we do here.

In order to maximize generalization, we propose
constructing tag groups based not on a model’s out-
put, but on the gold tag frequencies in the training
data. The procedure is simple—sort the tags by de-
scending frequency, and add the next most frequent
tag to the group until the number of instances with
gold tags in that group is greater than or equal to
1/G.

Figure 1 depicts a hypothetical example of TFG
on a training set with 45 instances. Note that there’s
some overflow in the first group. This overflow can
occur in any group except the last one, and in theory
could lead to a worst-case scenario where the last
group is much smaller than the others. In practice,
this is unlikely to occur, but making sure all tag
groups encompass a similar amount of training data
is a good step to take prior to recalibration.

SMCE (eq. (2)) can be adapted to grouped
marginal calibration error (GMCE) for TFG by
replacing D, which contains confidence scores for
all tags, with G € D, which contains confidence
scores for one group (a subset of tags):

b
u(‘_]b -75)° (3

GMCE(G,B) = > N

beAdaBin(G,B)

4 Experiments

In our experiments, we develop recalibration mod-
els for two taggers with sparse tagsets and measure
the improvement over the uncalibrated confidence
scores with SMCE (overall error) and GMCE (per-
group error).

4.1 Taggers

We consider two supervised tagging tasks trained
and evaluated on different English datasets: CCG
supertagging—a syntactic task with a large amount
of training data and a high-accuracy model, and
Lexical Semantic Recognition—a semantic task
with less data and a lower-accuracy model.

4.1.1 CCG Supertagging

CCQG is a lexicalized grammar formalism that is
frequently used for syntactic and semantic parsing.
CCG supertagging is the task of labeling each token
with a complex, structured label that belies its func-
tion (Clark, 2002; Bangalore and Joshi, 2010). Ban-
galore and Joshi (1999) describe supertagging as
“almost parsing”, because a sequence of supertags
maps a sentence to a small set of possible parses—
the CCGBank (Hockenmaier and Steedman, 2007)
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Figure 1: Illustration of tag frequency grouping (TFG) with 45 training instances and G = 3 tag groups. Each
shape represents a gold tag from the training data. Tags are sorted by frequency. Starting with the most frequent
tag, groups are formed by iteratively adding all instances of a tag until the size of the group equals or exceeds the
number of training instances divided by the number of groups. When TFG is used for recalibration (as opposed to
just evaluation), a separate recalibration model is learned for each group.

dataset has over 1,200 unique CCG labels. By con-
vention, the model is limited to predicting only
tags that appeared at least 10 times in the training
data, yielding 425 tags + the UNK tag. We use the
non-constructive BERT-based (Devlin et al., 2019)
model from (Prange et al., 2021) with its default hy-
perparameters. The tagger was trained on 927,497
tokens and obtained a dev accuracy of 96.1%.

4.1.2 Lexical Semantic Recognition

LSR involves joint identification of multi-word ex-
pressions (MWES), classification of lexical units,
and disambiguation of coarse-grained supersenses
and for noun, verb, preposition, and possessive ex-
pressions (Liu et al., 2021). Liu et al. (2021) model
this task as a sequence labeling problem using the
STREUSLE dataset (Schneider and Smith, 2015;
Schneider et al., 2018). For each token, they pre-
dict a tag with the conjunction of the token’s MWE,
lexcat, and supersense. Their model is also based
on BERT, but it uses a conditional random field
(CRF; Lafferty et al., 2001) for decoding. We use a
version of the model with no training or decoding
constraints that has 598 tags and use its default hy-
perparameters. The tagger was trained on 44,801
tokens and obtained a dev accuracy of 81.1%. To
extract marginal distributions from the CRF, we
use the Forward-Backward algorithm.

4.2 Experimental Overview

We use three techniques for recalibration: his-
togram binning, isotonic regression, and scaling
binning with SCW and TFG. We use standard splits
from the LSR and CCG datasets, fitting recalibra-
tion models on the development set and evaluating
on the test set.

We exclude the one-vs.-rest recalibration setup
from our experiments. The infeasibility of this
approach with sparse tagsets is in fact one of the
motivations for this paper. With SCW, there is one
recalibration model per technique, and with TFG,
there are G independent recalibration models. We
do not normalize the calibrated scores, since thresh-

olding excludes many tags from the distribution on
each sample.

For both grouping approaches and all three tech-
niques, we evaluate tags in their respective fre-
quency groups (GMCE) and collectively (SMCE).
Evaluating with GMCE gives us more insight into
which tags are miscalibrated (both before and after
recalibration) and reduces exposure to cancellation
effects among the different tags that could lead to
an underestimation of error. Recall that an average
of independent per-tag evaluations is the gold stan-
dard for mitigating these effects but is not possible
due to how many tags lack sufficient representation
in our datasets.

Summary of Hyperparameters and Reacalibra-
tion Model Design Following our explanations
from §3, we made the following decisions for our
models:
* Apply a threshold and exclude all model pre-
dictions less than .01
» Use adaptive binning with 10 bins
¢ Use the I, norm for evaluation
» Evaluate error on unnormalized scores
* Set G =5 for recalibration and evaluation with
TFG

5 Results and Discussion

Our experimental results are visually summarized
in figures 2 and 3. Table 1 provides total error
across the marginal distribution as well as the error
in the most frequent tags and least frequent tags.
Overall, our models for both datasets benefit
from recalibration and see substantial reductions
in calibration error with SCW, TFG, and all recal-
ibration techniques. Relative to the CCG model,
the LSR model has higher absolute error, and we
see greater relative improvements from recalibra-
tion. The recalibrated CCG model has the lowest
absolute error.
How do post-hoc techniques compare? We
evaluated three recalibration techniques in our ex-
periments: histogram binning, isotonic regression,
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CCG LSR |
Recalibration All Group 1 Group 5 All Group 1 Group 5
Method G | SMCE A GMCE A GMCE A SMCE A GMCE A GMCE A
None — | .0167 .0183 .0396 .0330 .0356 .0553
Scaling Binning 1 | .0065 -61.0% | .0225 22.89% | .0390 -1.47% || .0144 -56.36% | .0105 -70.48% | .0534 -3.48%
Scaling Binning 5 | .0019 -88.87% | .0049 -73.09% | .0114 -71.19% || .0159 -51.83% | .0269 -24.42% | .0153 -72.27%
Isotonic Regres. 1| .0024 -85.54% | .0226 23.72% | .0276 -30.35% || .0130 -60.74% | .0161 -54.95% | .0374 -32.49%
Isotonic Regres. 5 | .0032 -80.93% | .0230 25.58% | .0228 -42.37% || .0124 -62.57% | .0132 -62.93% | .0142 -74.34%
Histogram Bin. 1 | .0047 -72.06% | .0286 56.49% | .0422 6.54% || .0086 -73.94% | .0298 -16.4% | .0409 -26.15%
Histogram Bin. 5 | .0028 -83.42% | .0254 38.69% | .0218 -44.93% || .0110 -66.76% | .0222 -37.78% | .0145 -73.71%
N 72,373 12,873 15,854 15,933 2,854 3,020
Tag types 415 1 382 377 3 302
Tag freq in train [22.2%,22.2%] [.0%,0.4%] [7.1%,10.3%] [.0%,.1%]
Tokens 55,371 12,873 9,167 5,381 2,739 1,716

Table 1: Marginal calibration error (measured with SMCE and GMCE) before and after recalibration with different
techniques on two tasks: Combinatory Categorial Grammar (CCG) supertagging and Lexical Semantic Recogni-
tion (LSR). These data are visualized in figure 3. SMCE indicates shared marginal calibration error, and GMCE
indicates grouped marginal calibration error (see §3.2); A refers to the relative change over the original model
(lower is better). 5 groups are used for tag frequency—based evaluation; only the highest-frequency tags (Group 1)
and lowest-frequency tags (Group 5) are shown. The TFG conditions use the same 5 groups for separate recalibra-
tion models, while the SCW conditions (G = 1) use multiple groups only for evaluation.
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Figure 2: Evaluation of recalibration techniques, TFG,
and SCW using SMCE. Techniques include histogram
binning (HB), isotonic regression (IR), and scaling bin-
ning (SB) using isotonic regression as the scaling func-
tion. Black circles show initial calibration error; green
arrows pointing to the left show reductions in calibra-
tion error after recalibration with TFG (G = 5); and blue
squares show calibration error after recalibration with
SCW. Lower SMCE is better.

and scaling binning. When measuring calibration
error collectively in figure 2, we noticed similar per-
formance. Breaking the error down by tag group in
figure 3 gives us more insights about how our recali-
bration techniques affect tags of different frequency.
All of the techniques achieve similar performance,
though isotonic regression has the fewest outliers,
with only one situation—Group 1 for CCG—where
calibration error gets worse.

Both binning techniques, and in particular his-
togram binning, are susceptible to making things
worse in some cases. This happens more with the
CCG tagger, which was fairly well calibrated to
begin with. It is more accurate than the LSR tagger
and has high average confidence in its output, with
relatively few confidence scores near 50%.

In recalibration with binning methods, this
makes CCG more prone to unlucky wide bin bound-
aries (which are more likely to have high error).
Using more bins for recalibration could help miti-
gate this problem; we used 10 bins for both models
for parity in comparisons. While isotonic regres-
sion appears the most reliable, it does not have the
same quantifiable error bounds as scaling binning
(Kumar et al., 2019), which should be taken into
account when choosing a recalibration technique.

How do groups compare? For both datasets,
Group 2 has the lowest initial calibration error, and
it sees some of the smallest changes after recalibra-
tion. These tags are still frequent in the training
data, but less so than the tags in Group 1. Group 5,
which contains the rarest tags, has the highest cali-
bration error and sees the biggest improvements.
The statistics at the bottom of table 1 show us
how unbalanced our tagsets truly are. N shows the
number of confidence scores that exceed the thresh-
old. Then there is the number of tags represented in
each group and the minimum and maximum train-
ing frequencies of the tags in each group. “Tokens”
shows the number of tokens with any score above
the threshold in each group. Remarkably, Group
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Figure 3: Evaluation of recalibration techniques, TFG, and SCW on 5 groups of tags. Colors and shapes are the
same as figure 2, but red arrows pointing to the right indicate an increase in calibration error. Group 1 includes
the most frequent tags (as represented in the training data), and Group 5 includes the rarest tags. Lower GMCE is

better.

1 for CCG has just 1 tag, N, that makes up more
than 22% of the gold-labeled data in the training
set, whereas the most frequent tag for Group 5 is
just .4% of the gold-labeled data.

How does TFG compare to SCW for recalibra-
tion? TFG performs drastically better than SCW
on the rarest tags. In most cases for other tag
groups, the TFG results and SCW results are close.
Only with scaling binning on LSR for Group 1 does
SCW outperform TFG by a wide margin. This may
be the result of a lucky bin boundary, as SCW does
worse than TFG with histogram binning for LSR.

Groups 1 and 2 are interesting for CCG. With
SCW, all three techniques increased calibration
error for Group 1. With TFG, histogram binning
appears to sacrifice performance on Group 1 for
the benefit of Group 2, and scaling binning does
the opposite.

TFG yields strong improvements in all other tag
groups for CCG, whereas SCW does not. The only
other case where TFG slightly increases calibration
error is Group 4 for LSR with scaling binning.

Our results suggest that when used for recalibra-
tion, TFG yields overall improvements in calibra-
tion error that are similar to or better than SCW,
especially on less frequent tags. For datasets where
SCW might outperform TFG, we can still recom-
mend TFG for evaluation of models with sparse
tagsets via GMCE, since GMCE provides more in-
formation about which tags suffer from the greatest
miscalibration.

6 Conclusion

We examined the challenges of evaluating and re-
ducing calibration error with sparse tagsets. In par-
ticular, we introduced TFG to offer more control
over how tags are pooled together given that some
are too infrequent to be recalibrated/evaluated in-
dependently. We showed that SCW and TFG are
easily extensible from recalibration to the evalua-
tion setting with the SMCE and GMCE metrics,
and that GMCE gives more specific insight into
where in a tag distribution the most calibration er-
ror exists and where it can be reduced. On one
semantic task and one syntactic task, we found sub-
stantial improvement in calibration error for the
head and tail of the tag distribution.

Opportunities for further research include de-
vising methods for choosing and evaluating the
optimal value for G and considering normalizing
scores despite the elimination of scores below the
threshold. While the recalibrated model would be
unable to assign any confidence to tags excluded
by thresholding, this effect may be minimal, and
it could lead to improved interpretability since the
distribution would sum to 1.

It may also be worth relying not just on fre-
quency but incorporating the structure of each tag
into the grouping process. LSR and CCG tags, for
example, are compositional, and could be grouped
based on subtag. Testing whether TFG has benefits
for more balanced tagsets is another opportunity.
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