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Abstract

Recent knowledge graph embedding (KGE)
models based on hyperbolic geometry have
shown great potential in a low-dimensional
embedding space. However, the necessity
of hyperbolic space in KGE is still question-
able, because the calculation based on hyper-
bolic geometry is much more complicated than
Euclidean operations. In this paper, based
on the state-of-the-art hyperbolic-based model
RotH, we develop two lightweight Euclidean-
based models, called RotL and Rot2L. The
RotL model simplifies the hyperbolic opera-
tions while keeping the flexible normalization
effect. Utilizing a novel two-layer stacked
transformation and based on RotL, the Rot2L
model obtains an improved representation ca-
pability, yet costs fewer parameters and cal-
culations than RotH. The experiments on link
prediction show that Rot2L achieves the state-
of-the-art performance on two widely-used
datasets in low-dimensional knowledge graph
embeddings. Furthermore, RotL achieves sim-
ilar performance as RotH but only requires
half of the training time.

1 Introduction

To represent entities and relations of knowledge
graphs (KGs) in the semantic vector space, re-
searchers have proposed various knowledge graph
embedding (KGE) models, which have shown
great potential in knowledge graph completion and
knowledge-driven applications (Wang et al., 2017;
Broscheit et al., 2020). To achieve higher predic-
tion accuracy, recent KGE models usually use high-
dimensional embedding vectors up to 200 or even
500 dimensions (Sun et al., 2019; Zhang et al.,
2019). However, when facing large-scale KGs with
millions of entities, high embedding dimensions
would require prohibitive training costs and storage
space (Sachan, 2020; Xie et al., 2020). It hinders
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Figure 1: The training time per epoch of different 32-
dimensional models on two datasets. All results are
measured under the same parameter settings (500 batch
size and 500 negative samples). RotL and Rot2L are
the models proposed in this paper.

the practical application of KGE models, especially
in mobile smart devices.

Recently, low-dimensional KGE models based
on hyperbolic vector space have drawn some at-
tention (Sun et al., 2020). The work of the first
such model, MuRP, indicates that hyperbolic em-
beddings can capture hierarchical patterns in KGs
and generate high-fidelity and parsimonious rep-
resentations (Balazevic et al., 2019b). To capture
logical patterns in KGs, Chami et al. propose a
series of hyperbolic KGE models, including RotH,
RefH, and AttH (Chami et al., 2020). Similar to
the typical TransE model (Bordes et al., 2013) that
treats the relation as a translation operation between
the head and tail entity vectors, the state-of-the-art
RotH model adjusts the head vector by the rotation
and translation transformations to approach the tail
vector in the hyperbolic space.

Although the above hyperbolic-based models
outperform previous Euclidean-based models in
low-dimensional condition, the necessity of hyper-
bolic space in this task is still questionable. Com-
paring a hyperbolic model with its Euclidean-based
variant, it is uncertain which parts of the modifi-
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cation will be vital. Besides, despite theoretical
support, the Möbius matrix-vector multiplication
and Möbius addition operations in hyperbolic em-
beddings are far more complicated than Euclidean
multiplication and addition. As shown in Fig. 1,
RotH requires threefold more training time than
its Euclidean-based variant RotE on two datasets.
Especially on large-scale knowledge graphs, the
additional calculating cost caused by the compli-
cated hyperbolic operations would make the prob-
lem much severer.

Facing these problems, we analyze the effec-
tive components in the hyperbolic KGE models,
and propose two lightweight “RotH-like” models,
RotL and Rot2L, for low-dimensional knowledge
graph embeddings. Without the hyperbolic geom-
etry, RotL eliminates the Möbius matrix-vector
multiplication and designs a new flexible addi-
tion operation to replace the Möbius addition. To
further improve the RotL’s representation capabil-
ity, the Rot2L model utilizes two stacked rotation-
translation transformations in the Euclidean space.
Benefiting from a specific parameterization strat-
egy, Rot2L requires fewer parameters and calcula-
tions than RotH.

We conduct extensive experiments on two
widely-used datasets. The results show that RotL
outperforms existing Euclidean-based models in
the 32-dimensional condition and only requires
half of the training time of RotH. Rot2L obtains
the state-of-the-art performance on the two datasets
and outperforms RotH in both prediction accuracy
and training speed. According to ablation exper-
iments, we prove the effectiveness of the flexible
addition and the other significant modules in Rot2L.
We also verify our models in different embedding
dimensions and analyze the performance difference
between RotH and our models in a relation-specific
experiment.

The rest of the paper is organized as follows. We
discuss the background and definitions in Sec. 2.
Sec. 3 introduces the technical details of RotL and
Rot2L models. Sec. 4 reports the experimental
studies and Sec. 5 further discusses several experi-
mental investigations. The related work is reviewed
in Sec. 6. Finally, we offer some concluding re-
marks in Sec. 7.

2 Background

In this section, we briefly describe the preliminaries
related to this work.

2.1 Knowledge Graph Embeddings
In a knowledge graph G = (E,R, T ), E and R
denote the set of entities and relations, and T is
the collection of factual triples (h, r, t) where the
head and tail entities h, t ∈ E and the relation
r ∈ R. Ne and Nr refer to the number of entities
and relations, respectively.

Knowledge graph embeddings aim to represent
each entity e and each relation r as d-dimensional
continuous vectors. A KGE model is evaluated
by the link prediction task, which aims to find
et ∈ E given an e-r query q = (e, r), such that
the triple (e, r, et) or (et, r, e) should belong to the
knowledge graph G. Generally, a scoring function
F (h, r, t) is designed to measure each candidate
triple. Take the distance-based scoring function
F (h, r, t) = D(Q(h, r), t) as an example, it in-
volves two operations: 1) Transformation function
Q(h, r) transforms the head vector h using the re-
lation vector r; 2) Distance function D(q, t) mea-
sures the distance between the tail vector t and the
transformed head vector q = Q(h, r).

2.2 Hyperbolic Geometry
Recently, researchers start to work on effective low-
dimensional models in the KGE domain (Sachan,
2020; Wang et al., 2021a,b). Multiple hyperbolic
KGE models, such as MuRP, RotH, RefH and
AttH, have achieved good performance in low-
dimensional condition (Balazevic et al., 2019b;
Chami et al., 2020). These models employ a hyper-
bolic geometry model, the d-dimensional Poincaré
ball (Birman and Ungar, 2001) with negative cur-
vature -c (c > 0): Bdc = {x ∈ Rd : ‖x‖2 < 1

c},
where ‖ · ‖ denotes the L2 norm.

The hyperbolic space is one of the three kinds
of isotropic spaces, and the relevant theoretical re-
search has been carried out for decades (Birman
and Ungar, 2001). To achieve the vector transfor-
mation in the hyperbolic space, the Möbius addi-
tion ⊕c and Möbius matrix-vector multiplication
⊗c are utilized. Möbius addition (Ungar, 2001) is
proposed to approximate Euclidean addition in the
hyperbolic space:

x⊕c y =

(
1 + 2c〈x,y〉+ c‖y‖2

)
x+

(
1− c‖x‖2

)
y

1 + 2c〈x,y〉+ c2‖x‖2‖y‖2
(1)

where 〈·〉 is the Euclidean inner product. It is clear
that Möbius addition requires much more calcula-
tions than an ordinary addition.

Möbius matrix-vector multiplication (Ganea
et al., 2018) is also more complicated than Eu-
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clidean multiplication. Before computing matrix
multiplication with M ∈ Rd×k, the vector x ∈ Bdc
is projected onto the tangent space at 0 ∈ Bdc with
the logarithmic map logc0(x). Then the output of
multiplication is projected back to Bdc via the expo-
nential map expc0(x), i.e.,

M ⊗c x = expc0(Mlogc0(x)) (2)

expc0(x) = tanh(
√
c‖x‖) x√

c‖x‖
(3)

logc0(x) = arctanh(
√
c‖x‖) x√

c‖x‖
(4)

2.3 The RotH Model
We briefly review RotH (Chami et al., 2020),
the state-of-the-art model in the low-dimensional
KGE. According to the official PyTorch imple-
mentation1, the scoring function of RotH employs
a “translation-rotation-translation” transformation
and utilizes a hyperbolic distance as the distance
function D.

Specifically, let eH ∈ Bdc denote entity hyper-
bolic embeddings of entity e. For one relation r,
two hyperbolic relation vectors rH , r′H ∈ Bdc are
defined for two translation operations. Using a d-
dimensional vector r̂, RotH parameterizes a Givens
Rotation operation with a block-diagonal matrix of
the form:

Rot(r̂) = diag(G(r̂1, r̂2), . . . , G(r̂d−1, r̂d)) (5)

where G(r̂i, r̂j) :=

[
r̂i, -r̂j
r̂j , r̂i

]
. (6)

Then, for a triple (h, r, t), the scoring function
FH of RotH is defined as:

QcH(h, r) = Rot(r̂)⊗c (hH ⊕c rH)⊕c r′H (7)

Dc
H(q, t) = − 2√

c
arctanh(

√
c‖ − q ⊕c tH‖)2 (8)

FH(h, r, t) = Dcr
H (QcrH (h, r), t) + bh + bt, (9)

where cr > 0 is the relation-specific curvature
parameter, and be(e ∈ E) are entity biases which
act as margins in the scoring function (Balazevic
et al., 2019b; Chami et al., 2020).

The other hyperbolic models can be regarded as
RotH’s variants using different relation transforma-
tions. In addition, RotE is a Euclidean-based RotH
variant, and its scoring function is defined as:

FE(h, r, t) = −‖(Rot(r̂)h+ r)− t‖2 + bh + bt, (10)

where h, r, t ∈ Rd. Without complex hyperbolic
calculations, FE can be computed in linear time of
the embedding dimensions.

1https://github.com/HazyResearch/KGEmb

3 The Methodology

The goal of this work is to design a high-efficiency
low-dimensional KGE model by extracting the ef-
fective components in the RotH model and elimi-
nating the redundancy.

We find that RotH performs noticeably well be-
cause of two reasons. The first reason is rotation-
translation transformation. As proved in previous
research (Sun et al., 2019; Chami et al., 2020),
this specific transforming operation can infer dif-
ferent relation patterns in the KG. The second rea-
son is flexible normalization. All entity vectors
in the hyperbolic space satisfy ‖e‖2 < 1

c before
and after transformation, while the curvature c is
relation-specific and self-adaptive. As the repre-
sentation capability of a low-dimensional vector
space is limited, the effect of flexible normaliza-
tion would be more obvious. It explains why RotH
can outperform its Euclidean-based variant RotE
in low-dimensional KGE tasks.

In this section, we first propose a lightweight
model, called RotL, which remains the flexible
normalization of RotH and simplifies the complex
hyperbolic operations. The details of RotL will
be described in Sec. 3.1. We further design the
Rot2L model using two stacked rotation-translation
transformations. Rot2L employs a novel parame-
terization strategy that can save half of parameters
in the two-layer architecture, which is detailed in
Sec. 3.2. The architectures of the four models
mentioned above are illustrated in Fig. 2.

3.1 The RotL Model and Flexible Addition

The RotL model aims to achieve similar perfor-
mance to RotH and minimize its computational
complexity close to that of RotE. Comparing the
scoring functions of RotH and RotE in Eq. 9 and
10, it is clear that the additional calculations of
RotH are centered on Möbius addition and Möbius
matrix-vector multiplication.

Therefore, we first eliminate the hyperbolic em-
beddings in RotL and initialize the entity vector e
and the two relation vectors for rotation and trans-
lation in the Euclidean space, such that the relation
transformation can be calculated using Euclidean
addition and multiplication directly.

To achieve the flexible normalization, we pro-
pose Flexible Addition ⊕α, a simplified form of
Möbius Addition, i.e.,

x⊕α y =
α(x+ y)

1 + 〈x,y〉 , (11)

https://github.com/HazyResearch/KGEmb
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Figure 2: The architectures of four models, including the previous RotE and RotH, and the proposed RotL and
Rot2L in this paper. The rectangle box denotes a Euclidean-based operation, while the rounded rectangle box
denotes a hyperbolic-based one. The inside rectangles denotes the embedding vectors or matrices, in which the
relation-specific ones are in orange.

⊗
c,
⊕

c,
⊕

α refer to Möbius multiplication, Möbius addition and Flexible
addition, respectively.

where α is a relation-specific scaling parameter
and with a default value of 1. The Flexible Ad-
dition provides a self-adaptive normalization to
(x + y), and has lower computational complex-
ity than Möbius addition. Counting the operation
times of d-dimensional vector operations, the for-
mer requires three additions and two multiplica-
tions, while the latter needs nine and 12 operations,
respectively. We further discuss the connection
between the two operations through Theorem 1.

Theorem 1. Given that c = α = 1, the Möbius
Addition ⊕c and Flexible Addition ⊕α satisfy that
x⊕c x ≡ x⊕α x.

Proof. With c = α = 1 and two vectors x,x′ ∈
Rd, satisfying x = x′,

x⊕c x′ =
(
1 + 2〈x,x′〉+ ‖x′‖2

)
x+

(
1− ‖x‖2

)
x′

1 + 2〈x,x′〉+ ‖x‖2‖x′‖2

=

(
1 + 〈x,x′〉+ 〈x′,x〉+ ‖x′‖2

)
x+

(
1− ‖x‖2

)
x′

1 + 〈x,x′〉+ 〈x′,x〉+ ‖x‖2‖x′‖2

=
(1 + 〈x′,x〉)(x+ x′)

(1 + 〈x,x′〉)(1 + 〈x′,x〉) =
x+ x′

1 + 〈x,x′〉 = x⊕α x′

(12)

We emphasize that Theorem 1 indicates the equiva-
lence of the two operations in a special condition.
In our models, the proposed Flexible Addition is
not equal to the Möbius Addition. It imitates the
flexible normalization of the latter and eliminates
the Hyperbolic space assumption.

We then define the transformation function of
RotL as QαL(h, r) = Rot(r̂)h⊕α r′, which can be
regarded as a RotE transformation using the flexi-

ble addition. To fit this novel operation, we further
modify the distance function of RotH in Eq. 8 by
designing a simpler non-linear mapping operation.
The distance function and scoring function of RotL
are defined as follows:

Dα
L(q, t) = −ϕ(‖ − q ⊕α t‖) (13)

FL(h, r, t) = D
α′
r

L (Qαr
L (h, r), t) + bh + bt, (14)

where αr and α′r are two different scaling param-
eters, and ϕ(x) = xex is empirically discovered
to replace the arctanh function in RotH with less
complexity.

Comparing Eq. 9 and 14, it is clear that the
hyperbolic calculations are completely eliminated
in the RotL model. Thus, RotL can reduce the
computation complexity of RotH and save half of
the training time as shown in Fig. 1.

3.2 The Rot2L Model and Stacked
Transformation

Although the lightweight RotL maintains the flexi-
ble normalization effect, its performance is limited
by the original transformation function of RotH.
In this section, we describe a novel Rot2L model
utilizing two stacked translation-rotation transfor-
mations.

According to the theory of affine transforma-
tion (Berger, 1987), the two transformations can
be replaced by a single one. Therefore, inspired by
neural networks, we design a two-layer architecture
with an activate function in the middle, as shown
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in Fig. 2. The transformation function Q2L(h, r)
in Rot2L is defined as:

%(h, q) = tanh(q) + γh (15)

Qα1,α22L (h, r) = Qα1L (%(h, Qα2L (h, r)), r), (16)

where γ is a hyper-parameter that balances the two
parts. Qα1L and Qα2L represent two transformation
layers, which are the same as the transformation
function in RotL.

In the Rot2L model, the two layers need differ-
ent parameters. This would double the amount of
relation parameters because each layer requires two
Nr × d embedding matrices to represent the trans-
lation vectors and rotation matrices for all relations.
To reduce relation parameters, Rot2L employs a
novel parameterization strategy, which shares par-
tial parameters among different relations.

Specifically, we utilize one embedding matrix
M ∈ RNr×d and a d-dimensional learnable vector
f ∈ Rd for each rotation-translation transforma-
tion layer. Such that half of the parameters are
shared in different relations by replacing another
embedding matrix to the vector f . Given the vec-
tor r = M [r] for the relation r, the correspond-
ing translation vector and rotation matrix are con-
structed as:

r′ = [r1, f1, r2, f2, . . . , r d
2
, f d

2
], (17)

Rot(r̂) = diag(G(r d
2
+1, f d

2
+1), . . . , G(rd, fd)). (18)

Finally, the scoring function of Rot2L con-
tains the transformation functionQ2L(h, r) and the
same distance function as RotL, which is defined
as:

FL(h, r, t) = D
α′
r

L (Qα1r,α2r2L (h, r), t) + bh + bt. (19)

Note that, it might be feasible to employ more
transformation layers in Rot2L like deep neural
networks. There are two reasons that we do not
utilize more than two layers. First, more layers
require more parameters, which goes against our
original intention of being lightweight. Second, we
find the vector values are gradually magnified when
getting through multiple layers. Using three layers
in the Rot2L model already suffers performance
decrease. Exploring a deeper model with more
effective regularization will be our future work.

4 Experiments

4.1 Experimental Setup
Datasets. Our experimental studies are conducted
on two widely-used datasets. WN18RR (Bordes
et al., 2014) is a subset of the English lexical
database WordNet (Miller, 1992), while FB15k237
(Toutanova and Chen, 2015) is extracted from Free-
base including knowledge facts on movies, actors,
awards, and sports. Inverse relations are removed
from the two datasets, as many test triples can be
obtained simply by inverting triples in the training
set. The statistics of the datasets are given in Table
1 and “Train”, “Valid”, “Test” refer to the amount
of triples in training, validation, and test sets.

Table 1: Statistics of the datasets.

Dataset Nr Ne #Train #Valid #Test
FB15k237 237 14, 541 272, 115 17, 535 20, 466
WN18RR 11 40, 943 86, 845 3, 034 3, 134

Implementation Details. Following the previous
work, we utilize a binary cross-entropy loss, which
is defined as:

L = −logσ(F (h, r, t))−
k∑
i=0

log(1−σ(F (h′i, r, t
′
i))), (20)

where σ(·) refers to the Sigmoid function, and
(h′i, r, t

′
i) refers to the negative samples after delet-

ing training triples. All experiments are performed
on NVIDIA GeForce GTX1080Ti GPUs, and im-
plemented in Python using the PyTorch framework.

Hyperparameter Settings. According to the low
dimensional condition, we train our model set-
ting the embedding dimensions in {8, 16, 32, 64},
with the Adam optimizer for the WN18RR dataset
and Adagrad optimizer for FB15k237. We se-
lect the hyper-parameters of our model via grid
search according to the metrics on the validation
set. Specifically, we empirically select the learning
rate among {0.0005, 0.005, 0.05}, the batch size
among {100, 200, 500}, the amount of negative
samples k among {50, 200, 500}, and the balance
hyper-parameter γ among {0.1, 0.3, 0.5, 1.0}.

Evaluation Metrics. For the link prediction ex-
periments, we adopt three evaluation metrics: 1)
MRR, the average inverse rank of the test triples, 2)
Hits@10, the proportion of correct entities ranked
in top 10, and 3) Hits@1, the proportion of correct
entities ranked first. Higher MRR, Hits@10, and
Hits@1 mean better performance. Following the
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Table 2: The link prediction results on the WN18RR and FB15k237 datasets. The best scores of 32-dimensional
models are in Bold.

Type Methods FB15K237 WN18RR
MRR Hits@10 Hits@1 MRR Hits@10 Hits@1

Euclidean-based
Models

RotatE 0.290 0.458 0.208 0.387 0.491 0.330
TuckER 0.306 0.475 0.223 0.428 0.474 0.401
MuRE 0.313 0.489 0.226 0.458 0.525 0.421
RefE 0.302 0.474 0.216 0.455 0.521 0.419
RotE 0.307 0.482 0.220 0.463 0.529 0.426
AttE 0.311 0.488 0.223 0.456 0.526 0.419

Hyperbolic-based
Models

MuRP 0.323 0.501 0.235 0.465 0.544 0.420
RefH 0.312 0.489 0.224 0.447 0.518 0.408
RotH 0.314 0.497 0.223 0.472 0.553 0.428
AttH 0.324 0.501 0.236 0.466 0.551 0.419

Our Models RotL 0.320 0.500 0.229 0.469 0.550 0.426
Rot2L 0.326 0.503 0.237 0.475 0.554 0.434

previous works, we process the output sequence in
the filter mode.

4.2 Link Prediction Task

We evaluate our models in the link prediction task
on the two datasets. The experimental results are
shown in Table 2. We select ten compared mod-
els in two types, in which the first six models are
Euclidean-based, and the others utilize hyperbolic
embeddings. Following the setting of Chami et
al. (Chami et al., 2020), all these models are in
32-dimensional vector space.

From the results, we have the following obser-
vations. At first, the four hyperbolic-based models
generally outperform their Euclidean variants and
RotatE and TuckER, which are the state-of-the-art
models for high-dimensional knowledge graph em-
beddings. This proves the effectiveness of hyper-
bolic models in low-dimensional knowledge graph
embeddings.

RotL outperforms RotE and the other Euclidean-
based models. Compared with RotE, the Hits@10
of RotL improves from 0.529 to 0.550 on
WN18RR, and from 0.482 to 0.500 on FB15k237.
Using a lightweight architecture, RotL even
achieves similar prediction accuracy as RotH on
FB15k237. It indicates that the hyperbolic embed-
dings technology is possible to be replaced with
flexible addition and new distance function. Using
a novel two-layer transformation function, Rot2L
further improves RotL and achieves the state-of-
the-art results on two datasets. Especially com-
pared with RotH, MRR of Rot2L improves from
0.314 to 0.326 on FB15k237, and the Hits@1 in-
creases from 0.428 to 0.434 on WN18RR.

It should be noted that improving low-
dimensional performance is much harder than that

in the high-dimensional condition. Our experimen-
tal results prove the effectiveness of Rot2L, while
the computational complexity of Rot2L is lower
than RotH and AttH.

4.3 Ablation Studies

We further conduct a series of ablation experiments
to evaluate the different modules of our models.
Two main improvements should be evaluated: 1)
the new distance function (Dis) in Eq. 13 and 2)
the middle activate function (Mid) in Eq. 15. Ac-
cordingly, we test the variants by eliminating one
of the two functions (e.g., Rot2Lw/oDis by remov-
ing the distance function). The other parts, such as
flexible addition and stacked transformations, can
be verified by comparing RotE (a Euclidean-based
variant of RotH), RotL and Rot2L. The experimen-
tal results are shown in Table 4.

From the results, we can see that Hits@10 of
Rot2L are higher than Rot2Lw/oDis on the both
datasets, which proves the effectiveness of the dis-
tance function. Similar result is also shown in RotL,
but the improvement is relatively small. Hits@10
of Rot2Lw/oMid are lower than that of Rot2L on
FB15k237, while having no obvious difference on
WN18RR. This indicates that the activate func-
tion is more effective on FB15k237, which con-
tains much more relations than WN18RR. For
FB15k237, RotL outperforms Rot2Lw/oMid, indi-
cating that facing complex relationships, the pure
two-layer transformation is no better than a sin-
gle layer. This further validates the contribution
of the activate function. Comparing RotLw/oDis
and RotE, the impact of flexible addition is obvi-
ous. Using a simple scaling operation, the flexible
addition provides a 1% and 2% improvements of
Hits@10 on the two datasets, respectively.
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Table 3: Comparison of Hits@10 on relation-specific triples in WN18RR. ∆(L-H) denotes the growth rate of RotL
relative to RotH, and similarly ∆(2L-H) denotes the growth rate of Rot2L. Higher KhsG and lower ξG mean more
hierarchical.

Relation KhsG ξG RotE RotH RotL ∆(L-H) Rot2L ∆(2L-H)
hypernym 1.00 -2.46 0.242 0.250 0.247 -1.12% 0.254 1.44%
derivationally related form 0.07 -3.84 0.960 0.970 0.967 -0.24% 0.968 -0.15%
instance hypernym 1.00 -0.82 0.533 0.480 0.496 3.42% 0.467 -2.57%
verb group 0.07 -0.50 0.974 0.974 0.974 0.00% 0.974 0.00%
also see 0.36 -2.09 0.634 0.643 0.625 -2.78% 0.688 6.95%
has part 1.00 -1.43 0.343 0.349 0.329 -5.83% 0.334 -4.17%
member of domain usage 1.00 -0.74 0.375 0.292 0.417 42.86% 0.417 42.86%
member of domain region 1.00 -0.78 0.365 0.269 0.385 42.86% 0.442 64.27%
similar to 0.07 -1.00 1.000 1.000 0.667 -33.34% 1.000 0.00%
member meronym 1.00 -2.90 0.342 0.395 0.405 2.49% 0.451 14.00%
synset domain topic of 0.99 -0.69 0.382 0.408 0.439 7.53% 0.443 8.61%

Table 4: The results of ablation experiments on (a)
FB15k237 and (b) WN18RR.

Methods FB15K237
MRR Hits@10 Hits@1

Rot2L 0.326 0.503 0.237
Rot2Lw/oMid 0.317 0.497 0.229
Rot2Lw/oDis 0.316 0.492 0.226
RotL 0.320 0.500 0.229
RotLw/oDis 0.316 0.495 0.227
RotE 0.307 0.482 0.220

(a)

Methods WN18RR
MRR Hits@10 Hits@1

Rot2L 0.475 0.554 0.434
Rot2Lw/oMid 0.474 0.554 0.435
Rot2Lw/oDis 0.463 0.543 0.426
RotL 0.469 0.550 0.426
RotLw/oDis 0.467 0.549 0.420
RotE 0.463 0.529 0.426

(b)

Overall, the experimental results indicate the ef-
fectiveness of the major modules of our proposed
models in this paper. Based on the same Euclidean
space, our RotL and Rot2L models have a signif-
icant performance improvement compared to the
RotE model.

4.4 Efficiency Analysis
We analyze and compare the computational com-
plexity among RotE, RotH, RotL, and Rot2L in
this section. In terms of time complexity, as shown
in Fig. 1, RotL is much faster than RotH mainly
because that the Flexible Addition requires only a
quarter of the computational cost of the Möbius
addition. Although Rot2L repeats the rotation-
translation transformation twice, its computational
cost is still lower than that of RotH.

In terms of space complexity, a slight difference
is shown in the number of relation parameters. Be-
cause the parameters related to entities, including

entity embedding vectors and entity biases, are the
same in the four models and occupy the vast ma-
jority of total parameters, RotH requires the most
relation parameters, (3Nr+1)d, including three re-
lation transformation vectors and the learnable cur-
vature for different relations. By contrast, RotE and
RotL cost smaller, which are 2Nrd and 2(Nr+1)d,
and the extra part of RotL comes from α in Flexible
Addition. Although using an effective parameter-
ization strategy, Rot2L still requires two shared
vectors and another α-related vector. Its relation
parameter amount is (2Nr + 5)d. As the relation
number Nr is always greater than four, the Rot2L
model requires fewer parameters than RotH.

In summary, the RotL and Rot2L models are
highly efficient and better than the RotH model in
both time complexity and space complexity.

5 Discussion

In this section, we further discuss several important
questions on the RotL and Rot2L models.

Q1: Which parts of predictions are improved
in our models comparing with RotH?

We measure the link prediction performance
of relation-specific triples on WN18RR, shown
in Table 3, to analyze the improvements of the
Rot2L model. The results are generated in the
32-dimensional condition. Comparing in different
relations, RotE and RotH have their own strengths.
RotH has better Hits@10 in most relations but is
weaker than RotE in the “member of domain us-
age” and “member of domain region” relations.
RotL performs well like RotH, but fails to predict
the “similar to” relation. As the optimal model,
Rot2L obtains the best Hits@10 in 8 out of 11 re-
lations and only has a small decrease in the other
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three relations. It should be noted that RotL and
Rot2L effectively improve on the two “member of”
relations, comparing to RotH. Especially, Rot2L
achieves 42.86% and 64.27% improvements than
RotH on these relations. Achieving the flexible
normalization of RotH in the Euclidean space, our
models perform well in both RotH-dominant and
RotE-dominant relations.

Q2: Can our models encode hierarchical pat-
terns like hyperbolic-based models?

As RotH has been proved on the benefits of hy-
perbolic geometric on hierarchical relations, we
further analyze whether our models can still pre-
serve this property. Following the work of Chami et
al. (Chami et al., 2020), we utilize the Krackhardt
hierarchy score (KhsG) and estimated curvature
(ξG) as metrics. The related results can be found in
Table 4, in which a relation with higher KhsG and
lower ξG is more hierarchical.

In terms of non-hierarchical relations, such
as “verb group”, Euclidean-based and hyperbolic-
based RotH have similar performances. In terms
of hierarchical relations satisfying KhsG = 1, we
observe that hyperbolic embeddings work better
on relations having low ξG , such as “hypernym”,
“has part”, and “member meronym”. Meanwhile,
RoE and RotL outperform RotH in relations having
relative higher ξG , such as “instance hypernym”,
“member of domain usage”, and “member of do-
main region”. Compared with the other three mod-
els, Rot2L obtains the best Hits@10 in most rela-
tions and works effectively on hierarchical relations
with different ξG .

The results indicate that the simplified models,
RotL and Rot2L, have a good ability to encode
hierarchical relations. They preserve the good
properties of both hyperbolic geometric and the
Euclidean-based RotE.

Q3: How about the model performance in other
embedding dimensions?

We further compare the four models in different
dimensions from 8 to 128. The experimental results
are shown in Fig. 3(a). The prediction accuracy of
the four models improves with the growth of the
embedding dimensions. When the dimensions are
lower than 32, RotE is obviously weaker than the
others, but it performs well in the high-dimensional
condition. Except for RotE, the other three models
obtain similar results under high dimensions, but
there are still some differences. Specifically, RotL
performs better in lower dimensions and achieves

Figure 3: (a) The Hits@10 of four models on WN18RR
with different embedding dimensions. (b) The changes
of the Hits@10 on WN18RR as training proceeds.

the best Hits@10 under 16 dimensions. The ad-
vantage of Rot2L is shown with the increase of
dimensions: Rot2L outperforms the other two after
32 dimensions. The experimental results prove that
the stacked transformations in Rot2L have stronger
representation capacity in the high-dimensional
condition.

Q4: Can our models accelerate the training
speed?

Fig. 3 (b) shows the convergence of the training
process for the four models under 32 dimensions.
We can observe that RotE increases slowly in the
first 40 epochs and converges later than the oth-
ers. RotH converges faster than RotE, which is
previously regarded as the contribution of hyper-
bolic space. From our experimental results, it is
clear that both RotL and Rot2L show similar per-
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formance. RotL, which has little difference from
RotE in structure, shows a much faster training
speed. Although RotE takes less time over one
epoch, RotL can achieve higher performance with
less training epochs. Comparing RotH and Rot2L,
we can find that Rot2L precedes in almost every
epoch. In the 25th epoch, Rot2L already achieves
similar performance as the final performance of
RotH. The results indicate that our models can re-
place the hyperbolic RotH model with comparable
prediction accuracy and training speed.

6 Related Work

6.1 Knowledge Graph Embeddings

Various KGE models have been proposed using dif-
ferent scoring functions, such as translation-based
TransE (Bordes et al., 2013), factorization-based
ComplEx (Trouillon et al., 2016) and CNN-based
ConvE (Dettmers et al., 2018). With the rise of
deep learning, several DL-based methods have
been proposed, such as ConvKB (Nguyen et al.,
2018) and CompGCN (Vashishth et al., 2020). Bal-
azevic et al. (Balazevic et al., 2019a) propose a
linear model based on Tucker decomposition of the
binary tensor representation of knowledge graph
triples. RotatE (Sun et al., 2019), inspired by Eu-
ler’s identity, represents a relation as the rotation
operation between the head and tail entities. Di-
hEdral (Xu and Li, 2019) introduces rotation and
reflection operations in dihedral symmetry group
to construct the relation embeddings. Similar to
the previous approaches, these models utilize high-
dimensional embedding vectors while designing a
new score function to better distinguish the triples.

6.2 Hyperbolic Embeddings

Hyperbolic geometry has recently drawn wide at-
tention because of its potential to learn parsimo-
nious representations of symbolic data by simulta-
neously capturing hierarchy and similarity (Nickel
and Kiela, 2017; Sala et al., 2018; Le et al., 2019).

Recently, some researchers start to apply hy-
perbolic embedding in the KGE domain. Balaže-
vić et al. (Balazevic et al., 2019b) propose the
MuRP model to embed KG triples in the Poincaré
ball model of hyperbolic space using the Möbius
matrix-vector multiplication and Möbius addition
operations. Similarly, Kolyvakis et al. (Kolyvakis
et al., 2020) extend the translational models by
learning embeddings of KG entities and relations
in the hyperbolic Poincaré-ball model. Sun et al.

(Sun et al., 2020) propose a hyperbolic relational
graph neural network to capture knowledge asso-
ciations for the KG entity alignment task. Chami
et al. (Chami et al., 2020) employ rotation and
reflection operations to replace the multiplication
operation between the head entity and relation vec-
tors, and propose a series of hyperbolic KGE mod-
els with trainable curvature, including RotH, RefH,
and AttH.

Comparing with the existing hyperbolic KGE
models, our model simplifies the hyperbolic calcu-
lations to improve computational efficiency while
achieving competitive performance.

7 Conclusion

The recently proposed hyperbolic-based mod-
els achieve great prediction accuracy in low-
dimensional knowledge graph embeddings, but
require complicated calculations for hyperbolic
embeddings. In this paper, we analyze the effec-
tive components in those models and propose a
lightweight variant based on Euclidean calculations.
After simplifying the Möbius operations in RotH,
our proposed RotL model achieves a competitive
performance, which saves half of the training time.
Using a two-layer stacked transformation, we fur-
ther propose Rot2L that outperforms the state-of-
the-art RotH model in both prediction accuracy and
training speed.

These positive results encourage us to explore
further research activities in the future. We will
theoretically analyze the effectiveness of flexible
normalization in the low-dimensional KGE tasks.
For the stacked transformations in Rot2L, we will
explore multiple-layer architectures and evaluate
more different transformation forms. Finally, we
plan to apply our models on real-world knowledge
graphs in different domains such as mobile health-
care, smart cities, and mobile e-Commerce.
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