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Abstract

Variational autoencoders have been studied as
a promising approach to model one-to-many
mappings from context to response in chat re-
sponse generation. However, they often fail
to learn proper mappings. One of the reasons
for this failure is the discrepancy between a
response and a latent variable sampled from
an approximated distribution in training. In-
appropriately sampled latent variables hinder
models from constructing a modulated latent
space. As a result, the models stop handling
uncertainty in conversations. To resolve that,
we propose speculative sampling of latent vari-
ables. Our method chooses the most probable
one from redundantly sampled latent variables
for tying up the variable with a given response.
We confirm the efficacy of our method in re-
sponse generation with massive dialogue data
constructed from Twitter posts.

1 Introduction

In early neural-based approaches to chat dialogue
modeling, conventional encoder-decoder frame-
works (Cho et al., 2014; Sutskever et al., 2014)
tended to generate safe responses (Li et al., 2016).
The main reason was that these frameworks model
response generation as one-to-one projections from
an utterance to a response, while many probable re-
sponses often exist in open-domain conversations.
The use of conditioned variational autoencoders
(CVAE) is a promising approach for resolving the
problem (Sohn et al., 2015; Serban et al., 2016). In
these models, latent variables sampled from approx-
imated distributions are expected to serve as a clue
to handle the uncertainty in probable responses.
The uncertainty can correspond to topics, domains,
or styles that are not explicitly controlled.
However, the training of variational models is
known to be unstable in chat response generation.
When the training fails, latent variables are ignored
and the models are reduced to the conventional

Why don’t you
listen to MJ?

Utterance
Any musicians to
recommend?

Jimi Hendrix is a rock
guitar legend.

Figure 1: The posterior can produce a variable leading
to another probable response: illustrative example.

encoder-decoders (Bowman et al., 2016). It is also
possible for latent variables to work too aggres-
sively and lead the models to generate responses
that are less relevant to the contexts.

Although many existing studies have tried to
improve variational models (Kingma et al., 2016;
Zhao et al., 2017; Shen et al., 2018; Gu et al., 2018;
Fu et al., 2019) (§ 2), we postulate that there still
remains a problem that degrades the models; dur-
ing training, a sampled latent variable can be in-
appropriate to represent a given response, due to
1) immature parameters in early stages of training
and 2) a trade-off in training objectives (Figure 1).

We hypothesize that the discrepancy between
an unreliable latent variable and a given response
can hinder models from structuring a modulated
latent space. To address the problem, we propose
speculative sampling of latent variables, a simple
model-agnostic method to help variational models
implicitly handle the uncertainty in conversations.

In experiments, we evaluated our method on mas-
sive open-domain dialogue data taken from Twitter.
Automatic and human evaluations on the gener-
ated responses confirmed that our method improved
both sensibleness and specificity of responses.

The contributions of this paper are as follows.

* We pointed out the problem of variational
models that inappropriate latent variables in
training can disorganize the latent space.
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* We proposed a simple and model-agnostic
method for modulating the latent space by
sampling proper latent valiables in training.

* We empirically confirmed that our method
improved the quality of generated responses
both in automatic and human evaluation.

2 Related work

CVAE-based models have been studied as one of
the promising solutions to the safe response prob-
lem in chat response generation (Sohn et al., 2015;
Serban et al., 2016). However, the difficulty in op-
timization has been studied mainly from a machine
learning perspective; models with a sufficient num-
ber of parameters can ignore latent variables and
work similarly to conventional encoder-decoder
models (a.k.a. KL vanishing). Thus, many studies
have proposed methods to control the optimization
of variational models (Bowman et al., 2016; Zhao
et al., 2017; Kingma et al., 2016; Shen et al., 2018;
Li et al., 2018; Gu et al., 2018; Gao et al., 2019;
He et al., 2019). They mainly focused on regular-
ization, the architecture, and the training schedule.

To design a latent space where the relevance and
diversity of probable outputs are reflected geomet-
rically, Gao et al. (2019) proposed SPACEFUSION.
Among the aforementioned studies, their approach
shares with us a similar goal of organizing the la-
tent space. Kruengkrai (2019) proposed to sample
multiple latent variables in text modeling, similarly
to our method. However, the intention is different
as their method was for better approximation of the
expected reconstruction term in training.

3 Speculative Latent Variables Sampling

The main concept of variational response gener-
ation models is to handle the uncertainty in con-
versations as the randomness of a latent variable z
sampled from the model’s distribution. With param-
eters A and ¢, the model first approximates prior
and posterior distributions py(z|z) and gp(z|z, y)
from the utterance x and response y in a conver-
sation. Then, the model samples a latent vari-
able z, from the distributions and feeds it to
the decoder to compute the probability of the
response pg(y|x,z). Ideally, the latent variable
zp ~ pp(z|x) and z4 ~ gy(z|x,y) are representa-
tions that can generate all probable responses to
x and the given response y, respectively. In train-
ing, the following objective, which combines the

reconstruction loss and Kullback-Leibler (KL) di-
vergence Dk, is maximized:

log p(y|z) = log/pqs(y\:v,z)pe(ZIx)dz

> qu(z\x,y) [logpd>(y‘x7 Zq)]
— Dxw (qo(2|7, y)|pa(2]x)) . (1)

Here, in training, what if a latent variable z,
sampled from the posterior distribution gy (z|z, )
is inappropriate to represent the response y? Al-
though the distribution is approximated under the
observation of the response, this is still possible
because the parameters for the approximation are
incomplete during training. Furthermore, optimiz-
ing KL-divergence does not necessarily help the
reconstruction of y; the posterior distribution is
promoted to be similar to the prior distribution that
also covers other probable responses. As a result
of this discrepancy, the training becomes skewed.
The model can lose track of the correspondence
between sampled latent variables and responses to
be generated, and its latent space are disorganized.

To address the problem, we propose specula-
tive sampling of latent variables, a simple method
to disentangle the discrepancy. Specifically, we
sample k latent variables {zo, 21, -+ , zx—1 } from
the posterior distribution, and compute the loss for
each variable in training. We then compute gra-
dients only from the latent variable that has the
least loss among the sampled variables. This sim-
ple modification prevents models from tying up
unreliable variables with given responses.’

4 Experimental Setup
4.1 Models

We evaluate the effect of our proposed method in
dialogue response generation. We used a subword-
based Transformer-based Conditional Variational
Autoencoder (T-CVAE) (Wang and Wan, 2019)
that we implemented with fairseq (v0.8.0)% (Ott
et al., 2019), as the core architecture for the dia-
logue models. T-CVAE is a combination of Trans-
former (Vaswani et al., 2017) and CVAE (Kingma
et al., 2014), both of which are strong baselines

!Our method was inspired by dynamic oracle (Goldberg
and Nivre, 2012) that allows a shift-reduce dependency parser
to choose an easy-to-decode oracle operation among all the
possible oracle operations that will ultimately reach the gold
tree. Analogously, we aim to provide the most probable latent
variables that can reach a given response in training.

https://github.com/pytorch/fairseq
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commonly employed for text generation. We fol-
lowed the major hyperparameters of Transformer-
base (Vaswani et al., 2017). We show detailed
hyperparameters in Appendix.

The compared models are as follows.

T-CVAE: vanilla T-CVAE (Wang and Wan, 2019).

T-CVAE + Cyclical annealing cyclically adjusts
the weight to the KL-divergence loss in training (Fu
et al., 2019). We set one epoch as one cycle.

SPACEFUSION adds losses for fusing the vector
space of inputs and outputs (Gao et al., 2019).3

T-CVAE + BoW loss adds the bag-of-word (BoW)
loss to the training objective in Eq. 1. This is a
constraint that ties up a latent variable with the bag-
of-words of a given response (Zhao et al., 2017).

T-CVAE + Monte Carlo (MC) sampling samples
five latent variables and use the average for com-
puting the training loss (Kruengkrai, 2019).4

T-CVAE + Speculative sampling: refer to § 3.

The models can be divided into three categories:
1) controlling the training schedule (Cyclical an-
nealing), 2) adding constraints on the latent space
(SPACEFUSION and BoW loss), and 3) chang-
ing the sampling method in training (Monte Carlo
sampling and Speculative sampling).

4.2 Datasets and Preprocessing

To evaluate the ability of models to generate diverse
responses, the dataset needs to contain various top-
ics and styles. Following existing studies (Ritter
et al., 2011; Serban et al., 2017; Adiwardana et al.,
2020; Su et al., 2020), we constructed massive
English and Japanese dialogue datasets from so-
cial media conversations. Concretely, we exploited
Twitter posts while treating a post and the subse-
quent replies as a conversation.

We used posts in 2017 and 2018 for both train-
ing and development, posts in 2019 for testing.
They were randomly sampled from our Twitter
archive (Nishi et al., 2016) collected via the Twitter
APLS We filtered out noisy posts with a rule-based
filtering following Adiwardana et al. (2020). The
numbers of English conversations were 19,627,263

3Note that the covariance of Gaussian distribution of this
model is not parametrized, and thus, only this model is slightly
different from other models based on T-CVAE.

“In T-CVAE, latent variables are combined with the last
decoder state before softmax. Thus, we simply averaged the
latent variables instead of averaging the decoder states.

>From the validation loss, we chose five as the number of
sampled latent variables.

*https://developer.twitter.com/

for training, 196,253 for development, and 97,433
for testing. The numbers of Japanese conversations
were 18,116,756 for training, 191,890 for develop-
ment, and 96,276 for testing.

We employed multi-bleu.perl in Moses
toolkit (v4.0)’ for tokenizing English text. This
tokenization was applied only for generated out-
puts to compute automatic evaluation metrics. We
employed MeCab?® for tokenizing Japanese text.

From the training data, we trained subword tok-
enization models through unigram language mod-
eling (Kudo and Richardson, 2018) and CBOW
vectors (Mikolov et al., 2013) for initialization of
the model’s embedding layers.

For human evaluation, we manually chose 100
conversations from the Japanese test data. This was
because randomly sampled conversations 1) can be
difficult to understand for evaluators due to the lack
of contexts or knowledge, and 2) can contain ut-
terances where possible responses are not diverse
(e.g., greetings or yes/no questions). Using such
conversations for human evaluation not only in-
creases annotation costs, but also makes it difficult
to analyze differences between models. We will
also release these conversations as a challenging
set that enables developers to evaluate the ability
of models for diversification with a low cost.

4.3 Evaluation Metrics

For automatic evaluation, we employed several
common metrics: case-sensitive BLEU (Papineni
et al., 2002) in Moses’ and dist-n (Li et al., 2016).
Additionally, we compared the KL-divergence of
trained models to investigate how the resolution of
KL vanishing affected generated responses.

We also conducted human evaluation with simi-
lar metrics to Adiwardana et al. (2020). Annotators
provided scores of 1) sensibleness and 2) speci-
ficity from 1 to 5 for each anonymized response. '’

5 Results

This section reports results of automatic (§ 5.1) and
human evaluations (§ 5.2) of generated responses
on the Twitter datasets, and then analyzes the mod-
els’ outputs (§ 5.3).

"https://github.com/moses—smt/
mosesdecoder

$https://github.com/taku910/mecab

‘http://www.statmt.org/moses

"When generated responses are too noisy for the evaluators
not to evaluate the specificity, the specificity is scored as zero.
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BLEU dist-1 dist-2 KLD BLEU dist-1 dist-2 KLD

Reference - 6.20 41.25 - Reference - 4.11  30.60 -
T-CVAE 071 071 3.55 0.00 T-CVAE 248 1.14 424 0.00
Cyclical annealing 0.68 072 3.68 0.09 Cyclical annealing 2.73 1.19 424 0.09
SPACEFUSION 076 0.60 2.87 - SPACEFUSION 286 150 4.74 -
BoW loss 0.30 1.58 10.99 24.04 BoW loss 1.97 1.56 874 24.07
MC sampling 0.09 3.02 2154 9381 MC sampling 053 179 1825 11.83
Speculative sampling Speculative sampling

K=2 062 076 431 0.5 K=2 269 128 495 0.62

K=5 051 089 548 1.96 K=5 291 157 648 1.57

K=10 047 090 6.06 277 K=10 1270 154 7.00 2.19

K=20 043 096 674 353 K=20 240 151 728 291

K=40 041 098 7.03 398 K=40 238 155 775 324

Table 1: Automatic evaluation results for English data.

5.1 Automatic Evaluation

Table 1 and 2 show the results of automatic evalua-
tion. For English data, we observed the trade-off
between the BLEU and dist-n scores more clearly.
Among the compared models, Cyclical anneal-
ing slightly improved dist-n scores. Although the
gains obtained by SPACEFUSION varied across
languages, we did not observe large impacts on the
results in both languages. It can vary by adjust-
ing hyperparameters. While BoW loss and MC
sampling resolved KL vanishing and achieved re-
markably high dist-n scores, the BLUE scores were
degraded. We will discuss the reason in § 5.2.

Although we set K = 5 as the hyperparameter
of the proposed model for human evaluation, we
also evaluated the model with different & to explore
its effect. In all settings, the dist-n scores were
consistently improved while keeping the BLUE
score compared to T-CVAE. Note that the vanilla
T-CVAE corresponds to the proposed model with
k = 1. Interestingly, the larger K we chose, the
dist-2 and KL-divergence became higher. This
result supports our hypothesis discussed in § 3 —
providing probable latent variables in training can
help models construct an organized latent space.

Note that the proposed method did not signifi-
cantly increase the training time per epoch, as gra-
dients were only computed for the most probable
latent variable. On our server with four NVIDIA
Quadro P6000 GPUs, the increase was 25% for
K = 5 compared to T-CVAE.

5.2 Human Evaluation

Table 3 shows the results of human evaluation for
the Japanese data. The results were similar to those
shown in Table 2. SPACEFUSION and specu-

Table 2: Automatic evaluation results for Japanese data.

Sensibleness Specificity Avg.

Reference 4.67 4.33 4.50
T-CVAE 3.58 1.35 2.46
Cyclical annealing 3.58 1.29 2.44
SPACEFUSION 3.66 1.42 2.54
BoW loss 3.04 1.58 2.31
MC sampling 1.42 0.70 1.06
Speculative sampling 3.94 1.52 2.73

Table 3: Human evaluation results for Japanese data.
Pearson correlation between evaluators was 0.69.

lative sampling achieved relatively high sensible-
ness (i.e., relatedness to the context). The speci-
ficity of BoW loss and Speculative sampling were
remarkably higher than other models while the
sensibleness of BoW loss was degraded from T-
CVAE. The low specificity of MC sampling was
due to the low sensibleness; we allowed the eval-
uators to assign low specificity to responses when
they were too noisy to evaluate.

We consider the reason for the decrease in sen-
sibleness compared to T-CVAE as follows. BoW
loss worked too strongly as a constraint on the la-
tent space and the distributions became enlarged.
In MC sampling, latent variables close to the mean
of the posterior distribution were more likely to be
trained. As a result, in testing, it is possible for the
models to sample latent variables from unreliable
regions that were not optimized enough.

Overall, the high specificity in the baseline mod-
els tended to result in low sensibleness in return.
Meanwhile, Speculative sampling achieved com-
parable results in both sensibleness and specificity.

5.3 Analysis and Discussion

To investigate the latent space learned by the mod-
els, for each utterance-response pair in testing data,
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T-CVAE BoW loss Spec. sampling
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Low probability

Utterance: P70k L < AN S HEZ 5% L £ 7 ('m looking for delicious ways to eat vegetables.)

Response: ¥2E %] > THW E T

RL w2 Z&pITET, EEKLSANET,

(Cut and wash vegetables. Put dressing. Enjoy.)

Figure 2: Visualization of sampled latent variables and generation probabilities for an utterance-response pair in

test data. Do s and

we sampled 300 and 50 latent variables from the
prior and the posterior distribution of the compared
models, respectively. And then, each model com-
puted log probabilities to generate the reference
response from the sampled variables. The probabil-
ities were normalized for each model.

Figure 2 plots the latent variables and the prob-
abilities for the three representative models — T-
CVAE, BoW loss, and Speculative sampling by
using t-SNE (Maaten and Hinton, 2008) for dimen-
sion reduction.!! This clearly shows the difference
in latent spaces among the compared models.

As shown in Figure 1, the latent space of varia-
tional models should meet the conditions: 1) the
geometry of the latent space reflects the meaning
of responses (i.e., similar latent variables generate
similar responses) and 2) the prior and posterior
distributions overlap each other. If the former is not
met, generalization in training for the latent space
becomes complicated, and models tend to ignore
latent variables (i.e., KL vanishing). If the latter is
not met, variables leading to the reference response
are less likely to be sampled in testing, leading
models to noisy outputs (i.e., too large KLLD).

In our settings, T-CVAE did not satisfy the for-
mer condition; the closeness of variables to the
posterior (green triangles) was irrelevant to the
probabilities. Conversely, BoW loss did not sat-
isfy the latter condition; although there existed a
region corresponding to the reference responses,
variables were rarely sampled from the region in
testing. Speculative sampling tended to satisfy
both conditions; while preventing KL vanishing,
our method did not put an explicit restriction to
the latent space, which successfully made the two
distributions close by optimizing KL divergence.

"https://github.com/huguyuehuhu/
fastTSNE

denote variables sampled from prior and posterior distributions, respectively.

Utterance B EDTF ADRE G FE
(Any ideas on how to relieve sore throat?)
Reference T X HNZ—Z D B (Ear Manuka honey.)
T-CVAE TRBEICAT > 72 nW T X
(You should go to a hospital.)
Cyclical BAFEICLTLEE W,
annealing (I hope you get well soon.)

SPACEFUSION 5 KHIC %3 5T 23 v

(I hope you get well soon.)

BoW loss BRERICZo 2 Thneln T,
(I think you don’t have to have gastroenteritis.)
MC sampling E ﬁ']‘m"? 2! (Your own!)
Speculative BV IUCREL VWK,
Sampling (Take vitamin C.)

Table 4: Examples of generated outputs.

Output Examples Table 4 shows example out-
puts. Despite using the variational model, safe re-
sponses were observed. Meanwhile, the responses
generated by the models with high KL-divergence
(BoW loss and MC sampling) were more specific
but less sensible. Speculative sampling tended
to make responses with topic-specific words (e.g.,

“vitamin C”), while keeping the sensibleness.

6 Conclusions

In this study, we aimed to help dialogue models
construct a organized latent space that can cap-
ture implicit uncertainty in conversations. We pro-
posed speculative sampling of latent variables, a
method for mitigating the discrepancy in training
between sampled latent variables and correspond-
ing responses. Experimental results in a response
generation test with massive Twitter dialogue data
confirmed that our proposed method improved both
sensibleness and specificity of generated responses.
We will release all code and IDs of Twitter posts.'?

Zhttps://github.com/jack-and-rozz/
speculative_sampling
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# encoder/decoder layers 6 | Label smoothing rate 0.1

# attention heads 8 | Dropout rate 0.1
Dim. of embeddings 512 | Init. learning rate le-3
Dim. of Transformer 2048 (warmup) le-7

Vocab. size 16k | Beam size

Max. tokens in batch 27k | Max. training steps 250k

Table 5: Hyperparameters of models.

A Detailed Experimental Settings

Table 5 shows the hyperparameters of the compared
models. We used Adam Optimizer (Kingma and
Ba, 2015) with 51 = 0.9 and 82 = 0.98. The learn-
ing rate started from 10~ and linearly increased to
1073 for warm-up during the first 4,000 step. And
then, the learning rate was decayed to 10~ with
inverse square-root scheduling.

We applied dropout to: 1) input embeddings
combined with positional embeddings, 2) outputs
from feed-forward layers, 3) outputs from self-
attention layers, and 4) outputs from encoder-
decoder attention layers. The parameters of models
were initialized by Xavier initializer (Glorot and
Bengio, 2010).

We randomly sampled 1,000,000 sentences from
the training data to train CBOW vectors and sub-
word tokenization models, due to the compu-
tational costs. For this training, we adopted
WORD2VEC' and Sentencepiece!* with default
hyperparameters.

Bhttps://code.google.com/archive/p/
word2vec/

“https://github.com/google/
sentencepiece
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