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Abstract

In this paper, we propose QACE, a new met-
ric based on Question Answering for Caption
Evaluation. QACE generates questions on the
evaluated caption and checks its content by
asking the questions on either the reference
caption or the source image. We first develop
QACERef that compares the answers of the
evaluated caption to its reference, and report
competitive results with the state-of-the-art
metrics. To go further, we propose QACEImg,
which asks the questions directly on the im-
age, instead of reference. A Visual-QA system
is necessary for QACEImg. Unfortunately, the
standard VQA models are framed as a classifi-
cation among only a few thousand categories.
Instead, we propose Visual-T5, an abstractive
VQA system. The resulting metric, QACEImg
is multi-modal, reference-less, and explain-
able. Our experiments show that QACEImg
compares favorably w.r.t. other reference-less
metrics. We will release the pre-trained mod-
els to compute QACE.1

1 Introduction

Image captioning is a task that aims to generate
a description containing the main content of a
given image. The field of caption generation is pro-
lific (Vinyals et al., 2015; Anderson et al., 2018),
and it is, therefore, important to provide reliable
evaluation metrics to compare the systems. Most
of the prior works still report n-gram similarity
metrics such as BLEU (Papineni et al., 2002) or
CIDEr (Vedantam et al., 2015). However, these n-
gram similarity metrics often fail to capture the se-
mantic errors in the generated captions (Novikova
et al., 2017).

To overcome this limitation, we propose QACE,
a radically different evaluation framework from
n-gram metrics. QACE first generates questions
about the candidate caption, and then checks if the

1https://github.com/hwanheelee1993/QACE

answers are consistent w.r.t. either the reference or
the source image. We depict QACE in Figure 1.

Specifically, we propose two variants of QACE,
depending on what content the evaluated caption is
compared to: QACERef when it is compared to the
reference, and QACEImg when it is compared to
the source image. QACEImg has the desired feature
to be reference-less, i.e., the score can be computed
without requiring a gold reference.

In this reference-less setup, a Visual Ques-
tion Answering (VQA) system is required to an-
swer those questions. However, in the VQA litera-
ture (Antol et al., 2015), the task is usually seen as a
classification task on 3k pre-defined answer choices
(e.g., blue, sea, or banana). Therefore, these VQA
models are not general QA systems; their usage
off-the-shelf for QACEImg would limit the com-
parison to these very few pre-defined categories,
which is not satisfying. To solve this issue, we also
propose an abstractive VQA system Visual-T5 as
a new module for QACEImg that can generate free-
form abstractive answers given a textual question
and an image. We conduct a human evaluation of
Visual-T5 and show that it is capable of generat-
ing accurate abstractive answers. Using Visual-T5,
we are now able to compare the answers of the
candidate caption directly with the answers of the
corresponding image.

Experimental results show that our proposed
QACERef and QACEImg show promising re-
sults compared to other reference and reference-
less metrics on three benchmark datasets: Pas-
cal50s (Vedantam et al., 2015), Composite (Aditya
et al., 2015) and Flickr8k (Hodosh et al., 2013).
Also, as shown in Figure 1, QACE has a natural
form of interpretability through the visualization of
the questions and the answers.

2 Related Work

Image Captioning Metrics Similar to other text
generation tasks such as machine translation and
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Reference 𝒙ෝ
a man in a wet suit riding a surfboard on a wave

Candidate 𝒙
a man riding a 1)wave on 2)top of a 3)surfboard

Q1: What is a man riding on top of a surfboard?
Q2: What part of a surfboard is a man riding a wave on?
Q3: What is a man riding a wave on top of?

A1: wave A2: top A3: surfboardA1: wave A2: top A3: surfboard

QACE‐Img QACE‐Ref

A1: wave A2: wet suit A3: surfboard

Visual QA Textual QA

Generating Questions

Figure 1: The overall flow of QACE. QACE extracts possible answer spans and generates answer-aware questions
for a given candidate caption x. The VQA and TQA answer these questions given the image and reference captions,
respectively. The correctness of the candidate caption is evaluated by comparing the answers.

summarization, n-gram similarity metrics such as
BLEU, METEOR (Banerjee and Lavie, 2005) and
ROUGE (Lin, 2004) are arguably the standard
in automatic evaluation. Among them, the most
widely used metric is CIDEr (Vedantam et al.,
2015) which uses TF-IDF based weighted n-gram
similarity. SPICE (Anderson et al., 2016) met-
ric is based on scene graph, while more recently,
BERTScore (Zhang et al., 2019) compute the simi-
larity of the contextualized embeddings. Different
from prior works, we are the first to use Question
Generation (QG) and Question Answering (QA) to
evaluate the image captions.

Question and Answering for Evaluation Fisch
et al. (2020) proposes a new method to gener-
ate informal captions that can answer the visual
questions. In our work, we focus on caption eval-
uation using the QA systems, not on generating
the captions. Several QA-based evaluation met-
rics (Scialom et al., 2019; Wang et al., 2020) are
recently proposed to evaluate abstractive summa-
rization. However, all those prior works are limited
to text-to-text evaluation, while our work develops
a multi-modal metric.

3 QACE

We propose QACE, which is a QG- and QA-based
framework for evaluating an image caption. As
shown in Figure 1, QACE first extracts answer can-
didates (i.e., 1) wave, 2) top, 3) surfboard) from
a candidate caption and generates corresponding
questions. With these questions, visual-QA (VQA)
and textual-QA (TQA) models answers given their
context (i.e., image and reference x̂). By compar-
ing the answers from each source, we can directly
judge the correctness of the candidate caption.

3.1 Question Generation
The goal of this component is to generate ques-
tions that ask the primary information of the can-

What type of bus is driving down a street? <img>

Textual Embedding

Encoder‐Decoder

Visual Embedding

…

red double decker bus

Figure 2: The overview of Visual-T5, an abstractive
VQA model. We embed questions with additional spe-
cial separation token and concatenate the visual embed-
dings to make inputs for T5.

didate caption. Our QG model is a text-to-text
generation model (i.e., T5 (Raffel et al., 2020)),
fine-tuned on SQuAD v2 (Rajpurkar et al., 2018)
to generate answer-aware questions. Given a cap-
tion, we extract possible answer span; in partic-
ular, we focus on extracting noun phrases since
they mostly contain salient information and can
be easily foiled (Shekhar et al., 2017). We argue
that questions generated on this salient information
should be answered similarly from the image or the
captions if they share the same information.

3.2 Question Answering

For QACERef, we use a TQA model. We train
T5 to answer the generated questions (see 3.1)
with the reference captions as context. Conversely,
QACEImg requires a VQA model. We propose a
new architecture, Visual-T5, that can generate ab-
stractive answers given an image and a question, as
opposed to the standard multiple-choice VQA.

3.3 Abstractive Visual Question Answering

When no reference captions are available, one of
the most important parts of QACE is the VQA
model that can produce correct answers. To move
beyond VQA as a classification task, we are the
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first, to the best of our knowledge, to develop an
abstractive VQA model that can generate free-form
answers. Specifically, we enable multimodal en-
coding for T5, inspired by the previous works on
adapting pre-trained language models for multi-
modal tasks (Scialom et al., 2020). We illustrate
our proposed Visual-T5 in Figure 2. Based on de-
fault T5 architecture, Visual-T5 has an additional
visual embedding layer that encodes regional fea-
tures of the image from Faster RCNN (Ren et al.,
2015). This linear layer maps detection features
to 768 dimensions, same as the dimension of tex-
tual embedding. This 768d features are therefore
considered as a standard token in Visual-T5, which
can encode an image and a question together. We
provide more details in Appendix.

3.4 QACE Metric
For a given candidate caption x, We use QG to
generate questions Q= (q1, ..., qM ) for all of M
noun phrases of x. Then, we compare the answers
for each question in Q on x with the answers on
the reference source. We introduce two QACE vari-
ants, QACERef for which the reference caption is
compared, and QACEImg for which the source im-
age is compared. Using QG and QA, we compute
QACERef and QACEImg as follows:

QACE =
ΣM
i=1f(QA(qi, x), QA(qi, ctx))

M
, (1)

where ctx corresponds to the image for QACEImg
and the gold reference for QACERef, f(A1, A2) is
the function that measures the similarity between
two answersA1 andA2. The standard metric in QA
is the F1, as introduced by Rajpurkar et al. (2016).
However, two abstractive answers can be similar
but written in two different ways, limiting the ef-
fectiveness of a naive F1. Hence, in addition to
the F1, we propose to use the BERTScore. Finally,
we also complete the similarity metrics using the
answerability of the questions for function f , in or-
der to measure whether the question is answerable.
The answerability corresponds to 1−Punanswerable,
where Punanswerable is the probability attributed by
the model to the token unanswerable.2 To consider
all the different aspects, we use the average of three
values computed using each function as the default
value of QACE.

2SQuAD v2 contains unanswerable questions, for which
we associate the token unanswerable as the correct answer
during training. Therefore, our QA model associates this token
with the probability that the question is not answerable.

4 Synthetic Data Generation for VQA

As discussed in 3.3, relying on a VQA dataset such
as VQA v2 (Goyal et al., 2017) limits possible
answers to a small size of pre-defined categories.
To train a general and abstractive VQA model, we
create synthetic abstractive VQA datasets. We gen-
erate Questions/Answers pairs using the captions
in the training set of MS-COCO (Lin et al., 2014).
Specifically, we extract noun phrases from a refer-
ence caption and generate an answer-aware ques-
tion using our QG model. To increase the validity
of these synthetic questions, we apply the round
trip consistency (Alberti et al., 2019), filtering out
the questions for which the QA model predicts a
different answer than the extracted noun phrase.
We convert these synthetic QA dataset to create
{question, answer, image} triples by concatenating
the corresponding images to these captions.

In addition, we randomly add 20% of unanswer-
able questions3 to the synthetic training set, so that
the model learns to judge the answerability of a
given question. Through this, if a candidate cap-
tion contains any hallucinating content that is not
included in the image, questions about it can be
marked as unanswerable by our VQA model, as
shown in the second example of Figure 3. This
synthetic dataset enables the training of the abstrac-
tive VQA model. We report the performance of the
model through a human evaluation in Section 5.2.

5 Experiments

5.1 Benchmark Dataset

We evaluate our proposed metric on three bench-
mark datasets (i.e. human annotations), PASCAL-
50S, Composite and Flickr8k.

PASCAL-50S provides 4k caption triplet <A, B,
C>, where ”A" is composed of 50 reference cap-
tions(A) and two candidate captions(B, C) for the
given image. There are human judgments as to
which “B" or “C" is more appropriate caption for a
given image compared to “A".

Composite is composed of 11,985 human judg-
ments scores range from 1 to 5 depending on the
relevance between each candidate caption-image
pair with 5 reference captions.

Flickr8k provides three human-expert judgments
for 5,822 candidate caption-image pairs. The scores
are from 1 to 4, depending on the relevance of each

3We consider an image and a question that are not paired
to be unanswerable, and do negative sampling.
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Ref? Pascal50s Composite Flickr8k

BLEU-4 3 65.2 45.7 28.6
ROUGE-L 3 67.7 47.7 30.0
METEOR 3 80.5 46.6 40.3
CIDEr 3 77.8 47.4 41.9
SPICE 3 76.1 48.6 45.7
BERTScore 3 72.0 45.6 30.5
QACE-Ref (ours) 3 75.1 49.3 40.5

F1 3 57.5 55.1 9.2
BERTScore 3 76.4 46.0 30.9
Answerability 3 71.6 47.3 39.0

-Perplexity 7 46.8 1.7* 10.1
VIFIDEL 7 69.0 13.1 33.6
QACE-Img (ours) 7 70.0 19.1 29.1

F1 7 62.0 12.5 27.3
BERTScore 7 65.9 12.8 27.1
Answerability 7 74.5 15.7 27.8

Table 1: First column represents the accuracy of
matches between human judgments in PASCAL50s.
Columns 2 to 3 show the Kendall Correlation between
human judgments and various metrics. All p-values in
the results are < 0.05 except for *.

caption-image pair.

5.2 Results and Discussions

Computation Details For all of the results on
reference based metrics we reported in the paper,
we compute the average of each metric score with
each reference for all of the references on each
dataset.

QACE Performance We compare our proposed
method with the following widely used metrics:
BLEU-4, ROUGE-L , METEOR, CIDEr, SPICE,
and the BERTScore. We present the experimen-
tal results for all three datasets in Table 1. For the
reference-aware metrics, QACERef shows best re-
sults on Composite and comparable to the best
metrics for Pascal50s and Flickr8k, indicating the
relevance of a QA based metric to evaluate image
captioning.

For the reference-less metrics, all the correla-
tions are lower this time, showing the difficulty of
evaluating the captions without reference. Nonethe-
less, among these metrics, QACEImg shows the best
results for Pascal50s and Composite and compa-
rable results in Flickr8k. For Flickr8k, we found
that more than half of the human judgments of the
candidate captions are less than 0.2 as 0 to 1 scale.
In other words, most of the captions in this dataset
are totally not related to the image. For this reason,
most of the generated questions are unanswerable
for an image and we explain that this leads to rela-
tively lower performance of QACEImg in Flickr8k
compared to other metrics.

Furthermore, We investigate the independent
contribution of each answer similarity function, f ,

Ref‐ A1:<uns> A2: disc A3:<uns>         | 𝑸𝑨𝑬𝑪𝑹𝒆𝒇: 0.5 
Img‐ A1:<uns> A2: frisbee A3:man      | 𝑸𝑨𝑬𝑪𝑰𝒎𝒈: 0.5 

Candidate: a 𝐜𝐨𝐰𝐀𝟏 is standing in a 𝐟𝐢𝐞𝐥𝐝𝐀𝟐 of 𝐠𝐫𝐚𝐬𝐬𝐀𝟑 (Human: 0.2)
Reference: a dog with a frisbee standing in the grass
Q1: What animal is standing in a field of grass?
Q2:What is a cow standing in?
Q3: What type of field is a cow standing in?

Ref A1:dog A2:grass A3:grass 𝑸𝑨𝑬𝑪𝑹𝒆𝒇: 0.60

Img A1:dog A2:unanswerable A3:grassy field 𝑸𝑨𝑬𝑪𝑰𝒎𝒈: 0.47 

Ref A1:yellow car A2:parking lot A3:fire hydrant 𝑸𝑨𝑬𝑪𝑹𝒆𝒇: 0.78

Img A1:car A2:parking lot A3:fire hydrant 𝑸𝑨𝑬𝑪𝑰𝒎𝒈: 0.67 

Candidate: a 𝐦𝐚𝐧𝐀𝟏 is standing on a 𝐬𝐮𝐧𝐧𝐲 𝐛𝐞𝐚𝐜𝐡𝐀𝟐 (Human: 1.0)
Reference: a man walks down the beach near the ocean
Q1: What is standing on a sunny beach?
Q2:What is a man standing on? 

Ref A1:man A2:beach 𝑸𝑨𝑬𝑪𝑹𝒆𝒇: 0.88

Img A1:man A2:sand 𝑸𝑨𝑬𝑪𝑰𝒎𝒈: 0.79

7854

Figure 3: Case study on QACE metric. Human judg-
ments are normalized to between 0 and 1.

in computing QACE and present the results in Ta-
ble 1 (note that default QACE-Img uses the mean
of F1, BERTScore and answerability). The table
reveals that each similarity function has a different
aspect, and averaging three results suggests the best
performance for two of three datasets.

VQA Model Performance Visual-T5 is one of
the main components of QACEImg. Since it can gen-
erate free-form answers, its automatic evaluation is
challenging. We therefore conduct a human evalua-
tion on 200 examples randomly sampled from the
test set. We hire three annotators to judge whether
the generated answer is correct or not given the
image. On the majority vote from three annota-
tors, VQA model correctly answers for the average
69% of the examples. Among these 69% correct
answers, half of them were written differently from
the original answer, showing that our model can
generate abstractive answers.

Case study Different from the previous metrics,
QACE can be easily interpreted through the visual-
ization of the generated questions and the following
answers as shown in Figure 3. In the first example,
we observe that the second question is answered
differently by the VQA model (sand VS beach).
Despite, the answer itself being correct - it is true
that the man is standing on the sand - it results in
a lower score for QACEImg compared to QACERef.
This emphasizes the importance to use other simi-
larity metrics than the F1 when comparing two an-
swers (see Section 3.4). For instance, BERTScore
should be able to consider closer sand and beach
than sand and a random word.

The second example is very illustrative: for the
first question, both TQA and VQA answer dog,
hence detecting an error in the candidate caption
that talks about a cow. The second question refers
to the cow, which makes it ambiguous. The VQA
model considers it as unanswerable, while the
TQA model correctly answers grass. Following
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this study, we expect that QACEImg can be im-
proved through a finer answer comparison method
in future work.

6 Conclusion

In this paper, we propose QACE, a captioning met-
ric that directly compares each content in the can-
didate caption with either the source image or a
gold reference caption by asking questions. To en-
able asking questions directly on the source im-
age, we introduce Visual T5, an abstractive VQA
model to generate free-form visual answers, for
which we report strong results based on a human
evaluation. Our proposed metric can be applied in
both reference and reference-less settings. It holds
high explainability and compares favorably to the
state-of-the-art in terms of correlations with human
judgments.

Acknowledgements

We thank anonymous reviewers for their construc-
tive and meaningful comments. K. Jung is with
ASRI, Seoul National University, Korea. This work
was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea
government (No. 2021R1A2C2008855). This work
was partially funded by gifts from Adobe Research.

Ethical Considerations

We compensate the workers with competitive pay,
which is above hourly USD $10 for the human
evaluation of VQA model. Furthermore, we used
public datasets to train the models.

References
Somak Aditya, Yezhou Yang, Chitta Baral, Cornelia

Fermuller, and Yiannis Aloimonos. 2015. From
images to sentences through scene description
graphs using commonsense reasoning and knowl-
edge. arXiv preprint arXiv:1511.03292.

Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-
vlin, and Michael Collins. 2019. Synthetic qa cor-
pora generation with roundtrip consistency. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6168–
6173.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. Spice: Semantic propo-
sitional image caption evaluation. In European
Conference on Computer Vision, pages 382–398.
Springer.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 6077–6086.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international
conference on computer vision, pages 2425–2433.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Adam Fisch, Kenton Lee, Ming-Wei Chang,
Jonathan H Clark, and Regina Barzilay. 2020.
Capwap: Captioning with a purpose. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8755–8768.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6904–6913.

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing image description as a ranking task:
Data, models and evaluation metrics. Journal of Ar-
tificial Intelligence Research, 47:853–899.

Klaus Krippendorff. 1970. Estimating the reliabil-
ity, systematic error and random error of interval
data. Educational and Psychological Measurement,
30(1):61–70.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159–174.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
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A Experimental Details

A.1 Reproducibility Checklist
Source Code We attach the source for comput-
ing QACE and training Visual-T5. In the question
generation components, we use the Noun Chunks
extractor from spaCy.4

Computing Infrastructure We use AMD
Ryzen Threadripper 2950X (3.50 GHz) with
GeForce RTX 2080 Ti for the experiments. The
software environments are Python 3.6.6 and
PyTorch 1.3.1.

Average runtime for each approach It takes av-
erage one second to generate all questions for a
given candidate caption using a pre-trained ques-
tion generation model. And it takes average about
0.1 seconds to compute visual and textual answers,
and comparing the answers. For training VQA
model, Visual-T5, each epoch takes 40 minutes
using a single RTX 2080 Ti GPU.

Hyperparameters We use the pre-trained t5-
base for question generation and TQA model in
the model repository5 of huggingface (Wolf et al.,
2020). We use t5-small to fine-tune our VQA
model. Based on t5-small, we added single lin-
ear layer to encode visual features and then train
the model for 5 epochs with batch size of 128. The
number of the synthetic training set is 1 million and
we split the dataset into 9:1 proportion for training
and validation. For the max sequence length, we
set 64 to the input sequence including the visual
tokens, and set 32 to output sequence.

Number of Model Parameters The number of
parameters for QG is 222.9M, TQA is 222.9M and
VQA is 61.6M.

A.2 Significance Test
We conduct a standard way to test the significance
of the correlation coefficient for all of the reported
correlation coefficients in the paper. We use a t-test
that uses a null hypothesis, which is an absence of
association, and report the p-value for each coeffi-
cient.

B Abstractive Visual Question
Answering

We provide the training details including the addi-
tional output examples of our proposed abstractive

4https://spacy.io/usage/linguistic-features#noun-chunks
5https://github.com/mrm8488/question_generation

Question: What vegetable is a 
small child holding?

Prediction: unanswerable
Ground‐Truth : unanswerable

Question: What does a child sleep 
in a bed with?

Prediction: stuffed animals
Ground‐Truth : stuffed toys

Question: What day are people 
out on their snow boards?

Prediction: sunny day
Ground‐Truth : clear blue day

Figure 4: Various output examples on the evaluation set
of abstractive VQA model, Visual-T5.

VQA model, Visual-T5 in this section.

B.1 Visual Embedding

We extract the regional features for each object us-
ing Faster RCNN (Ren et al., 2015). We fixed the
number of boxes to 36 and each regional feature
consists of dimension 2048 and 6 additional dimen-
sions consists of the location and the size of each
box. We concatenate this additional dimensions to
make dimension of 2054 for each regional feature.
And single linear layer maps these 2054d features
to 768d to be considered as a token in T5.

B.2 Answer Examples

We provide more examples of our abstractive VQA
models in Figure 4. We observe that many predicted
answers are correct, but expressed in a different
form as in the first and the second example. Also,
model outputs unanswerable to the questions that
are unanswerable for a given image like the third
example.

B.3 Answerability

We make unanswerable visual questions by ran-
domly sampling the questions from the different
images to the given image. We mixed 20% of these
unanswerable questions similar to the third exam-
ple in Figure 4 to train VQA model.

B.4 Human Evaluation

We hire the workers whose locations in one of the
US, UK, CA, NZ, AU to guarantee the fluency
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In this task, you are supposed to evaluate the quality of the candidate answer for 
the given image. Please read the image, questions, and answers carefully and 
decide whether the candidate answer is correct or not

Figure 5: Full instructions and interface to workers for
evaluating the answers of VQA model.

in English. We restrict the workers whose HIT ap-
proval rates are higher than 95%, and minimum hits
are over 500. We pay workers more than USD $10
in an hour through several preliminary experiments
on the compensation. We provide the full instruc-
tions and the interface in Figure 5. We compute the
annotator agreement using Krippendorff’s α (Krip-
pendorff, 1970). We observe that Krippendorff’s α
is 0.56 that indicates a “moderate“ agreement ac-
cording to one of the referenced guidelines (Landis
and Koch, 1977) for kappa-like measures.


