
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4566–4575
November 7–11, 2021. ©2021 Association for Computational Linguistics

4566

Cross-Domain Data Integration for Named Entity Disambiguation in
Biomedical Text

Maya Varma
Stanford University

mvarma2@cs.stanford.edu

Laurel Orr
Stanford University

lorr1@cs.stanford.edu

Sen Wu
Stanford University

senwu@cs.stanford.edu

Megan Leszczynski
Stanford University

mleszczy@cs.stanford.edu

Xiao Ling
Apple

xiaoling@apple.com

Christopher Ré
Stanford University

chrismre@cs.stanford.edu

Abstract

Named entity disambiguation (NED), which
involves mapping textual mentions to struc-
tured entities, is particularly challenging in the
medical domain due to the presence of rare
entities. Existing approaches are limited by
the presence of coarse-grained structural re-
sources in biomedical knowledge bases as well
as the use of training datasets that provide
low coverage over uncommon resources. In
this work, we address these issues by propos-
ing a cross-domain data integration method
that transfers structural knowledge from a gen-
eral text knowledge base to the medical do-
main. We utilize our integration scheme to
augment structural resources and generate a
large biomedical NED dataset for pretrain-
ing. Our pretrained model with injected struc-
tural knowledge achieves state-of-the-art per-
formance on two benchmark medical NED
datasets: MedMentions and BC5CDR. Fur-
thermore, we improve disambiguation of rare
entities by up to 57 accuracy points.

1 Introduction

Named entity disambiguation (NED), which in-
volves mapping mentions in unstructured text to a
structured knowledge base (KB), is a critical pre-
processing step in biomedical text parsing pipelines
(Percha, 2020). For instance, consider the follow-
ing sentence: “We study snake evolution by focus-
ing on a cis-acting enhancer of Sonic Hedgehog.”
In order to obtain a structured characterization of
the sentence to be used in downstream applica-
tions, a NED system must map the mention Sonic
Hedgehog to the entity SHH gene. To do so, the
system can use context cues such as "enhancer"
and "evolution", which commonly refer to genes,
to avoid selecting semantically similar concepts
such as Sonic Hedgehog protein or Sonic Hedge-
hog signaling pathway.

Although NED systems have been successfully
designed for general text corpora (Orr et al., 2021;

Yamada et al., 2020; Wu et al., 2020), the NED
task remains particularly challenging in the medi-
cal setting due to the presence of rare entities that
occur infrequently in medical literature (Agrawal
et al., 2020). As a knowledge-intensive task, NED
requires the incorporation of structural resources,
such as entity descriptions and category types, to
effectively disambiguate rare entities (Orr et al.,
2021). However, this is difficult to accomplish in
the medical setting for the following reasons:

1. Coarse-grained and incomplete structural re-
sources: Metadata associated with entities in
medical KBs is often coarse-grained or incom-
plete (Chen et al., 2009; Halper et al., 2011;
Agrawal et al., 2020). For example, over 65%
of entities in the United Medical Language Sys-
tem1 (UMLS) ontology, a popular medical KB,
are associated with just ten types, suggesting
that these types do not provide fine-grained dis-
ambiguation signals. In addition, over 93% of
entities in the UMLS KB have no associated
description.

2. Low coverage over uncommon resources: En-
tities associated with some structural resources
may occur infrequently in biomedical text. For
instance, MedMentions (Mohan and Li, 2019),
which is one of the largest available biomed-
ical NED datasets, contains fewer than thirty
occurrences of entities with type “Drug Deliv-
ery Device”. In contrast, the high coverage type
“Disease or Syndrome” is observed over 10,000
times. As a result, models may not learn ef-
fective reasoning patterns for disambiguating
entities associated with uncommon structural
resources, which limits the ability of the model
to use these resources for resolving rare entities.

In this work, we design a biomedical NED sys-
tem to improve disambiguation of rare entities
through cross-domain data integration, which in-

1https://uts.nlm.nih.gov/uts/umls/home

https://uts.nlm.nih.gov/uts/umls/home
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Figure 1: (Left) We integrate structural knowledge between a general text KB and a medical KB, which allows us
to augment structural resources for medical entities and generate pretraining datasets. (Right) A pretrained model
injected with augmented structural information can now better reason over context cues to perform NED.

volves transferring knowledge between domains.
Data integration across heterogeneous domains is
a challenging problem with potential applications
across numerous knowledge-intensive tasks. Here,
we address this problem by utilizing a state-of-the-
art general text entity linker to map medical entities
to corresponding items in WikiData,2 a common
general text KB. The key contributions of this work
are listed below:3

• We generate structural resources for medical
entities by incorporating knowledge from Wiki-
Data. This results in an augmented medical KB
with a 12.8x increase in the number of entities
with an associated description and a 2x increase
in the average number of types for each entity.

• We utilize our integrated entity mappings to ob-
tain pretraining datasets from PubMed and a
medical subset of Wikipedia. These datasets in-
clude a total of 2.8M sentences annotated with
over 4.2M entities across 23 thousand types.

We evaluate our approach on two standard
biomedical NED datasets: MedMentions and
BC5CDR. Our results show that augmenting struc-
tural resources and pretraining across large datasets
contribute to state-of-the-art model performance as
well as up to a 57 point improvement in accuracy
across rare entities that originally lack structural
resources.

To the best of our knowledge, this is the first
study to address medical NED through structured
knowledge integration. Our cross-domain data inte-
gration approach can be translated beyond the med-
ical domain to other knowledge-intensive tasks.

2 Related Work

Recent state-of-the-art approaches for the medical
2https://www.wikidata.org/wiki/

Wikidata:Main_Page
3Code and data available at https://github.com/

HazyResearch/medical-ned-integration.

NED task utilize transformer-based architectures
to perform two tasks: candidate extraction, which
involves identifying a small set of plausible enti-
ties, and reranking, which involves assigning like-
lihoods to each candidate. Prior methods for this
task generally limit the use of structural resources
from medical KBs due to missing or limited in-
formation (Bhowmik et al., 2021). As a result,
several existing approaches have been shown to
generalize poorly to rare entities (Agrawal et al.,
2020). Some previous studies have demonstrated
that injecting auxiliary information, such as type
or relation information, as well as pretraining can
aid with model performance on various biomedi-
cal NLP tasks (Yuan et al., 2021; Liu et al., 2021;
He et al., 2020). However, these works are lim-
ited by the insufficient resources in medical KBs as
well as the use of pretraining datasets that obtain
low coverage over the entities in the KB. Although
some methods have been previously designed to
enrich the metadata in medical ontologies with ex-
ternal knowledge, these approaches either use text-
matching heuristics (Wang et al., 2018) or only
contain mappings for a small subset of medical
entities (Rahimi et al., 2020). Cross-domain struc-
tural knowledge integration has not been previously
studied in the context of the medical NED task.

3 Methods

We first present our cross-domain data integration
approach for augmenting structural knowledge and
obtaining pretraining datasets. We then describe
the model architecture that we use to perform NED.

3.1 Cross-Domain Data Integration
Rich structural resources are vital for rare en-
tity disambiguation; however, metadata associ-
ated with entities in medical KBs is often too
coarse-grained to effectively discriminate between
textually-similar entities. We address this issue by
integrating the UMLS Metathesaurus (Bodenreider,

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://github.com/HazyResearch/medical-ned-integration
https://github.com/HazyResearch/medical-ned-integration


4568

2004), which is the most comprehensive medical
KB, with WikiData, a KB often used in the general
text setting (Vrandečić and Krötzsch, 2014). We
perform data integration by using a state-of-the-art
NED system (Orr et al., 2021) to map each UMLS
entity to its most likely counterpart in WikiData;
the canonical name for each UMLS entity is pro-
vided as input, and the system returns the most
likely Wikipedia item. For example, the UMLS en-
tity C0001621: Adrenal Gland Diseases is mapped
to the WikiData item Q4684717: Adrenal gland
disorder.

We then augment types and descriptions for
each UMLS entity by incorporating information
from the mapped WikiData item. For instance,
the UMLS entity C0001621: Adrenal Gland Dis-
eases is originally assigned the type “Disease or
Syndrome” in the UMLS KB; our augmentation
procedure introduces the specific WikiData type
“endocrine system disease". If the UMLS KB does
not contain a description for a particular entity, we
add a definition by extracting the first 150 words
from its corresponding Wikipedia article.

Our procedure results in an augmented UMLS
KB with 24,141 types (190x increase). 2.04M enti-
ties have an associated description (12.8x increase).

In order to evaluate the quality of our mapping
approach, we utilize a segment of UMLS (approxi-
mately 9.3k entities) that has been previously an-
notated with corresponding WikiData items (Vran-
dečić and Krötzsch, 2014). Our mapping accuracy
over this set is 80.2%. We also evaluate integration
performance on this segment as the proportion of
predicted entities that share a WikiData type with
the true entity, suggesting the predicted mapping
adds relevant structural resources. Integration per-
formance is 85.4%. The remainder of items in
UMLS have no true mappings to WikiData, under-
scoring the complexity of this task.

3.2 Construction of Pretraining Datasets

Existing datasets for the biomedical NED task gen-
erally obtain low coverage over the entities and
structural resources in the UMLS knowledge base,
often including less than 1% of UMLS entities
(Mohan and Li, 2019). Without adequate examples
of structured metadata, models may not learn the
complex reasoning patterns that are necessary for
disambiguating rare entities. We address this issue
by collecting the following two large pretraining
datasets with entity annotations. Dataset statistics

PubMedDS MedWiki
Total Documents 508,295 813,541
Total Sentences 916,945 1,892,779
Total Mentions 1,390,758 2,897,621
Unique Entities 40,848 230,871

Table 1: Dataset statistics for MedWiki and Pub-
MedDS.

are summarized in Table 1.

MedWiki: Wikipedia, which is often utilized as
a rich knowledge source in general text settings,
contains references to medical terms and conse-
quently holds potential for improving performance
on the medical NED task. We first annotate all
Wikipedia articles with textual mentions and corre-
sponding WikiData entities by obtaining gold entity
labels from internal page links as well as generat-
ing weak labels based on pronouns and alternative
entity names (Orr et al., 2021). Then, we extract
sentences with relevant medical information by de-
termining if each WikiData item can be mapped to
a UMLS entity using the data integration scheme
described in Section 3.1.

MedWiki can be compared to a prior Wikipedia-
based medical dataset generated by Vashishth et al.
(2021), which utilizes various knowledge sources
to map WikiData items to UMLS entities based on
Wikipedia hyperlinks. When evaluated with respect
to the prior dataset, our MedWiki dataset achieves
greater coverage over UMLS, with 230k unique
concepts (4x prior) and a median of 214 concepts
per type (15x prior). However, the use of weak la-
beling techniques in MedWiki may introduce some
noise into the entity mapping process (Section 3.1
describes our evaluation of our mapping approach).

PubMedDS: The PubMedDS dataset, which was
generated by Vashishth et al. (2021), includes data
from PubMed abstracts. We remove all documents
that are duplicated in our evaluation datasets.

We utilize the procedure detailed in Section 3.1
to annotate all entities with structural information
obtained from UMLS and WikiData. Final dataset
statistics are included in Table 1. In combina-
tion, the two pretraining datasets include 2.8M
sentences annotated with 267,135 unique entities
across 23,746 types.

3.3 Model Architecture

We use a three-part approach for NED: candidate
extraction, reranking, and post-processing.
Candidate Extraction: Similar to (Bhowmik
et al., 2021), we use the bi-encoder architecture
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detailed in Wu et al. (2020) for extracting the top
10 candidate entities potentially associated with a
mention. The model includes a context encoder,
which is used to learn representations of mentions
in text, as well as an entity encoder to encode the
entity candidate with its associated metadata. Both
encoders are initialized with weights from Sap-
BERT (Liu et al., 2021), a BERT model initialized
from PubMedBERT and fine-tuned on UMLS syn-
onyms. Candidate entities are selected based on the
maximum inner product between the context and
entity representations. We pretrain the candidate
extraction model on MedWiki and PubMedDS.

Reranking Model: Given a sentence, a mention,
and a set of entity candidates, our reranker model
assigns ranks to each candidate and then selects
the single most plausible entity. Similar to Angell
et al. (2020), we use a cross-encoder to perform
this task. The cross-encoder takes the form of a
BERT encoder with weights initialized from the
context encoder in the candidate extraction model.

Post-Processing (Backoff and Document Syn-
thesis): Motivated by Rajani et al. (2020), we back-
off from the model prediction when the score as-
signed by the re-ranking model is below a threshold
value and instead map the mention to the textually
closest candidate. Then, we synthesize predictions
for repeating mentions in each document by map-
ping all occurrences of a particular mention to the
most frequently predicted entity.

Further details about the model architecture and
training process can be found in Appendix A.2.

4 Evaluation

We evaluate our model on two biomedical NED
datasets and show that (1) our data integration
approach results in state-of-the-art performance,
(2) structural resource augmentation and pretrain-
ing are required in conjunction to realize improve-
ments in overall accuracy, and (3) our approach
contributes to a large performance lift on rare enti-
ties with limited structural resources.

4.1 Datasets

We evaluate our model on two NED datasets, which
are detailed below. Additional dataset and prepro-
cessing details can be found in Appendix A.1.
• MedMentions (MM) is one of the largest ex-

isting medical NED datasets and contains 4392
PubMed abstracts annotated with 203,282 men-
tions. We utilize the ST21PV subset of MM,

MM BC5CDR
Bhowmik et al. (2021) 68.4 84.8
Angell et al. (2020) 72.8 90.5
Ours (Full) 74.6±0.1 91.5±0.1

Angell et al. (2020)+Post-Processing 74.1 91.3
Ours+Post-Processing 74.8±0.1 91.9±0.2

Table 2: Benchmark Performance. We compare perfor-
mance of our model to prior work. Metrics indicate ac-
curacy on the test set. We report the mean and standard
deviation across five training runs.

MM BC5CDR
Ours (Baseline) 74.0±0.2 89.3±0.1

Ours (Augmentation Only) 74.1±0.1 89.3±0.1

Ours (Full) 74.6±0.1 91.5±0.1

Table 3: Model Ablations. We measure accuracy of our
full model (Full), our model with augmented structural
resources and no pretraining (Augmentation Only), and
our model without augmented structural resources and
without pretraining (Baseline). We report the mean and
standard deviation across five training runs.

which comprises a subset of concepts deemed
by the authors to be most useful for semantic
indexing.

• BC5CDR contains 1500 PubMed abstracts an-
notated with 28,785 mentions of chemicals and
diseases (Li et al., 2016).
We use all available UMLS structural resources

when preprocessing datasets, and as a result, we
map MM entities to 95 UMLS types and BC5CDR
entities to 47 UMLS chemical and disease types.

4.2 Performance on Benchmarks

We compare our approach to prior state-of-the-art
methods from Bhowmik et al. (2021)4 and Angell
et al. (2020). As shown in Table 2, our approach
with post-processing5 sets a new state-of-the-art
on MM by 0.7 accuracy points and BC5DR by
0.6 points. In addition, our method without post-
processing (Full) outperforms comparable methods
by up to 1.8 accuracy points.

4.3 Ablations

In order to measure the effect of our data inte-
gration approach on model performance, we per-
form various ablations as shown in Table 3. We
find marginal performance improvement when aug-
mented structural resources are used without pre-
training (Augmentation Only Model). When pre-

4Bhowmik et al. (2021) uses the complete MM dataset,
while Angell et al. (2020) and our work use the MM-ST21PV
subset.

5Note that our post-processing method (Section 3.3) differs
from the post-processing method used in Angell et al. (2020).
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Figure 2: Performance on Rare Entities with Limited
Structural Resources. We measure the test accuracy of
four ablation models on a subset of rare entities that
have limited structural resources. We report mean val-
ues across five training runs.

training and augmented structural resources are
used in conjunction (Full Model), we observe a
performance lift on both datasets, suggesting that
the model can only learn fine-grained reasoning
patterns when both components are incorporated
into the model.

We observe that our approach leads to a larger
improvement on BC5CDR (2.2 points) than MM
(0.6 points). The lack of overall improvement for
the MM dataset is expected, since the original
MM dataset consists of finer-grained types than
the BC5CDR dataset. Specifically, we observe that
95% of the entities in BC5CDR are categorized
with just 15 types, and in comparison, only 57% of
entities in MM can be categorized with 15 types.
This suggests that the magnitude of model improve-
ment is likely to be dependent on the original gran-
ularity of structural resources in the training dataset.
As a result, our data integration approach will natu-
rally yield greater performance improvements on
the BC5CDR dataset.

4.4 Performance on Rare Entities

In Figure 2, we measure performance on entities
that appear less than five times in the training set
and are associated with exactly one type and no def-
inition in the UMLS KB. We observe an improve-
ment of 2.5 accuracy points on the MM dataset and
56.8 points on BC5CDR. Results on the BC5CDR
dataset also show that utilizing pretraining and re-
source augmentation in combination leads to a 3x
improvement in performance when compared to
the Augmentation Only model; this further sup-
ports the need for both pretraining and structural re-
source augmentation when training the model. We
observe similar trends across entities with limited
metadata that never appear in pretraining datasets.
Additional evaluation details are included in Ap-

pendix A.3.2.

5 Conclusion

In this work, we show that cross-domain data inte-
gration helps achieve state-of-the-art performance
on the named entity disambiguation task in medi-
cal text. The methods presented in this work help
address limitations of medical knowledge bases
and can be adapted for other knowledge-intensive
problems.
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A Appendix

A.1 Data Details

A.1.1 UMLS Knowledge Base

We utilize the 2017 AA release of the UMLS
Metathesaurus as the KB, filtered to include en-
tities from 18 preferred source vocabularies (Mo-
han and Li, 2019; Bodenreider, 2004). The dataset
includes 2.5M entities associated with 127 types.
Approximately 160K entities have an associated
description.

A.1.2 Construction of Pretraining Datasets

We obtain two pretraining datasets: MedWiki and
PubMedDS. After collecting each dataset using
the methods detailed in Section 3.2, we downsam-
pled to address class imbalance between entities,
since some entities were represented at higher rates
than others. Sentences were removed if all entities
within the sentence were observed in the dataset
with high frequency (defined as occurring in at least
40 other sentences).

Prior work by (Newman-Griffis et al., 2020)
demonstrates the importance of including ambigu-
ity in in medical NED training datasets. Newman-
Griffis et al. (2020) defines dataset ambiguity as the
number of unique entities associated with a particu-
lar mention string. By this definition, the MedWiki
training set has 25k ambiguous mentions (7% of
unique mentions), with a minimum, median, and
maximum ambiguity per mention of 2.0, 2.0, and
29.0 respectively. PubMedDS includes 7.6k am-
biguous mentions (36% of unique mentions), with
a minimum, median, and maximum ambiguity per
mention of 2.0, 3.0, and 24.0 respectively.

A.1.3 Evaluation Datasets

We evaluate our model across two medical NED
benchmark datasets: MedMentions and BC5CDR.
Dataset and preprocessing details are provided be-
low.
MedMentions (MM) (Mohan and Li, 2019): MM
consists of text collected from 4392 PubMed ab-
stracts. We use all available UMLS structural re-
sources when preprocessing datasets, and as a re-
sult, we map MM entities to 95 UMLS types.

We preprocess the dataset by (1) expanding ab-
breviations using the Schwartz-Hearst algorithm
(Schwartz and Hearst, 2003), (2) splitting docu-
ments into individual sentences with the Spacy
library, (3) converting character-based mention

Train Dev Test
Total Documents 2635 878 879
Total Sentences 9008 2976 2974
Total Mentions 121,861 40,754 40,031
Unique Entities 18,495 8637 8449

Table 4: Dataset statistics for MedMentions after pre-
processing.

Train Dev Test
Total Documents 500 500 500
Total Sentences 1431 1431 1486
Total Mentions 9257 9452 9628
Unique Entities 1307 1243 1300

Table 5: Dataset statistics for BC5CDR after prepro-
cessing.

spans to word-based mention spans, and (4) group-
ing sentences into sets of three in order to provide
adequate context to models. Mentions occurring
at sentence boundaries, overlapping mentions, and
mentions with invalid spans (when assigned by the
Spacy library) are removed from the dataset dur-
ing pretraining, resulting in a total of 121K valid
mentions in the training set, 8.6K mentions in the
validation set, and 8.4K mentions in the test set.
Preprocessed dataset statistics are summarized in
Table 4.
BC5CDR (Li et al., 2016): BC5CDR consists men-
tions mapped to chemical and disease entities. En-
tities are labeled with MESH descriptors; MESH
is a medical vocabulary that comprises a subset of
the UMLS KB.

We preprocess the dataset by (1) expanding ab-
breviations using the Schwartz-Hearst algorithm
(Schwartz and Hearst, 2003), (2) splitting all com-
posite mentions into multiple parts, (3) splitting
documents into individual sentences with the Spacy
library, (4) converting character-based mention
spans to word-based mention spans, and (5) group-
ing sentences into sets of three in order to pro-
vide adequate context to models. Composite men-
tions that could not be separated into multiple seg-
ments were removed from the dataset; mentions
with MESH descriptors that were missing from the
2017 release of the UMLS KB were also removed.
This resulted in a total of 9257 valid mentions in
the training set, 1243 mentions in the validation
set, and 1300 mentions in the test set. Preprocessed
dataset statistics are summarized in Table 5.

A.2 Model Details

We now provide details of our bi-encoder candi-
date generator, cross-encoder re-ranker, and post-
processing method.
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Param Bi-encoder Cross-encoder
learning rate 1e−5 2e−5

weight decay 0 0.01

β1 0.9 0.9

β2 0.999 0.999

eps 1e−6 1e−6

effective batch
size

100 128

epochs 3-10 10
warmup 10% 10%
learning rate
scheduler

linear linear

optimizer AdamW AdamW

Table 6: Learning Parameters for the bi-encoder and
cross-encoder

A.2.1 Candidate Generation with a
Bi-encoder

Given a sentence and mention, our candidate gen-
erator model selects which top K candidates are
the most likely to be the entity referred to by the
mention. Similar to (Bhowmik et al., 2021), we
use a BERT bi-encoder to jointly learn represen-
tations of mentions and entities. The bi-encoder
has a context encoder to encode the mention and
an entity encoder to encode the entity. The can-
didates are selected based on those that have the
highest maximum inner product with the mention
representation.

The context tokenization is

[CLS]c`[ENT_START]m[ENT_END]cr[SEP]

where [ENT_START] and [ENT_END] are new
tokens to indicate where the mention is in the text.
We set the left and right window length to be 30
words with the max tokens used for the sentence
tokens of 64.

The entity tokenization is

[CLS]title[SEP]types[SEP]desc[SEP]

where title is the entity title, types is a semi-colon
separated list of types, and desc is the description
of an entity. We limit the list of types such that
the total length of types is less than 30 words. The
max length for the entity tokens is 128. This means
that the description may be truncated if it exceeds
the maximum length.

Training We train the bi-encoder similar to (Wu
et al., 2020). We run in three phases. The first is

where all negatives are in-batch negatives with a
batch size of 100. The next two phases take the top
10 predicted entities for each training example as
additional negatives for the batch with a batch size
of 10. Before each phase, we re-compute the 10
negatives.

For pretraining, we run each phase for 3 epochs.
When fine-tuning on specific datasets, we run each
for 10 epochs. All training parameters are shown
in Table 6.

During pretraining, candidates are drawn from
the entire UMLS KB, consisting of 2.5M entities.
During fine-tuning on the MM dataset, candidates
are drawn from the valid subset of entities defined
in the ST21PV version of the dataset, which in-
cludes approximately 2.36M entities. During fine-
tuning on the BC5CDR dataset, candidates are
drawn from a set of 268K entities with MESH
identifiers.

A.2.2 Reranker Cross-encoder
Given a sentence, mention, and a set of entity candi-
dates, our reranker model selects which candidate
is the most likely entity referred to by the mention.
Similar to Angell et al. (2020), we use a BERT
cross-encoder architecture to learn a score for each
entity candidate — mention pair. The models takes
as input the sequence of tokens

context[ENT_DESC]entity

where context is the context tokenization from the
bi-encoder, entity is the entity tokenization from
the bi-encoder, and [ENT_DESC] is a special tag
to indicate when the entity description is starting.
One difference from the bi-encoder is that the title
of the entity includes the canonical name as well as
all alternate names. We keep the length parameters
the same as for the bi-encoder except we let the
context have a max length of 128. We take the
output representation from the [CLS] token and
project it to a single dimension output. We pass
the outputs for each candidate through a softmax to
get a final probability of which candidate is most
likely.

Training When training the cross encoder, we
warm start the model with the context model
weights from the candidate generator bi-encoder.
We train all models using the top 10 candidates, and
we train for 10 epochs. We use standard fine-tuning
BERT parameters, shown in Table 6.
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MM BC5CDR
(Bhowmik et al., 2021) – / 87.6 – / 92.3
(Angell et al., 2020) 50.8 / <82.3 86.9 / <93.1

Ours (Baseline) 70.1 / 88.4 83.5 / 93.3
Ours (Augmentation Only) 70.3 / 88.5 83.7 / 93.1
Ours (Full) 71.7 / 88.3 89.2 / 96.2

Table 7: Performance of Candidate Generator on MM
and BC5CDR (Recall@1 / Recall@10). Our approach
leads to improvements in candidate recall.

We do not separately pretrain the cross encoder
on our pretraining datasets. Pretrained knowledge
is instead transferred through the use of context
encoder weights for warm starting the model.

A.2.3 Post-Processing (Backoff and
Document Synthesis)

We post-process model outputs by backing off from
the model prediction when the score assigned by
the re-ranking model is below a threshold value.
We utilize the validation set to determine the opti-
mal value of the threshold, which we select as 0.55
for MM and 0.45 for BC5CDR.

Then, we group predictions for each document,
which ensures that all repeating mentions in a doc-
ument will map to the same entity. We map each
occurrence of a repeating mention within a docu-
ment to the most frequently-predicted entity. For
example, assume that the mention "DFS" occurs
three times in a document, with the occurrences
resolved to the entities "Diabetic Foot Ulcer", "Di-
abetic Foot Ulcer", and "DF 118". In this case, we
assign the most frequent prediction, which is "Dia-
betic Foot Ulcer", to all occurrences of the mention
DFU.

A.3 Extended Evaluations

A.3.1 Candidate Generation Performance
Table 7 shows performance of our candidate gen-
eration approach and compares against (Angell
et al., 2020) and (Bhowmik et al., 2021). Note
that (Bhowmik et al., 2021) also uses a bi-encoder
for candidate generation. As in Table 3, we ablate
the three models without augmentation or pretrain-
ing (Baseline), with augmentation only (Augmenta-
tion Only), and with augmentation and pretraining
(Full).

We find our method outperforms both prior
works in Recall@1 and Recall@10. We further
find similar trends as in Table 3 where augmen-
tation without pretraining provides a limited lift
of 0.2 accuracy points in Recall@1 performance.

Subpopulation Description
Multi- (Single)
Word Mentions

Mentions that are multiple (single)
words

Unseen Mentions Mentions that are unseen in fine-
tuning training

Unseen Entities Entities that are unseen in fine-tuning
training

Not Direct Match Mentions that are not a preferred
name or synonym of the entity

Top 100 Mentions that are mapped to the top
100 entities in fine-tuning data

Unpopular Mentions that are more commonly
mapped to a different entity

Limited Metadata Entities that have no description and
only one UMLS type before augmen-
tation

Rare & Limited
Metadata

Limited metadata entities that appear
less than 5 times in fine-tuning data

Never Seen &
Limited Metadata

Limited metadata entities that do not
appear in pretraining data or fine-
tuning data

Table 8: Subpopulations used to compare models. Each
model’s accuracy is measured on the subset of data de-
fined for each subpopulation.

With pretraining, we see a more substantial lift of
1.6 points on MM and a 5.7 points on BC5CDR.

A.3.2 Evaluation on Subpopulations
For fine-grained analysis of all models, we use
the Robustness Gym toolkit (Goel et al., 2021) to
create relevant subpopulations to measure model
accuracy. Table 8 describes the subpopulations
we use for evaluation. We take those described in
(Agrawal et al., 2020) as well as custom ones we
used in Section 4.

Figure 3 and Figure 4 show the performance on
MedMentions and BC5CDR across the subpopula-
tions. We note the following trends.
• Never seen entities rely on pretrained structural

resources. When looking at the subpopulation
of entities that are not seen in pretraining data or
fine-tuning data, we see a 1.7 accuracy point lift
in MM and 15 point lift in BC5CDR just from
adding augmented resources. This is further im-
proved by 0.5 points in MM and 46 points in
BC5CDR. As these entities are never seen dur-
ing training, the improvement from pretraining
likely comes from the improved ability of the
model to reason over the structural resources.

• Popular entities achieve the highest perfor-
mance. Unsurprisingly, across both datasets,
we see the largest evaluation accuracy scores
(up to 80.9 and 97.2 for MM and BC5CDR re-
spectively) on subpopulations where the entity
is one of the 100 most popular in the training
dataset. Since these entities occur repeatedly
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Figure 3: Accuracy over subpopulations for our three ablation models on MedMentions.
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Figure 4: Accuracy over subpopulations for our three ablation models on BC5CDR.

during training, the model is able to memorize
relevant disambiguation patterns.

• Unseen entities are easier to resolve than rare
entities with limited structural metadata. Un-
seen entities are those that are not seen by the
model during training. As a result, these are
typically considered the most difficult entities
to resolve (Orr et al., 2021; Logeswaran et al.,
2019). We find that across both datasets and all
models, the “Rare and Limited Metadata“ sub-
population performs up to 61 accuracy points
worse than the unseen entity slicing. This fur-
ther supports the need for structural metadata
when resolving rare entities.

• There is a significant performance gap between
two datasets on the the “Not Direct Match“
slice. We find that performance on the “Not
Direct Match“ MM subpopulation is up to 41
accuracy points lower than the same subpopula-
tion in BC5CDR.


