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Abstract

We propose using a multilabel probing task
to assess the morphosyntactic representations
of multilingual word embeddings. This tweak
on canonical probing makes it easy to explore
morphosyntactic representations, both holisti-
cally and at the level of individual features
(e.g., gender, number, case), and leads more
naturally to the study of how language mod-
els handle co-occurring features (e.g., agree-
ment phenomena). We demonstrate this task
with multilingual BERT (Devlin et al., 2018),
training probes for seven typologically diverse
languages: Afrikaans, Croatian, Finnish, He-
brew, Korean, Spanish, and Turkish. Through
this simple but robust paradigm, we verify that
multilingual BERT renders many morphosyn-
tactic features simultaneously extractable. We
further evaluate the probes on six held-out lan-
guages: Arabic, Chinese, Marathi, Slovenian,
Tagalog, and Yorùbá. This zero-shot style
of probing has the added benefit of revealing
which cross-linguistic properties a language
model recognizes as being shared by multiple
languages.

1 Introduction

Morphologically rich languages present unique
challenges to natural language processing. These
languages typically exhibit complex agreement pat-
terns and their high diversity of inflected forms can
lead to sparse examples of vocabulary words in
training data, even in large corpora (Blevins and
Zettlemoyer, 2019; Gerz et al., 2018). It is there-
fore worthwhile to explore how neural language
models (LMs), which serve as the foundation of
many state-of-the-art systems, handle the morpho-
logical complexity of diverse languages.

Morphosyntactic features of natural languages
bear meaningful information that is useful for
downstream tasks, such as machine translation,
question answering, and language generation.

Adding morphological supervision through multi-
task training regimes (Blevins and Zettlemoyer,
2019) or morphologically-informed tokenization
(Klein and Tsarfaty, 2020; Park et al., 2020) can
improve the quality of multilingual language mod-
els. Nonetheless, recent work has shown that LMs
trained without explicit morphological supervision
can still produce useful representations that cap-
ture morphosyntactic phenomena (e.g., Bacon and
Regier, 2019; Pires et al., 2019; Dufter and Schütze,
2020).

To further these investigations, we propose using
a multilabel probing task to assess the morphosyn-
tactic representations of multilingual word embed-
dings. This work is premised on the intuition that,
if a simple model (a “probe”) can easily extract lin-
guistic properties from embeddings, this indicates
that the LM has learned to encode those features in
some fashion (Conneau et al., 2018; Hupkes et al.,
2018; Liu et al., 2019). We show how a multilabel
paradigm can shed light on the morphosyntactic
representations of LMs, both holistically and at the
level of individual features.

Our contributions are threefold: First, we in-
troduce an efficient probing paradigm for ana-
lyzing multiple morphosyntactic features, which
we demonstrate with multilingual BERT (Devlin
et al., 2018) and seven typologically diverse lan-
guages: Afrikaans, Croatian, Finnish, Hebrew,
Korean, Spanish, and Turkish. Second, we eval-
uate the probes on six “held-out” languages—
Arabic, Chinese, Marathi, Slovenian, Tagalog, and
Yorùbá—showing how this paradigm can be used
in a zero-shot manner to illuminate the properties
that multilingual BERT represents similarly cross-
linguistically. Third, we release our code and mul-
tilabel probe predictions to guide future probing
efforts and to serve as the foundation for future
in-depth feature-level analyses.1

This paper is structured as follows: Section 2
1
https://github.com/tsnaomi/morph-bert
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Figure 1: Hypothetical multi-hot representations of the Hebrew 3.sing.fem pronoun �!*% hi (top) and 3.plur.fem
pronoun �0% hen (bottom). The two vectors differ only with respect to the two cells indicating number.

reviews related work, motivating §3, which intro-
duces multilabel morphosyntactic probing. Sec-
tion 4 then outlines the data and models we use to
probe multilingual BERT. In §5, we demonstrate
the probing paradigm in a set of monolingual ex-
periments, training and evaluating separate probes
for the seven languages, and provide an example
feature-level analysis of Hebrew determiners. In
§6, we delve into whether multilingual probes yield
comparable insights to the monolingual probes.
Then, in a set of crosslingual experiments, §7 eval-
uates how the monolingual and multilingual probes
handle the six held-out languages. Finally, §8 dis-
cusses our findings and concludes the paper.

2 Related work

Numerous studies in recent years have sought to
study the linguistic properties captured by neural
language models (e.g., Conneau et al., 2018; Gulor-
dava et al., 2018; Hupkes et al., 2018; Marvin and
Linzen, 2018; Zhang and Bowman, 2018; Bacon
and Regier, 2019; Futrell and Levy, 2019; Hewitt
and Manning, 2019; Jawahar et al., 2019; Liu et al.,
2019; Tenney et al., 2019; Chi et al., 2020).

In the morphology domain, the LINSPECTOR
suite by Şahin et al. (2020) probes 24 languages via
15 linguistic tasks, including multiple tasks to iden-
tify morphological features. In a similar vein, Ed-
miston (2020) uses several morphological predic-
tion tasks to inspect embeddings from five mono-
lingual Transformer-based language models, focus-
ing exclusively on Indo-European languages. The
probing paradigm proposed in this paper builds on
these works, but consolidates morphosyntactic fea-
ture prediction under a single task that leads more
naturally to the study of feature co-occurrence.

Recent probing work has also sought to curtail
how much probes memorize about linguistic tasks
to ensure that they reflect information available
in their input embeddings—probes should be ex-
tractive rather than learnèd themselves. Efforts to

minimize memorization have included reducing the
training data to probes (Zhang and Bowman, 2018)
and limiting probe complexity, such as through
dropout (e.g., Belinkov et al., 2017a,b; Şahin et al.,
2020) and the use of simpler architectures (e.g., a
linear layer instead of a multilayer perceptron, as
in Alain and Bengio 2018 and Liu et al. 2019).

To guide the design and interpretation of probes,
Hewitt and Liang (2019) propose supplementing di-
agnostic tasks with control tasks, where a probe is
trained to predict random outputs within the same
output space as the diagnostic task, given the same
embeddings. If the probe performs well on the
control task, they caution that it has the capacity
to memorize the linguistic features under consid-
eration; conversely, if the probe does well on the
diagnostic task but poorly on the control task, then
it is a reliable diagnostic of linguistic representa-
tions in the embeddings (though see Pimentel et al.
2020a,b for interesting discussions). Hewitt and
Liang operationalize this comparison as selectivity,
the difference in performance between the diagnos-
tic and control tasks. The greater the selectivity,
the more the probe “expresses” the information en-
coded in its input. In this paper, we design a control
task to complement multilabel probing.

3 Multilabel morphosyntactic probing

We propose using multilabel morphosyntactic tag-
ging to assess the morphosyntactic representations
of neural LMs. In this diagnostic task, we hold con-
textualized word embeddings constant, then train
linear classifiers on top of them (cf. Liu et al., 2019;
Hupkes et al., 2018) to perform morphosyntactic
tagging. In its objective, morphosyntactic tagging
resembles the second SIGMORPHON 2019 shared
task, which called for labeling words in a sentence
with their morphosyntactic descriptions (McCarthy
et al., 2019).

It is easy to imagine doing morphosyntactic
tagging in a traditional multiclass fashion, where
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we train separate probes to identify different fea-
tures, such as part of speech (POS), gender, or
number (cf. Şahin et al., 2020; Edmiston, 2020).
However, this style of probing is more likely
to prompt narrow analyses that consider mor-
phological properties in isolation. Alternatively,
we could train a single probe to extract com-
plex labels like def.sing.masc.noun and
3rd.plur.masc.past.verb. Thus, each
word would have a single correct label and a final
softmax layer would output the probability of each
class being the correct one. However, a drawback
to this approach is that, depending on the number
of properties we would like to identify, this can
result in a combinatoric nightmare , with few
training examples per class.

To overcome these limitations, we frame
morphosyntactic tagging as a word-level mul-
tilabel task, allowing for a token to receive
multiple feature labels (e.g., both Person=1

and Number=Sing) that are multi-hot encoded.
Such a paradigm allows us to encode fea-
tures with multiple or ambiguous values (e.g.,
Gender=Fem,Masc; a.k.a. multi-valued fea-
tures) and enables a closer inspection of learnt
agreement and feature co-occurrence patterns. Fig-
ure 1 illustrates hypothetical gold vectors for two
Hebrew pronouns that differ only in number.

3.1 Notation and nomenclature

We define a feature label as the conjunction of a
linguistic feature (e.g., number) and a possible real-
ized value of that feature (e.g., singular). Multiple
feature labels can correspond to the same feature
(e.g., Number=Sing and Number=Plur).2 We
define F as the set of feature labels {f1, . . . , f|F |}
that we use to identify morphosyntactic properties
from word embeddings.

Assuming a vocabulary of word types V , let
s = s1 . . . s|s| denote a specific sentence and ri
denote the contextualized representation of each
token si, such that si 2 V . The inputs to the
probe are therefore the embeddings ri 2 Rd. In
the multilabel morphosyntactic tagging task, we
define the target output of each embedding ri as a
multi-hot encoded vector yi = yi1 . . . y

i
|F |, where

F is the aforementioned set of feature labels. We
encode yij as 1 if the feature label fj 2 F describes
the token si and 0 otherwise.

2We drop POS= from part-of-speech labels, conforming
to UPOS notation (e.g., NOUN instead of POS=NOUN).

3.2 Multilabel evaluation
The multilabel paradigm lends itself well to analyz-
ing features both holistically and at a granular level.
We can analyze individual features by calculating
precision, recall, and F1 for each feature label f
separately. Furthermore, we can glean the overall
or micro-averaged performance of a probe by first
tallying the true positives (TP), false positives (FP),
and false negatives (FN) across the features, before
calculating precision, recall, and F1.

4 Experimental setup

We demonstrate multilabel morphosyntactic prob-
ing with multilingual BERT (henceforth, mBERT;
Devlin et al., 2018), using morphologically anno-
tated corpora from Universal Dependencies (UD;
Nivre et al., 2016, 2020).3

4.1 Data
In a set of monolingual experiments, we trained
separate probes to predict morphosyntactic features
from corpora for seven languages of varying mor-
phological complexity: Afrikaans (AfriBooms; cf.
Dirix et al., 2017), Croatian (SET; cf. Agić and
Ljubešić, 2015), Finnish (TDT; cf. Haverinen et al.,
2014; Pyysalo et al., 2015), Hebrew (HTB; cf. Tsar-
faty, 2013; McDonald et al., 2013; Sadde et al.,
2018), Korean (PUD; cf. Zeman et al., 2017), Span-
ish (AnCora; cf. Alonso and Zeman, 2016), and
Turkish (IMST; cf. Sulubacak et al., 2016; Tyers
et al., 2017; Türk et al., 2019). With the excep-
tion of the Korean data, all of the corpora came
pre-split into training, validation, and test sets. We
performed an 80-10-10 split on the 1,000-sentence
Korean PUD corpus. To throttle the probes’ train-
ing data (cf. Zhang and Bowman, 2018), we re-
duced the other training sets to 800 sentences as
well.

Next, in a set of multilingual experiments, we
trained probes on a shuffled combination of the
training sentences from the monolingual probes.
However, we excluded the Korean dataset from
this analysis, due to the lack of documentation on
its construction. Finally, in a set of crosslingual
transfer experiments, we evaluated the monolingual
and multilingual probes on six held-out languages:
Arabic (PADT; cf. Smrž et al., 2002, 2008; Hajič
et al., 2009), Chinese (PUD; cf. Zeman et al., 2017),
Marathi (UFAL; cf. Ravishankar, 2017), Slovenian

3
https://universaldependencies.org/

introduction.html

https://universaldependencies.org/introduction.html
https://universaldependencies.org/introduction.html
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(SST; cf. Dobrovoljc and Nivre, 2016), Tagalog
(TRG), and Yorùbá (YTB; cf. Ishola and Zeman,
2020). To clarify, mBERT was pre-trained on these
languages; we consider them “held-out” in that we
never train probes to extract linguistic properties
from these corpora (i.e., the experiments are zero-
shot). The datasets for the monolingual, multilin-
gual, and crosslingual experiments are summarized
in Appendix A.

All of the probes were trained to extract multiple
features, such as POS, number, gender, case, and
tense, as well as language-specific features, such
as Finnish infinitive forms. (It is due to the inclu-
sion of parts of speech that we refer to the task as
“morphosyntactic tagging”.) Since the languages
vary in their linguistic properties, we used different
label sets for each language and a semi-aggregated
set for the multilingual probes. Across our experi-
ments, we extracted 166 different feature labels in
total, as listed in Appendix B.

The UD corpora include decompositions of mul-
tiword tokens and separate annotations for their
respective components. To keep the input to the
probes faithful to naturalistic text, we embed the
multiword tokens themselves, but aggregate the
feature labels from their components (e.g., the He-
brew multiword token �952% hasefer ‘the book’ is
marked as both a determiner and noun).

4.2 Models and training

For our experiments, we instantiated a “BERT-
Base, Multilingual Cased” model using Hugging-
Face’s Transformers library (Wolf et al., 2019).
This BERT variant contains 110M parameters
across 12 Transformer layers, each with 12 atten-
tion heads and a hidden size of 768. The model
was pre-trained on Wikipedia dumps from 104
languages. The authors over-sampled the smaller
Wikipedia corpora to create a more cross-linguistic
vocabulary, consisting of 100K wordpieces.

We froze mBERT and trained linear classifiers
on top of embeddings produced by mBERT’s ini-
tial embedding layer and its successive Transformer
layers (cf. Liu et al., 2019; Hupkes et al., 2018).
Preliminary experiments showed that the even-
numbered layers (mBERT-0, mBERT-2, mBERT-4,
etc.) faithfully captured the layer-by-layer trends
across mBERT, so we opted to cut down on com-
putation by focusing exclusively on these layers.
The classifiers used sigmoid activation and were
trained with mean binary cross-entropy loss to per-

form the multilabel tagging task. We trained each
classifier for 50 epochs, selecting the model from
the epoch that achieved the best validation loss.
Courtesy of PyTorch (Paszke et al., 2019), the clas-
sifiers were optimized using Adam (learning rate
= 0.001, �1=0.9, �2=0.999, ✏=1e-08; Kingma and
Ba, 2015). No dropout was used.

We performed word-level predictions of mor-
phosyntactic properties by first summing over
the word-piece embeddings for each word, then
caching these representations prior to training the
probes. See Appendix C for more details.

4.3 Vying for control
Following Hewitt and Liang (2019), we constructed
a control task to complement the multilabel tagging
task, whereby each word type in the task vocabu-
lary was assigned a multi-hot output vector that was
randomly generated according to the true distribu-
tion of feature labels in the training data. Deviating
from Hewitt and Liang’s notation, we generated a
control output vector ci for each word type vi 2 V ,
such that ci = ci1 . . . c

i
|F |, where cij was sampled

from the true distribution of feature fj in the train-
ing data. For instance, if fj was a feature of 4%
of the tokens in the training set, then cij has a 0.04
probability of being 1 for any word type vi (or,
conversely, a 0.96 probability of being 0).

5 Monolingual experiments

In a set of monolingual experiments, we trained
and evaluated individual diagnostic probes on
Afrikaans, Croatian, Finnish, Hebrew, Korean,
Spanish, and Turkish, given representations from
the even-numbered mBERT layers. Their micro-
averaged F1 scores are conveyed in Figure 2, along
with their results on the analogous control tasks.

5.1 Monolingual performance at a glance
The micro-averaged F1 scores confirm that mBERT
renders many morphosyntactic properties easily
extractable, with the best performing probes for
each language achieving scores between 0.83 and
0.97. We find that mBERT-6 scored the highest
across the languages. This is consistent with prior
work that has shown English BERT’s interior lay-
ers to perform best on similar linguistic tasks (Liu
et al., 2019; Tenney et al., 2019). Once mBERT
has encoded morphologically relevant information,
it seems that probe performance steadily declines
as the topmost layers gear up for cloze predictions.
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Figure 2: Micro-averaged F1 results from the monolingual probes on the diagnostic and control tasks. The x-axes
indicate the mBERT layer.

Notably, the Afrikaans and Spanish probes per-
formed the best and the Turkish probes the worst.
It is tempting to conclude that ‘mBERT knows
Afrikaans and Spanish better than Turkish’. How-
ever, we should refrain from comparing global
probe performance across languages, as each lan-
guage differed in the sets of features that were ex-
tracted. Furthermore, although each of the probes
were trained on 800 sentences, they were ultimately
trained on varying numbers of tokens. It may be
that the Afrikaans and Spanish probes performed
the best because they had the largest training sets
token-wise, whereas Turkish had the smallest train-
ing set and lowest F1 scores.

5.2 Monolingual selectivity

While the diagnostic probes drastically outper-
formed their controlled counterparts, we do see
a trend of selectivity improving with the number of
layers. This reinforces the findings of Hewitt and
Liang (2019), who posit that classifiers trained on
top of lower layers are better equipped to memo-
rize input-output mappings, due to their proximity
to the initial vocabulary representations of the em-
bedding layer. Nevertheless, the high selectivity
scores across the probes show that a multilabel
probing classifier offers a promising diagnostic of
morphosyntactic representations.

From a cross-linguistic standpoint, it is interest-
ing that the probes for Afrikaans—the one mor-
phologically impoverished language in the bunch—

exhibited the worst selectivity. This suggests that,
perhaps, it is easier for probes to memorize map-
pings for analytic languages (i.e., languages that
lack rich inflectional systems). However, as the
the Afrikaans probes were trained on the second
largest number of tokens, they may have had more
opportunity to memorize the control task. (Sim-
ilarly, the Spanish probes, which had the largest
training set, displayed the second best performance
on the control task.)

5.3 Case study: Hebrew covert determiners

The micro-averaged scores in Figure 2 show that
mBERT has indeed learned some linguistic system
or portion thereof. However, these scores do not
give much insight into which aspects of morphosyn-
tax mBERT has come to represent, the interplay
between these properties, nor how much mBERT
varies in capturing each feature value. Crucially, a
key strength of multilabel probing is that it makes
it easy to mine fine-grained morphosyntactic ob-
servations that implicate multiple features. In this
section, we present such an analysis with Hebrew
determiners, inspired by Klein and Tsarfaty (2020).
We focus on the predictions from mBERT-6, since
it displayed the highest F1 and selectivity scores
out of the Hebrew probes.

Ambiguous orthographies as well as multiword
tokens (MWTs) are ubiquitous in Hebrew. As
stated previously, we represented MWTs by flatten-
ing their structure and labeling each MWT with the
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feature labels of its components. A common struc-
ture of MWTs in Hebrew is ADP-(DET)-NOUN,
where the determiner is the definite article - �% ha
‘the’. Depending on the preposition, the definite ar-
ticle is represented orthographically (e.g., -�%/ miha
‘from the’) or as a vowel change on the preposition
that is not represented orthographically (e.g., -�-
can be either le ‘to a’ or la ‘to the’). When the
article is absent from the orthography, we refer to
it as being covert.4

The definite article is one type of determiner in
the HTB corpus, but is uniquely identified by the
label PronType=Art. We thus extracted all of
the ADP-(DET)-NOUN cases from the Hebrew test
set (234 in total) and examined how well mBERT-
6 captured this property. We found that it was
less able to recognize PronType=Art when the
article was not overt (Table 1).

Yet, we also found that agreement patterns fa-
cilitated recognition of the covert definite article.
In particular, Hebrew adjectival modifiers agree
with the nouns they modify in gender, number, and
definiteness (e.g., in the noun phrase �0)8% ;*"%
habayit hakatan ‘the small house’, �;*" bayit is
‘house.sing.masc’, �0)8 katan is ‘small.sing.masc’,
and -�% ha is the definite article). Based on
UD’s amod annotations, the MWTs that appeared
in these constructions constituted 44.3% of TPs,
19.4% of FPs, and 26.2% of FNs when identifying
the covert definite article. Moreover, the major-
ity of the FNs involved additional erroneous pre-
dictions, where either PronType=Art was not
captured on the modifier, the parts of speech were
misidentified, or the modifier and the noun were
mis-predicted to disagree along an additional fea-
ture (i.e., gender or number). These concomitant
errors were largely missing from the TPs.

It seems that mBERT-6 has learned that Hebrew
nouns and their modifiers agree along multiple fea-
tures, and that it is able to use the presence of an
overt definite article on a modifier to help infer the
presence of a covert article in a MWT. When not
all of the grammatical features that participate in
agreement are captured, this can attenuate recogni-
tion of the covert article (and vice versa).

6 Multilingual experiments

We have used monolingual probes to assess the lin-
guistic representations from mBERT on a language-

4Since the article is (optionally) audible, this usage of
covert differs slightly from its usage in linguistic theory.

PronType=Art P R F1

Overt determiner 0.93 0.56 0.70
Covert determiner 0.69 0.40 0.50

Table 1: Recognition of the feature PronType=Art
in ADP-DET-NOUN multiword tokens, given the He-
brew mBERT-6 probe.

Probe Af Hr Fi Es Tr

Mono. 0.89 0.88 0.89 0.96 0.79
Multi. 0.71 0.76 0.80 0.14 0.65

Table 2: F1 results for nominative case (Case=Nom)
in Afrikaans (Af), Croatian (Hr), Finnish (Fi), Spanish
(Es), and Turkish (Tr), given the monolingual and mul-
tilingual mBERT-6 probes.

by-language basis. However, can we replace the in-
dividual monolingual probes with a single multilin-
gual probe and derive comparable insights? To ad-
dress this question, we trained multilingual probes
on a shuffled combination of the training sets for
Afrikaans, Croatian, Finnish, Hebrew, Spanish, and
Turkish. The multilingual probes extracted an ag-
gregated subset of the features captured by the
monolingual probes. We then assessed the mul-
tilingual probes’ performance on each language
independently. Overall, the multilingual probes
exhibited slight dips in performance, but better se-
lectivity, compared to their monolingual counter-
parts (Figure 3). These trends occurred despite all
of the multilingual models converging before they
reached epoch 50.

6.1 Multilingual task complexity
Even though the multilingual experiments merely
combine the monolingual training data, the multi-
lingual task is inherently more complex than the
monolingual task. Namely, the probes must bal-
ance the needs of multiple languages and extract
features from a broader diversity of data.

Let us consider nominative case. When focus-
ing on predictions from mBERT-6, we see that
the Case=Nom scores for each language dipped
with the multilingual probe (Table 2). Impor-
tantly, the distribution of nominative morphology
differs cross-linguistically; according to the UD
corpora, for instance, nominative inflections ap-
pear on nouns, verbs, and adjectives in Turkish, but
only on pronouns in Spanish. It is possible that
such variation might result in “conflicting” train-
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Figure 3: Micro-averaged F1 results from the multilingual probes on the diagnostic and control tasks for each
language. The x-axes indicate the mBERT layer. The depicted monolingual results (for comparison) assume the
same feature label subsets as the multilingual models; incidentally, the monolingual diagnostic task scores are
equivalent to the scores reported in Figure 2, while the control task scores differ by ±2 points.

ing signals to the probe, causing the performance
of the multilingual probes to dip. Furthermore,
it suggests that, although mBERT renders nomi-
native case easily extractable for each language
independently, mBERT has not recognized their
nominative morphology to correspond to the same
nominative notion. We return to this point in §7.

6.2 Hints of memorization

Indeed, another potential explanation for the con-
trast in monolingual and multilingual performance
is that the simpler task affords the monolingual
probes more opportunity to memorize the feature
labels. This explanation, which is explored further
in Appendix D, is supported by how the multilin-
gual probes generally exhibit greater selectivity
and accounts for why their performance deficit is,
for the most part, spread evenly across the feature
labels (see Appendix E for the full feature-level
results).

7 Crosslingual experiments

Our probing paradigm can also be used to study
which morphosyntactic features are encoded sim-
ilarly cross-linguistically: If a monolingual probe
can successfully extract a feature label given a held-
out language, this suggests that the LM has come

to recognize that property as being shared by the
two languages.

In this section, we evaluate the monolingual and
multilingual probes on UD test sets for Arabic,
Chinese, Marathi, Slovenian, Tagalog, and Yorùbá.
These experiments are akin to prior work on zero-
shot crosslingual transfer (Pires et al., 2019; Wu
and Dredze, 2019; Conneau et al., 2020b; K et al.,
2020), though we differ in that we never fine-tune
mBERT. Focusing once more on mBERT-6, this
section examines a small subset of labels, presented
in Figure 4. However, see Appendix F for the
global F1 scores across the held-out languages and
full feature-level results from mBERT-6.

7.1 Towards cross-linguistic categories
Overall, the probes performed relatively well on
extracting nouns and verbs across the held-out lan-
guages. This suggests that mBERT encodes noun-
hood and verb-hood in a cross-linguistic fashion—
that it has some conception of nouns and verbs that
transcends individual languages. Adjective-hood,
in contrast, seems to be represented less cohesively.
The probes struggled to identify adjectives in Chi-
nese, and even more so in Tagalog and Yorùbá.
This is not to say that mBERT does not capture
adjectives in these languages, but, rather, that it has
not connected them to their counterparts in other



4493

Figure 4: A handful of feature-level F1 results from evaluating the monolingual and multilingual mBERT-6
probes on “held-out” languages. The x-axes indicate the held-out language (Ar=Arabic, Zh=Chinese, Mr=Marathi,
Sl=Slovenian, Tl=Tagalog, and Yo=Yorùbá), while the y-axes indicate the probe (Mu=Multilingual, Af=Afrikaans,
Hr=Croatian, Fi=Finnish, He=Hebrew, Ko=Korean, Es=Spanish, and Tr=Turkish). Grayed-out regions indicate
where the feature label is not applicable to the language or annotated in the language’s corpus.

languages. This may be especially true for low-
resource languages like Tagalog and Yorùbá.5 Even
though mBERT’s training involved over-sampling
smaller corpora, it might be the case that the model
required exposure to Tagalog and Yorùbá adjec-
tives in a wider array of contexts in order to relate
them to their counterparts cross-linguistically (see
Conneau et al. 2020a for interesting discussion).

Cross-linguistic variation in a feature’s distribu-
tion in natural languages might also lead a LM not
to recognize when a property is shared by multiple
languages. In §6, we cited such variation as the
reason the multilingual probes struggled with nom-
inative case. We see this suspicion further borne
out in Figure 4, where predictions of Case=Nom
in the held-out languages ranged from 0 to 0.62 F1.
As evidenced by this lack of transfer, it seems that
cross-linguistic variation in the distribution of nom-
inative morphology led to a decentralized encoding
of nominative case in mBERT; consequently, this
made it more challenging for the probes to capture
nominative case in the held-out languages (and for
the multilingual probes to identify nominative case
in general).

Yet, there are also cases where the multilin-
gual probes performed better than the monolingual
probes with the held-out languages. Most strik-
ingly, the mBERT-6 multilingual probe obtained
0.90 F1 on Tagalog verbs, whereas none of the

5Recall that mBERT was trained on the 100 languages
with the largest Wikipedias. Based on Wikimedia’s List of
Wikipedias, it seems that the Wikipedia dumps for Tagalog
and Yorùbá were among the smallest corpora that mBERT
was trained on, ranking 92 and 106 at present, respectively.
Note also that, in the “language resource race”, Joshi et al.
(2020) give Tagalog and Yorùbá scores of 3/5 and 2/5.

monolingual probes got over 0.79 F1. This sug-
gests that, with cross-linguistic properties that are
encoded more cohesively, such as verb-hood, ex-
posure to multiple languages can lead a probe to
forge more replete connections with mBERT’s rep-
resentational space.

7.2 Family ties

In the absence of cross-linguistic representations,
we generally find that a monolingual probe extends
equivalently or better to a held-out language than
the multilingual model. In particular, the monolin-
gual probes often did well with related languages
(cf. Pires et al., 2019; Wu and Dredze, 2019; Con-
neau et al., 2020b). Compared to the other monolin-
gual probes, for instance, the Hebrew probes fared
best with Arabic, another Semitic language, top-
ping out at a micro-averaged F1 score of 0.56 (see
Appendix F). This was also the case at the feature
level with nouns, verbs, and adjectives, as shown
in Figure 4. Notably, Hebrew and Arabic use dif-
ferent scripts. If mBERT has come to represent
them similarly, this likely falls out of the structural
similarities between the two languages.

Likewise, the Croatian mBERT-6 probe achieved
a micro-averaged F1 score of 0.70 on Slovenian.
(For comparison, the Turkish mBERT-6 probe
scored 0.76 F1 on Turkish.) The Croatian probe
also performed the best on Slovenian nouns, verbs,
and adjectives, as well as with words inflected for
first person, plurality, or indicative mood. This
success seems due to both structural and surface
similarities (e.g., cognates) between Croatian and
Slovenian. For example, Croatian achieved 0.95 F1

on conditional mood (Mood=Cnd; see Appendix

https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://meta.wikimedia.org/wiki/List_of_Wikipedias
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F) and 0.86 F1 on indicative mood (Mood=Ind) in
Slovenian because the two languages share several
auxiliaries that mark mood (e.g., bi for conditional,
je for indicative).

7.3 Revisiting memorization

Note that, with the exception of shared morphemes,
the successful instances of crosslingual transfer
cannot be reduced to memorization. If the probes
merely memorized their monolingual training data,
one would expect chance performance and less
variability when evaluating them on the held-out
languages. These evaluations further verify that the
multilabel probes extracted meaningful representa-
tions from mBERT. When applied to held-out lan-
guages, they also provide a supplementary method
for gauging the complexity of a probe and its ability
to memorize a linguistic task.

8 Discussion and conclusion

Emerging studies on interpretability have high-
lighted a wealth of linguistic information that can
be extracted from neural language models. Con-
tributing to this effort, we propose using a multi-
label probing task to analyze the morphosyntac-
tic representations of multilingual word embed-
dings. We demonstrate this probing paradigm with
mBERT (Devlin et al., 2018).

In a set of monolingual experiments (§5), we
trained individual probes for Afrikaans, Croat-
ian, Finnish, Hebrew, Korean, Spanish, and Turk-
ish. We found that mBERT-6 holds the most mor-
phosyntactic information (cf. Liu et al., 2019; Ten-
ney et al., 2019), with the probes obtaining micro-
averaged F1 scores between 0.83 and 0.97. In a
small case study of Hebrew determiners (§5.3), we
illustrated an analysis that implicates multiple fea-
tures (i.e., lexical category, pronominal type, num-
ber, and gender). Crucially, traditional single-label
efforts would require training multiple models to ar-
rive at such an analysis and, in general, run the risk
of overlooking relevant features. (We also suspect
that training multiple one-off probes is less compu-
tationally efficient than training a single multilabel
probe, though we leave this comparison for future
work.)

Next, in a set of multilingual experiments (§6),
we saw that the multilingual probes marginally
underperformed their monolingual counterparts,
while largely upholding the same trends and ex-
hibiting better selectivity. We attributed this con-

trast in performance to the monolingual probes re-
lying more on memorization, given a simpler task
(§6.2). These findings indicate that the multilingual
probes may be more “expressive” diagnostics of lin-
guistic representations (cf. Hewitt and Liang, 2019).
However, since our goal is to probe embeddings
rather than to perform state-of-the-art morphosyn-
tactic tagging, the monolingual and multilingual
probes offer the same insights to the extent that they
exhibit comparable trends and lend themselves to
the same generalizations.

In a set of crosslingual experiments, we further
evaluated the monolingual and multilingual probes
on data from six “held-out” languages: Arabic,
Chinese, Marathi, Slovenian, Tagalog, and Yorùbá
(§7). We showed that applying the probes accord-
ingly can help illuminate which linguistic proper-
ties a LM recognizes as being shared by multiple
languages and what factors might lead a LM not
to encode cohesive representations of a particular
cross-linguistic feature. Namely, we conjectured
that cross-linguistic variation in the distribution of
nominative morphology led mBERT to form decen-
tralized representations of nominative case; in turn,
this made it more challenging for the probes to
extract nominative case in the held-out languages.

In sum, multilabel probe predictions can be used
to perform holistic analyses of a language model’s
ability to encode systems of morphology, as well
as more fine-grained analyses of individual fea-
tures, agreement phenomena, and how shared prop-
erties are represented cross-linguistically. We re-
lease the predictions from our probes to support
more detailed analyses of mBERT’s facility for
morphosyntax; these predictions can also be used
to focus future contributions by identifying which
mBERT layers to target for more complex prob-
ing of specific features. In addition, we encourage
future efforts to probe different multilingual lan-
guage models using the multilabel paradigm and to
examine how these models might vary in their mor-
phosyntactic representations (cf. Mikhailov et al.,
2021). Finally, future research should explore how
global and feature-level morphosyntactic probe per-
formance corresponds to the performance of down-
stream systems, especially amongst morphologi-
cally rich languages.

Acknowledgments

We thank Fei Xia, the BlackboxNLP 2020 atten-
dees, and the EMNLP 2021 reviewers for their



4495

helpful feedback and discussions. We also thank
the UW Research Computing Club for supporting
our research through their Cloud Credit Program.

Ethical considerations

While our proposed probing paradigm is intended
for analyzing large pre-trained language models,
which are computationally (and monetarily) ex-
pensive to produce (cf. Strubell et al., 2019; Ben-
der et al., 2021), our probes are lightweight and
quick to train. To help minimize our use of com-
putational resources, we deployed a “cache and
batch” approach to pre-processing our data, which
we describe in Appendix C. Furthermore, in addi-
tion to releasing our code, we share our multilabel
probe predictions to facilitate future morphosyntac-
tic analyses of mBERT (i.e., without the need for
training analogous probes).

In our experiments, we prioritized working with
data from a typologically diverse set of languages,
many of which are understudied in the field of nat-
ural language processing (cf. Joshi et al., 2020). In
particular, we drew on data from Universal Depen-
dencies (Nivre et al., 2016; Dobrovoljc and Nivre,
2016), working with morphologically-annoated
corpora for 13 different languages: Afrikaans (Afri-
Booms; cf. Dirix et al., 2017), Arabic (PADT; cf.
Smrž et al., 2002, 2008; Hajič et al., 2009), Chi-
nese (PUD; cf. Zeman et al., 2017), Croatian (SET;
cf. Agić and Ljubešić, 2015), Finnish (TDT; cf.
Haverinen et al., 2014; Pyysalo et al., 2015), He-
brew (HTB; cf. Tsarfaty, 2013; McDonald et al.,
2013; Sadde et al., 2018), Korean (PUD; cf. Ze-
man et al., 2017), Marathi (UFAL; cf. Ravishankar,
2017), Slovenian (SST; cf. Dobrovoljc and Nivre,
2016), Spanish (AnCora; cf. Alonso and Zeman,
2016), Tagalog (TRG), Turkish (IMST; cf. Suluba-
cak et al., 2016; Tyers et al., 2017; Türk et al.,
2019), and Yorùbá (YTB; cf. Ishola and Zeman,
2020). Appendix A briefly summarizes the subsets
of these datasets that we used in our experiments.

Though Universal Dependencies is an incredible
resource—rich with morphosyntactic and depen-
dency annotations—it is important to remember
that many of the these datasets source texts from
somewhat narrow domains (e.g., Wikipedia, news
corpora, Bible passages) and, thus, may be limited
in the linguistic phenomena they capture. More-
over, these datasets are accompanied by varying
degrees of documentation. Please see our reposi-
tory for further details about these datasets (in the

form of Bender and Friedman-inspired data state-
ments) and for a more thorough discussion of the
ethical considerations relevant to our paper.6
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Table A1: Composition of the training and evaluation data for the monolingual and multilingual probes.

Language Genus |F | Train Dev Test

Sentences Tokens Sentences Tokens Sentences Tokens

Afrikaans Germanic 53 800 21,160 194 5,317 425 10,065
Croatian Slavic 66 800 17,811 960 22,292 1,136 24,260
Finnish Finnic 89 800 10,786 1,363 18,311 1,553 21,069
Hebrew Semitic 53 800 16,061 484 8,358 491 8,829
Korean Korean 35 800 13,177 100 1,679 100 1,728
Spanish Romance 63 800 24,345 1,654 52,161 1,719 52,429
Turkish Turkic 64 800 8,244 983 9,768 981 9,794
Multilingual n/a 72 4,800 98,297 5,638 116,207 n/a n/a

Table A2: Composition of the “held-out” language data
(GCP = Greater Central Philippine).

Language Genus Test

Sentences Tokens

Arabic Semitic 675 24,195
Chinese Chinese 1,000 21,415
Korean Korean 1,000 16,584
Marathi Indic 47 376
Slovenian Slavic 995 9,880
Tagalog GCP 55 292
Yorùbá Defoid 318 8,198

Appendix A Universal Dependencies

We performed multilabel probing using morpho-
logically annotated corpora from Universal Depen-
dencies (UD). Table A1 summarizes the datasets
for the monolingual and multilingual experiments
and Table A2 for the crosslingual experiments.

Appendix B Feature labels

Tables B1 and B2 list the 166 feature labels we ex-
tracted in total across our experiments. The mono-
lingual probes were trained to extract every mor-
phosyntactically relevant label that was available
for a given language in its UD corpus. The multi-
lingual probes focused on a subset of these labels.

Appendix C Implementation details

Word-level predictions To perform word-level
predictions of morphosyntactic properties, we first
passed the raw corpus sentences through mBERT,
then aggregated the contextualized word embed-
dings on a word-by-word basis. In small ex-
ploratory experiments, we found that summing the

subword embeddings performed the best; we thus
used this aggregation strategy throughout our exper-
iments. Notably, summing the subword represen-
tations achieved comparable F1 scores but higher
selectivity than taking their average. The summa-
tion and averaging strategies also performed better
than representing each word by the embedding for
its word-initial or word-final word piece.

Cache and batch Prior to training, we cached
the aggregated word representations; these stored
embeddings then served as inputs to the probes.
This was done in lieu of passing a batch of in-
put sentences through mBERT and doing the ag-
gregation on the fly at each training step. Since
the probes themselves are simple linear layers and
therefore non-contextual, we were able to batch
the embeddings at the token level: We dispensed
with the sequence length dimension and skipped
padding. In all of the experiments, we opted for
a batch size of 512 tokens (i.e., the batches had
a dimensionality of 512⇥768). This “cache and
batch” approach allowed each monolingual probe
to train in ⇠1 minute and each multilingual probe
in ⇠4 minutes on a Tesla K80 GPU.

Control task In the control task, each word type
vi 2 V was assigned a multi-hot output vector
ci, where cij was sampled according to the true
distribution of the feature label fj in the training
data.7 To help ensure the presence of controlled
counterparts for low-frequency feature labels, each
feature label had a minimum probability threshold
of 0.001. For each language, the probes for the
various mBERT layers were trained to predict the
same set of random output vectors.

7V is based on the word types across the training, valida-
tion, and test sets, since UD corpora use an open vocabulary.
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Table B1: The monolingual probes extracted different sets of features, while the multilingual probes extracted a
semi-aggregated subset of these features (in bold under “Feature Labels”).

Feature Labels Afrikaans Croatian Finnish Hebrew Korean Spanish Turkish

ADJ X X X X X X X
ADP X X X X X X
ADV X X X X X X X
AUX X X X X X X X
CCONJ X X X X X X X
DET X X X X X X
NOUN X X X X X X X
NUM X X X X X X X
PART X X X X
PRON X X X X X X X
PROPN X X X X X X X
SCONJ X X X X X
VERB X X X X X X X
AdjType=Attr X
AdjType=Pred X
AdpType=Post X
AdpType=Prep X X X
AdpType=Preppron X
AdvType=Tim X
Animacy=Anim X
Animacy=Inan X
Aspect=Hab X
Aspect=Perf X
Aspect=Prog X
Aspect=Prosp X
Aspect=Rapid X
Case=Abe X
Case=Abl X X
Case=Acc X X X X X X X
Case=Ade X
Case=Advb X
Case=All X
Case=Com X X
Case=Comp X
Case=Dat X X X
Case=Ela X
Case=Equ X
Case=Ess X
Case=Gen X X X X X
Case=Ill X
Case=Ine X
Case=Ins X X X
Case=Loc X X
Case=Nom X X X X X X
Case=Par X
Case=Tem X
Case=Tra X
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Continuation of Table B1:

Feature Labels Afrikaans Croatian Finnish Hebrew Korean Spanish Turkish

Case=Voc X
Clitic=Han X
Clitic=Ka X
Clitic=Kaan X
Clitic=Kin X
Clitic=Ko X
Clitic=Pa X
Clitic=S X
Connegative=Yes X
Definite=Cons X
Definite=Def X X X X
Definite=Ind X X X
Degree=Abs X
Degree=Cmp X X X X
Degree=Dim X
Degree=Pos X X X
Degree=Sup X X X X
Derivation=Inen X
Derivation=Ja X
Derivation=Lainen X
Derivation=Llinen X
Derivation=Minen X
Derivation=Sti X
Derivation=Tar X
Derivation=Ton X
Derivation=Ttain X
Derivation=U X
Derivation=Vs X
Echo=Rdp X
Evident=Nfh X
Form=Adn X
Form=Aux X
Form=Compl X
Gender=Fem X X X
Gender=Masc X X X
Gender=Neut X
Gender[psor]=Fem X
Gender[psor]=Masc X
Gender[psor]=Neut X
HebBinyan=HIFIL X
HebBinyan=HITPAEL X
HebBinyan=HUFAL X
HebBinyan=NIFAL X
HebBinyan=PAAL X
HebBinyan=PIEL X
HebBinyan=PUAL X
HebExistential=True X
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Continuation of Table B1:

Feature Labels Afrikaans Croatian Finnish Hebrew Korean Spanish Turkish

InfForm=1 X
InfForm=2 X
InfForm=3 X
Mood=Cnd X X X X
Mood=Des X
Mood=Gen X
Mood=Imp X X X X X X
Mood=Ind X X X X X
Mood=Nec X
Mood=Opt X
Mood=Pot X X
Mood=Sub X
NumType=Card X X X X X
NumType=Dist X
NumType=Frac X
NumType=Mult X
NumType=Ord X X X X
Number=Dual
Number=Plur X X X X X X X
Number=Sing X X X X X X
Number[psor]=Plur X X X X
Number[psor]=Sing X X X X
PartForm=Agt X
PartForm=Neg
PartForm=Past X
PartForm=Pres X
PartType=Gen X
PartType=Inf X
PartType=Neg X
Person=0 X
Person=1 X X X X X X X
Person=2 X X X X X X X
Person=3 X X X X X X X
Person[psor]=1 X X
Person[psor]=2 X X
Person[psor]=3 X X
Polarity=Neg X X X X X X
Polarity=Pos X X
Polite=Form X X X
Polite=Infm X
Poss=Yes X X X
Prefix=Yes X
PrepCase=Npr X
PrepCase=Pre X
PronType=Art X X X
PronType=Dem X X X X X X
PronType=Emp X
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Continuation of Table B1:

Feature Labels Afrikaans Croatian Finnish Hebrew Korean Spanish Turkish

PronType=Ind X X X X X X
PronType=Int X X X X X X
PronType=Neg X X
PronType=Prs X X X X X X
PronType=Rcp X
PronType=Rel X X X X
PronType=Tot X X
Reflex=Yes X X X X X X
Subcat=Intr X
Subcat=Prep X
Subcat=Tran X
Tense=Fut X X X X
Tense=Imp X X
Tense=Past X X X X X X X
Tense=Pqp X
Tense=Pres X X X X X
VerbForm=Conv X X
VerbForm=Fin X X X X X
VerbForm=Ger X X
VerbForm=Inf X X X X X
VerbForm=Part X X X X X X
VerbForm=Vnoun X
VerbType=Aux X
VerbType=Cop X X
VerbType=Mod X X
VerbType=Pas X
Voice=Act X X X
Voice=Cau X X
Voice=Mid X
Voice=Pass X X X X X
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Table B2: The monolingual and multilingual probes were evaluated on seven “held-out” languages.

Feature Labels Arabic Chinese Marathi Slovenian Tagalog Yorùbá

ADJ X X X X X X
ADP X X X X X X
ADV X X X X X X
AUX X X X X X X
CCONJ X X X X X
DET X X X X X X
NOUN X X X X X X
NUM X X X X X
PART X X X X X X
PRON X X X X X X
PROPN X X X X X X
SCONJ X X X X X X
VERB X X X X X X
AdjType=Attr
AdjType=Pred
AdpType=Post
AdpType=Prep
AdpType=Preppron
AdvType=Tim
Animacy=Anim
Animacy=Inan
Aspect=Hab
Aspect=Perf
Aspect=Prog
Aspect=Prosp
Aspect=Rapid
Case=Abe
Case=Abl
Case=Acc X X X X
Case=Ade
Case=Advb
Case=All
Case=Com
Case=Comp
Case=Dat X X X
Case=Ela
Case=Equ
Case=Ess
Case=Gen X X X X
Case=Ill
Case=Ine
Case=Ins X X
Case=Loc X X X
Case=Nom X X X X
Case=Par
Case=Tem
Case=Tra
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Continuation of Table B2:

Feature Labels Arabic Chinese Marathi Slovenian Tagalog Yorùbá

Case=Voc X
Clitic=Han
Clitic=Ka
Clitic=Kaan
Clitic=Kin
Clitic=Ko
Clitic=Pa
Clitic=S
Connegative=Yes
Definite=Cons
Definite=Def
Definite=Ind
Degree=Abs
Degree=Cmp
Degree=Dim
Degree=Pos
Degree=Sup
Derivation=Inen
Derivation=Ja
Derivation=Lainen
Derivation=Llinen
Derivation=Minen
Derivation=Sti
Derivation=Tar
Derivation=Ton
Derivation=Ttain
Derivation=U
Derivation=Vs
Echo=Rdp
Evident=Nfh
Form=Adn
Form=Aux
Form=Compl
Gender=Fem X X X X
Gender=Masc X X X X
Gender=Neut X X
Gender[psor]=Fem
Gender[psor]=Masc
Gender[psor]=Neut
HebBinyan=HIFIL
HebBinyan=HITPAEL
HebBinyan=HUFAL
HebBinyan=NIFAL
HebBinyan=PAAL
HebBinyan=PIEL
HebBinyan=PUAL
HebExistential=True
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Continuation of Table B2:

Feature Labels Arabic Chinese Marathi Slovenian Tagalog Yorùbá

InfForm=1
InfForm=2
InfForm=3
Mood=Cnd X
Mood=Des
Mood=Gen
Mood=Imp X X
Mood=Ind X X X X
Mood=Nec
Mood=Opt
Mood=Pot
Mood=Sub
NumType=Card
NumType=Dist
NumType=Frac
NumType=Mult
NumType=Ord
Number=Dual
Number=Plur X X X X X X
Number=Sing X X X X X
Number[psor]=Plur
Number[psor]=Sing
PartForm=Agt
PartForm=Neg
PartForm=Past
PartForm=Pres
PartType=Gen
PartType=Inf
PartType=Neg
Person=0
Person=1 X X X X X X
Person=2 X X X X X
Person=3 X X X X X X
Person[psor]=1
Person[psor]=2
Person[psor]=3
Polarity=Neg X X X X X
Polarity=Pos
Polite=Form
Polite=Infm
Poss=Yes
Prefix=Yes
PrepCase=Npr
PrepCase=Pre
PronType=Art
PronType=Dem X X X X X
PronType=Emp
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Continuation of Table B2:

Feature Labels Arabic Chinese Marathi Slovenian Tagalog Yorùbá

PronType=Ind X X
PronType=Int X X X
PronType=Neg X
PronType=Prs X X X X X
PronType=Rcp
PronType=Rel X X X X
PronType=Tot X
Reflex=Yes
Subcat=Intr
Subcat=Prep
Subcat=Tran
Tense=Fut X X
Tense=Imp
Tense=Past X
Tense=Pqp
Tense=Pres X X
VerbForm=Conv
VerbForm=Fin
VerbForm=Ger
VerbForm=Inf
VerbForm=Part
VerbForm=Vnoun
VerbType=Aux
VerbType=Cop
VerbType=Mod
VerbType=Pas
Voice=Act X
Voice=Cau
Voice=Mid
Voice=Pass X X
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Figure D1: Generalizability of the monolingual and multilingual probes. The x-axes indicate the mBERT layer.
Negative IV-OOV scores indicate instances where the probes performed better on OOV tokens than IV tokens.

Appendix D Monolingual probing with a
dash of memorization

In §6.2, we suggest that multilingual probing is in-
herently more complex than monolingual probing,
and that the simpler task affords the monolingual
probes more opportunity to memorize the feature
labels. Here, we provide additional evidence sup-
porting this analysis.

Out-of-vocabulary words It is worthwhile to
note that the UD corpora assume an open
vocabulary—many of the word types in the val-
idation and test sets do not appear during training.
This allows us to evaluate the effectiveness of the
probes on out-of-vocabulary (OOV) words. If the
probes truly extract features versus memorizing the
task, we would expect them to perform similarly on
in-vocabulary (IV) and OOV words. Conversely, if
the monolingual probes rely more heavily on mem-
orization, this would predict that the multilingual
probes are better able to generalize to new data.

This prediction is largely validated by the OOV
tokens: We micro-averaged separate F1 scores for
the words that were seen during training and those
that weren’t. Since the intuition is that a probe
that generalizes better will exhibit smaller gaps
in performance between OOV and IV words, we
subtracted the OOV scores from the IV scores to
quantify how well the probes generalized to unseen
words (Figure D1). For Croatian, Finnish, Hebrew,
and Turkish, we observed that the gaps between
IV and OOV performance tended to be smaller

for the multilingual probes than the monolingual
ones, especially in later layers.8 These general-
ization trends suggest that the monolingual probes
are more inclined towards memorization than the
multilingual probes.

Language-specific features Another piece of
evidence comes from language-specific features.
In the multilingual experiments, we included two
sets of language-specific features: Finnish infinitive
forms and Hebrew verb classes (a.k.a. binyanim).
While the monolingual probes generally outper-
formed their multilingual counterparts at the fea-
ture level, the opposite tended to be true for
language-specific features (see Appendix E). If the
multilingual probes are more extractive, especially
with cross-linguistic features, this might leave
the probe with more “room” to capture language-
specific features (whether through extraction or
memorization).

Probe complexity Given the challenges posed
by doing multilabel morphosyntactic tagging in a
multilingual fashion, one possibility is that a linear

8In contrast, for Spanish, the multilingual probes generally
exhibited greater IV-OOV gaps than the monolingual mod-
els, though this trend diminished with the number of layers.
Likewise, for Afrikaans, the IV-OOV gaps were very similar
between the monolingual and multilingual probes. Crucially,
relative to the other languages, the IV-OOV gaps were greatest
for Spanish and Afrikaans (where IV performance was better)
in both the monolingual and multilingual settings. This rever-
sal of trends is likely due to their substantially larger training
sets: The increased number of training tokens (and training
steps) may have lured the multilingual probes to memorize
the word-to-label mappings for these languages.
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Table D1: Micro-averaged F1 scores from the linear monolingual and multilingual probes (Mono. & Multi.) and
the multilingual MLP-1 probes with h = {16, 32, 64, 128} hidden dimensions.

Mono. Multi. h = 16 h = 32 h = 64 h = 128

Afrikaans 0.95 0.91 0.89 0.91 0.93 0.94
Croatian 0.92 0.87 0.83 0.88 0.90 0.91
Finnish 0.87 0.83 0.77 0.83 0.85 0.87
Hebrew 0.87 0.84 0.81 0.84 0.86 0.87
Spanish 0.97 0.93 0.91 0.94 0.95 0.96
Turkish 0.83 0.76 0.71 0.77 0.80 0.82

Table D2: Selectivity scores from the linear monolingual and multilingual probes (Mono. & Multi.) and the
multilingual MLP-1 probes with h = {16, 32, 64, 128} hidden dimensions.

Mono. Multi. h = 16 h = 32 h = 64 h = 128

Afrikaans 0.29 0.50 0.37 0.29 0.27 0.27
Croatian 0.42 0.58 0.42 0.39 0.39 0.39
Finnish 0.46 0.60 0.51 0.50 0.50 0.50
Hebrew 0.49 0.58 0.52 0.50 0.49 0.48
Spanish 0.35 0.50 0.35 0.31 0.30 0.30
Turkish 0.46 0.47 0.39 0.38 0.39 0.40

probe is simply not complex enough to accommo-
date the multilingual task. If true, this might offer
an alternative explanation as to why the monolin-
gual probes outperformed the multilingual probes.

In a small post-hoc analysis with mBERT-6, we
trained multilayer perceptrons with a single hid-
den layer (MLP-1s) to perform the multilingual
morphosyntactic tagging task. As we increased
the dimensionality of the hidden layer, we found
that the micro-averaged F1 performance would ap-
proach that of the monolingual probes, but with
comparable or worse selectivity. In contrast, the
linear multilingual probes consistently exhibited
the best selectivity. Tables D1 and D2 convey these
results. In sum, these findings suggest that the im-
provements observed by the more complex probes
resulted from them having an increased capacity for
memorizing the task, rather than from being more
expressive (cf. Hewitt and Liang, 2019). Thus, the
advantage of the monolingual probes over the mul-
tilingual probes cannot be reduced to a linear layer
not being sufficient enough to extract features from
multiple languages.

Appendix E Monolingual + multilingual
feature-level performance

Figures E1 though E7 report the global and feature-
level F1 results for the monolingual and multilin-

gual probes. In the monolingual experiments, we
trained separate probes for Afrikaans, Croatian,
Finnish, Hebrew, Korean, Spanish, and Turkish. In
a set of multilingual experiments, we then trained
probes on a shuffled combination of the training
data from the monolingual probes. However, we ex-
cluded the Korean dataset from these experiments,
due to the lack of documentation on its construc-
tion.

Appendix F Crosslingual performance

Figure F1 shows the global F1 results from evaluat-
ing the monolingual and multilingual probes on the
held-out languages (plus Korean), while Figure F2
shows the feature-level F1 results from evaluating
the mBERT-6 probes on the held-out languages.
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Figure E1: Akrikaans F1
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Figure E2: Croatian F1
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Continuation of Figure E2 (Croatian F1):
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Figure E3: Finnish F1
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Continuation of Figure E3 (Finnish F1):
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Figure E4: Hebrew F1
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Figure E5: Korean F1
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Figure E6: Spanish F1
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Continuation of Figure E6 (Spanish F1):
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Figure E7: Turkish F1
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Continuation of Figure E7 (Turkish F1):
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Figure F1: Micro-averaged F1 results from evaluating the monolingual and multilingual probes on the “held-out”
languages (plus Korean). The x-axes indicate the mBERT layer.
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Figure F2: F1 results from evaluating the monolingual and multilingual mBERT-6 probes on the “held-out”
languages. The x-axes indicate the held-out language (Ar=Arabic, Zh=Chinese, Mr=Marathi, Sl=Slovenian,
Tl=Tagalog, and Yo=Yorùbá) and the y-axes indicate the probe (Mu=Multilingual, Af=Afrikaans, Hr=Croatian,
Fi=Finnish, He=Hebrew, Ko=Korean, Es=Spanish, and Tr=Turkish). Grayed-out regions indicate where the fea-
ture is not applicable to the language or annotated in the language’s corpus.
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Continuation of Figure F2:
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Continuation of Figure F2:


